BIBLIOTHEQUE DU CERIST

G.Comyn N. E. Fuchs
M. J. Ratcliffe (Eds.)

Loogic Programming
in Action Ceol- 65

Second International Logic Programming
Summer School, LPSS '92

Zurich, Switzerland, September 7-11, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Edijtor

Iorg Siekumann

University of Saarland

German Research Center for Artificial Imelligence {DFKI)
Stuhlsatzenhausweg 3, W-6600 Saarbtiicken 11, FRG

Volume Editors

Gérard Comyn

Michael J. Ratcliffe

European Computer-Indusiry Research Centre (ECRC)
Arabehastr. 17, W-8600 Munich 381, FRG

Norbert E. Fuchs
University of Zurich-Trchel, Computer Science Institute
Winterthurerstr. 190, Ch-8057 Zurich, Switzerland

CR Subject Classification (19911 1.2, D15, 54,4, D2, T 16

TSBN 3-546-53930-7 Springer-Veriag Reriin Hetdeiberg New York
ISBN 0-387-53930-2 Springer-Verlag New York Berlin Heidelberg

This work is subject 1o copyright. All rights are reserved, whether the whale or past of
the material is concerned, specifically the vights of wanslation, reprinting, re-use of
ilustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in daia banks, Duplication of this publication or parts thercof is perinitted
only under the provisions of the German Copyright Law of Septemnber 9, 1955, in its
current version, and perntission for use must always be obtained from Sprifiger- Verlag.
Violations are linble for prosecution under the German Copyright Law,

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typasetting: Camera ready by authorfeditor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr,
45/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

While the First Logic Programming Summer School, LPSS "90, addressed the theoretical
foundations of logic programuning, the Second Logic Programming Summer School,
LPSS 62, focuses on the relationship between theory and practice, and on practical
applications.

Logic programming enjoys a privileged position. On the one side, it is firmly rooted in
mathematical logic, on the other side it is immensely practical as a growing number of
users in universities, research institutes and industry are realising. Logic programming
languages, specifically Prolog, have turned out to be ideal as prototyping and application
development languages. Often, one defines an application-specific language that can be
translated into a logic language. In this case, logic programming not only helps to
convenicntly define the syntax of the application-specific language, but also 1o express its
semantics in a direct and understandable way.

There is an interplay between the theory and practice of logic programming that has been
essential for its progress. In the introduction to this volume Robert Kowalski - one of the
pioneers of the ficld - addresses this interplay, and identifics a number of problems where
further research will be necessary (o improve the relation betwceen theory and practice. Much
of this rescarch is being done in the framework of the Basic Research Project Compulog,
and the Network of Excellence in Computational Logic Compulog-Net of the European
Community's ESPRIT programt.

The interplay between theory and practice is also reflected in the relationships between logic
programming and other fields of computer science, e¢.g. deductive databases, knowledge-
based systems, computational linguistics, and sofiware engincering. On the one side, these
fields have borrowed concepts and methods from logic programming, while on the other
they have strongly influenced its research directions. This has led to a strong synergy. To
name only two examples, Prolog was originally developed for writing natural language
processing applications, while knowledge-based systems continue to profit from the
powerful metaprogramming techniques provided by logic programming.

The contributions contained in this volume fall into two categories: tutorials and project
presentations. Four tutorials provide an overview of the relation of logic programming to
constraint logic programming, deductive databases, language processing and software
engineering as well as some theoretical background. Each topic is expanded by project
presentations which give detailed accounts of existing applications, some of which are in
the prototype stage, while others are in daily use.

In their wtorial, Constraint Logic Programming - An Informal Iniroduction, ECRC's
CORE team give an insight into constraint logic programming which is a relatively new
but rapidly expanding subfield of logic programming. Constraint logic programming (CLP)
combines the power of logic programming languages with efficient constraint solving
methods. CLP has proved to be extremely useful for scheduling, planning, and
optimisation problems. This is borne out by the following project presentations. Michel
d'Andrea, in his contribmtion Scheduling and Optimisation in the Automobile Industry,

BIBLIOTHEQUE DU CERIST

w

describes a prototype for a job scheduling system ﬁevcloped by Bull for the Renault group.
In Facrory Scheduling using Finite Domains, Owen Lvans shows the advantages that
constraint logic programming offers for solving problems in a factory environment using
the DecisionPower system sold by ICL. Finally, Pmrrc-loseph Gailly and his colleagues
report an the ESPRIT Prince Project and fts Applications in which a practical consiraint
solving sysiem based on the logic programming language Profog 11 is being developed.

Logic programming has always had strong relations with deductive databases and expert
systems. In his totoriad, & (Gentle) Introduction to Deductive Databases, Shalom Tsur
recalls how the limitations and weaknesses of relational databases, especially of relational
grery languages, led 1o the ideas of deductive databases, and points out the many
interconncctions to logic programming, Christoph Beierle presents Knowledge Based PPS
Applications in PROTOS-L which shows how an enhanced Prolog developed in the context
of the Protos Eureka project can be used for Knowledge-Based scheduling applications.
Cario Chiopris describes the development of the SECReTS Banking Bxpen‘ System from
Phase 1 to Phase 2; tie application is being used by several Italian banks for the analysis
of client data. In his contribution, Logic Engineering and Clinical Dilemmas, John Fox,
wha works af the Tmperial Cancer Research Fund, focuses on the advantages of logic
programming. for clinical decision making, while Edward Freeman shows how A
Enowledge-Based Approach to Strategic Planning helps corporations define their strategic
directions based on models that relale critical business factors to business. targeis. In
copperation with the German mming industry, Lutz Plimer developad two Expert Svstems
in Mining, that are near practical applications: Schikorre helps to locate geological seams,
while BUT sclves the planning problem for underground illuminaton.

As mentioned above, the processing of natural language led to the development of Prolog,
i.e. logic programming and language processing have been related from the very beginning,
In his mutorial Nafural and Formal Language Processing, Michael Hess identifics machine
translation, interaction with computers in natural languages, and accessing information in
nawra! language as three main goals of nawral language processing, and shows how logic
prograrmming coniinues ¢ contribuic to achieve these goals. In her project presentation,
Deboraly Dahl inwoduces Pumdit - Naiural Language Interfaces. To be domain independent,
Pundit consists of 3 number of modules that separately perform the tasks of syntactic,
semantic and pragmatic analysis. The ESTEAM-316 Dialogue Manager preserited by
Thomas Grossi, Didier Bronisy and Frangois Jean-}Marie model a pant of human dizlogue,
viz. advice giving in the domain of financial investments. Robert Kowalski points out the
syntactic similarities of legat language and logic programming languages, and shows how
the formalisation of Legislation as Logic Frograms suzgests ways it which logic
progmmmm £ coutld be extended. Knowledge represeatation is essential in natural language
orocessing. Yido Pletat presenss in Knowledge Representation for Natural Language
Processing the knowledge representation formalism 1y 15 o which has the power of first-
order predicate logic and offers 2 type system similar to the one in KL-ONE. Language
processing is not restricted to natural language alone. Peter Reintjes has developed A Set of
Tools for VHDL Design which convincingly demonstrates Prolog's strength as an
implementation kanguage for langozge-oriented work in gencral, and hardware description
langueges in particular, -

Software engineering is another field that profits enormously ifrom the power and
concisencss of logic programming languages. Keywords that come immediately (o mind are
executzbie specificstions, program synihesis and program transfoimatons. Based on the

BIBLIOTHEQUE DU CERIST

VI

great experience of his many years in the field, Alan Bundy shows how reasoning about
logic programs helps to improve the efficiency and the reliahility of programs. In his paper,
Tutarial Notes: Reasoning About Logic Programs, he presents a unified view that
encompasses the problems of verification, termination, synthesis, transformation, and
abstraction. Formal specifications in logic programming languages are the topic of Abdel
Ali Ed-Dbali and Pierre Deransart. In their contribution Software Formal Specification by
Logic Programming: The Example of Standard Prolog they use as a concrete example the
formal specification of the language Prolog itself. This work is part of the emerging
imernational Prolog standard. One of the largest problems facing software engineering is
the mass of exisiing programs, many of themn badly or not at all documented. Peter Breuer
presents a set of tools demonstrating The Art of Computer Un-Programming: Reverse
Engineering in Prolog These tools were developed with the goal of improving the
comprehensibility and maintainability of existing COBOL programs. A variety of methods
for debugging have been suggested in the logic programming community. Though
extremely powerful, these methods are not necessarily practical. Mireille Ducassé describes
OPIUM - An Advanced Debugging System that is based on traces of program executions
and combines the power of logic programming with great practicality.

Strangely enough, teaching is not normally considered as an application field though its
importance cannot be underestimated. In the framework of the Swiss National Research
Project NFP 23, Fabio Baj and Mike Rosner have developed Automatic Thegrem Proving
within the Portable Al Lab. This theorcm proving tool helps to tcach basic and advanced
topics of logic and logic programming,

Producing the contributions for this volume has involved a lot of time and expense. Several
organisations have generously supported us in this and we gratefully acknowledge their
contributions:

Bull

Commission of the European Communities

European Computer-Industry Research Centre (ECRC)
ICL

Industrade AG (Apple Computer Division)

University of Zurich

The papers appearing in this volume demonstrate convincingly that logic programming
fruitfully combines theory and practice. Realistic applications have already been
successfully constructed using logic programming languages. We hope this volume will
provide inspiration {or others in the future.

Gérard Comyn
July 1992 Norbert E. Fuchs
Michael Raicliffe

1S1430 NA INO3IHLOI14dId

BIBLIOTHEQUE DU CERIST

Contents

Introduction

Theory and Practice in Logic Programming

Robert Kowalski (Imperial College, Great Britain)cccovmoimmiieniniinicnnccnnciinnns

Constraint Logic Programming

Constraint Logic Programming

Thom Frijhwirth, Alexander Herold, Volker Kiichenhoff,
Thierry Le Provost, Pierre Lim, Eric Monl'roy, Mark Wallace
(ECRC, Germany) . .

Scheduling and Optimisation in the Automobile Industry

Michel d'Andrea (Bull CEDIAG, ITANCE) ...covivcrviriiiiirinieeceesrieeesimecsmesnraseaas

Factory Scheduling Using Finite Domains

Owen V. Evans (ICL, Great Britaindooooivviiiiviiicrsiiiiinvessicmsirsinssrsvanas

The Prince Project and Its Applications
Pierre-Joseph Gailly, Sylvie Bescos (BIM, Belgium),
Wolfgang Krantter (FAW, Germany),

Christophe Bisiére (CEFI, Les Milles, France)}cooccvciciineiniiceicreanenns

Deductive Databases and Expert Systems

A (Gentle) Introduction to Deductive Databases

Shalom Tsur (University of Texas, USA) .o,

Knowledge Based PPS Applications in PROTOS-L

Christoph Beierle (IBM, GEITRANY) ..cooioiiiiiiiiier e eeeeririeeirs s cnveese s e e

The SECReTS Banking Expert System from Phase 1 to Phase 2

Carlo Chiopris (ICON srl, IaLY)} ..oocoiiiiiveriniiemiceiee s esiie st sassseean

Logic Engineering and Clinical Dilemmas

John Fox (ICRF, Great Britailt}o.o.oooovviiiiiiiee s cevtie eeevesmms srsaenran s

A Knowledge-Based Approach to Strategic Planning

Edward H. Freeman (US WEST, USA) .vivriivieeviiinicersisssrisrsmssnssssnsionas

Expert Systems in Mining

Lutz Plimer (Rheinische-Friedrich-Wilhelim-Universitiit Bonn, Germanyy)

118

BIBLIOTHEQUE DU CERIST

Processing of Natural and Formal Languages

MNamral and Formal Language Processing

Michael Hess (ISSCO, SWHZEIIATA) ovvioiiiiee et vsiremir e smecve s e e s e s

Pundit - Naturai Language Interfaces

Peboralk A, Dahl (Paramax Systems Corporation, USA) it

The ESTEAM-316 Dialogue Manager
Thomas Grossi, Didier Bronisz, Francois Jean-Marie

{CAP Gemini Sogeti, France}ccocemiroviinreei i e

Legislation as Logic Programs

Robert Kowalski (Impertal College, Great Britain) .ooooveeevviecnivcnevrecienmesrccneenns

Knowledge Representation for Natural Language Processing

Udo Pletat {IBM, GEIMany) ..o e st et

A Set of Tools for VHDL Design

Peter Reintjes (DAZIX Intergraph, USA)Y e

Software Engineering

Tusorial Notes: Reasoning Abont Logic Programs

Alan Bundy (University of Edinburgh, Scotland) ...

Software Formal Specification by Logic Programming:
The Example of Seandard Prolog
Abdel Ali Ed-Dbali (Université d'Orléans, France}

Pierre Deransart (INRIA, Franfe) .o sieeerssineeesrsveseanrsenes

The Art of Computer Un-Programming: Reverse Engineering in Prolog
Peter Brever (University of Oxford, Great Briaind ..o vcceeniicneiiiieeneiesrenesnee s nans

OPIUM - An Advanced Debugging System

Mireille Ducassé (ECRC, Germany) ocvcvevveiervcieivcneees SETPIOR

Education

Automatic Theorem Proving Within the Porlable Al Lab

Fabio Baj, Michael Rosner (IDSIA Lugano, Switzerland) ...,

127

176

186

203

231

242

252

278

290

BIBLIOTHEQUE DU CERIST

Theory and Practice in Logic Programming

Robert Kowalski

Department of Computing, Imperial College
London, England, UK.
April 1992

Abstract. Logic Programming enjoys a relatively good relationship
between its theory and its practice., Nonetheless, this relationship needs to be
improved, and doing so0 is an important direction for research in the future. The
Europcan Comnunity Basic Research Project, Compulog, and the more gencral
"network of excellence”, Compulog-net, are concerned with developing such
improvements.

1 Procedural versus Declarative Interpretations

The procedural interpretations of Horn clauscs and of ncgation as failure are the basis for
both the theory and practice of logic programming, For many applications (e.g. databases
and program specifications) the declarative view needs lo dominate the procedural. For
other applications, the procedural is more important. In many cases, both views arc
necessary and a smooth progression and interrclationship between the two is necessary.
Achieving a harmonious balance is not always as casy in practice as it should be in
theory.

Two areas where future research would be useful are improving the data structures and
improving the link with objcct-orientation. Array-like data structures supporting
destructive assignment are convenicnt in practice. At present the theory allows recursive
data structures and various approximations of arrays. Sets of clauses, viewed as updatable
databases, arc a promising allemative.

Many suggestions have been proposed for combining logic programming with object-
oricntation, In some of thesc proposals objects are interpreled as terms; in others as
predicates; in still others as “theories” or sets of clauses, All of these proposals and their
relationships necd Lo be investigated further.

2 Metaprogramming

Programs which manipulate other programs (or scts of clauses) are an important logic
programming tcchnique, used for such applications as providing metadata, implementing
metainterpreters, programining in the large, and disiributed intclligent systcms. The
Godel logic programming language is currenuly under development in Compulog,
motiivated o a large extent by the goal of providing improved metaprogramming
facilitics. Additional work is necessary to reconcile the mcetalogical technigues which
have proved useful in practice with the foundations that arc necded in thcory.

BIBLIOTHEQUE DU CERIST

fAv]

3 WNegation as failure

Non-fionotonic reasoning is nccossary for many applications, including temporal
reasoning in artificial intelligence and databasc systems. In recent years it has becn
recognised that ncgation as failure in logic programiming provides a praclically effective
and theoreiically sound technique for non-monotenic reasoning. Furiber research is
recessary 1o understand betier the relationships between different semantics for negation as
failure and to develop appropriate extensions for disjunctive reasoning, imtegrily
constraints, and the combination of explicit negation and implicit negation as failure,

4 Abduction

Very recently the extension of logic programming (o include abductive (hypothetical)
reasoning has begua to be investigated. This extension is reiated to other extensions such
as constraint logic programming and conditional answers, It can alsc be used for non-
monaotonic reasoning and negation as failure. Furiher work is nceded to relate betier its
semantics (viewed as a program specification) with its implementation,

5 Pregram optimisation

One of the main purposes of semaniics is to provide a foundation for proving program
equivalence and (o jusiify progeam transformaiions and optimisations. Such
uransformation and oplimisation can make a major coniribution i improving programmer
productivity. A number of powerful optimisation methods have beea investigated. Much
more can be done to put the theory inio praciice,

6 Wider implications

Logic programming, appropriately extended (e.g. with explicit negation, disjuction,
abduction), begins o achicve ihe expressiveness of a complete, symbolic knowledge
representation formalism. It has proved cspecially promising for formaiising legal
reasoning. This application is important, both because lcgal reasoning can be regarded as
prototypical of practical reasoning in general, and becausc rule-bascd Icgal rcasoning
integrates naturally and comfortably with other kinds of reasoning, including case-based
reascning with open-textured concepis. The sttong links belween logic programming and
lcgal reasoning provide gvidence that logic programming may one day prove as uscful for
computing as legal reasoning is for human affairs. More importanily, it may help us
better to achieve the goals of human logic itself: 16 reason more clearly and eflectively as
homan beings, even without the use of computers.

Related Reading

1. €. Bogger, R. Kowailski: Logic Programming. In Encyclopedia of Ariificial
Intelligence (ed. 5. Shapira), (second cdition, 1992) Vol. 1 {A-L}, pp. 873-891

2. R. Kowalski: Problems and Promiscs of Computational Logic. In Proceedings
Sympasium Computational Logic {ed, J. Lloyd), Springer-Verlag 1990, pp. 1-36

BIBLIOTHEQUE DU CERIST

Constraint Logic Programming

An Infm;mal Introduction*

Thom Frithwirth, Alexander Herold, Volker Kiichenhoff,
Thierry Le Provost, Pierre Lim, Eric Monfroy, Mark Wallace

ECRC
European Computer-Industry Research Centre
Arabellastr. 17, D-8000 Manich 81, Germany

email: {thom, herold, volker, thierry, pierre, eric, mark}®@ecre.de

Abstract. Constraint Logic Programming (CLP) is a new class of program-
ming languages combining the declarativity of logic programming with the
efficiency of constraint solving. New application areas, amongst thein many
different classes of camhinatorial search problems such as scheduling, plan-
ning or resource allocation can noew he solved, which were intractable for logic
programming so far. The most important advantage that these langnages of-
fer is the short development time while exhibiting an efficiency comparable
to imperative langunages. This tuiorial aims at presenting the principles and
concepts underlying these languages and explaining them by examples. The
objective of this paper is not to give a technical survey of the current state
of art in research on CLP, but rather to give a tntorial introduction and
tc convey the basic philosophy that is behind the diflerent ideas in CLP.
Tt will discuss the currently most successful computation domains and pro-
vide an overview on the different consistency techniques used in CLP and its
implementations.

1 Introduction

During the last decade a new programming paradigm called “ogic programming?”
has emerged. The best known representative of this new class of programming lan-
guages is Prolog, originated from ideas of Colincraner i Marseille and Kowalski
in Edinburgh. Programming in Prolog differs from conventional programming both
stylistically and computationally, as it uses logic to declaralively state problems and
deduction to solve them.

It has been argued in the literature [Kow79, Ste80] that a program is best divided

into two components called competence and performance or logic and conirel The

competence component describes factual information - statements of relationships -
which must be manipulated and combined to compute the desired result. The per-
forrnance cornponent deals with the strategy and control of the manipulations and
combinations. The competence part is responsible for the correctness of the pro-
gram; the performance part is responsible for the efficiency. An ideal programming

* This work is partially funded by the ESPRIT project CHIC, Nr. 5291

BIBLIOTHEQUE DU CERIST

methodology would firsé be concerned with the competence { “what”}), and only then,
if at all, worry about the performance { “how”). Logic programming provides & means
for separation of these concerns. It is based on first erder predicete logic, and the
performance component is mostly automatic by relying on a built-in computation
mechanism called §LD-resoletion.

In this way, logic programming bas the unique property that its semantics, oper-
ational and declarative, are both simple and elegant and coincide in a natural way.
These semantics, however, have theéir limitations. Firstly the objects manipulated by
a logic program are uninterpreted structures - the set of all possible terms that can
be formed from the functions and constants in a given program. Equality only holds
between those objects which are syntactically identical. Every semnantic object has
to be ezplicitly coded into a term; this enforces reasoning at a primitive level. Con-
strainis on the other hand are used o smplicitly describé the relationship between
such semantic objects. These objects are often ranging over such rich computation
domams, as integers, rationals or reals.

The second problem related {o logic programming stems from its uniform but
simple computation rule, a depth-first search procedure, resulting in a generate and
test procedure with s well-known performance problems for large search applica-
tions, Constraint manipulation and propagation have been studied in the Artificial
Intelligence community in the late 1970s and early 1980s {Mon74, Ste80, Mac86] to
make search procedures more intelligent. Techniques like local value propagation,
data driven computation, forward checking {to prune the search space} and look
ahead have been developed for solving constraints. These techniques can be sum-
marised under the heading “Consistency Techniques”.

Consiraint Logic Programming (CLP) is an attempt to overcome the difficulties
of logie programming by enhancing a Prolog-like language with constraint solving
mechanisms. Curionsly both of these limitations of logic programming can be lifted
using “constrainis’. However, each limitation is ircated by a guite different notion
of constraint. CLP has hence two complementary lines of descent.

Firstly it descended from work that aimed ai introducing richer data structures
to a logic programming system thus allowing semantic objects, e.g. arithmetic ex-
pressions, directly to be expressed and manipulated. The core idca here is to replace
the comyputational heart of a logic programming system, unification, by constraint
handling in a constraint domain. This scheme, called CLP{X), has been laid out in
the seminal paper of Jaffar & Lassez [JL87). X has been instantizted with several so
called computation domains, e.g. reals in CLP{R}, rationals in CLP{Q}, and integers
in CLP(Z).

Secondly CLP has been strengly influenced by the work on consistency tech-
niques. With the objective of imnproving the search hehaviour of a logic programming
system Gallaire [(Gal85] advocated the use of these techmiques in logic programming,.
He proposed the active use of constraints, pruning the search tree in an a priori
way rather than using constraints as passive tests leading to a “generate and test”
or “standard backtracking” behaviour. Subsequently the different inference mecha-
nisms underlying the finite domain part of the CLP system CHIP [DVS*28] were
developed. The key aspect is the tight integration between a’ deterministic process,
constraint evaluation, and a nondeterministic process, search. 1t is this active view
of constraints which is exploited in CHIP to overcome the well-known performance

BIBLIOTHEQUE DU CERIST

problems of “generate and test”. This new paradigm exhibits a data-driven compu-
tation and can be characterised as “consirain and generaie”.

Constraint solving has been used in many different application areas such as en-
gineering, planning or graphics. Problems like scheduling, allocation, layout, fault
diagnosis and hardware design are typical examples of constrained search prob-
lems. The most common approach for solving constrained search problems consists
in writing a specialised program in a procedural language. This approach requires
substantial effort for program developiment, and the resulting programs are hard
to maintain, modify and extend. Wilh CLP systems a large number of constrained
search problems have been solved, some of them were previously solved with con-
ventional languages. CLP languages dramatically reduce the development time while
achieving a similar efficiency. The resulting programs are shorter and more declara-
tive and hence easier to maintain, modify or extend. The wealth of applications shows
the flexibility of CLP to adapt to different problem areas. Many Operations Research
problems have been solved with the CLP system CHIP [DVS5+88, Van88, DSV90].
Another very promising application domain is circuit design [Sim92, FSTW91]. £x-
tensive work has also been devoted to financial applications [Ber89, LMY87]. More
recently applications in user interfaces [IHLMY1] and in databases [KKR90] have
been studied. As the subsequent tutorial in this surnmer schoo! focusses on industrial
applications of CLP, we will not further discuss them in this article.

The aim of this informal tutorial is to present the most preminent ideas and con-
cepts underlying CLP languages. It is nol intended to present the underlying theory
of this new class of programming languages or to give an overview on the current
gtate of art in CLP research. There are already technical surveys in the literature,
giving more detfails on those aspects. In particular the article of [Van91] is worth
reading. A restricted view is presented in [Coh90, Frug0] discussing work around the
CLP scheme. For the usage of “consistency techniques” in CLP, [Van89] is a valu-
able source going from theory to application with a large number of programming
example.

This tutorial is organised as follows: In the next section we will introduce the CLP
scheme and review the most important computation domains that have been devel-
oped so far, linear and non-linear arithmetic and boolean constraints. Then we will
introduce the concept of finite domains, consistency techniques and their extension
to arbitrary domains. Next we will explore ways of extending and tuning constraint
gystems. Then the work on search and optimisation in CLP will be presented. Finally
current CLP implementations will be reviewed, amongst them the most well-known
systems: CHIP [DVS*88], CLP(R) [JMSY90] and Prolog III [Cal90].

2 The CLP Scheme

In this section we will introduce i an informal way the basics of the Constramnt Logic
Programming Scheme (called CLP(X}), as developed by Jaffar and Lasscz [JL87).
The key aspect in the CLP scheme is to provide the user with more expressiveness
and flexibility concerning the primitive objects the language can manipulate. Clearly
the user wants to design his application using concepts that are as close as possible
to his demain of discourse, e.g. he wants to use sets, boolean cxpressions, integers,

