
G. Comyn N. E. Fuchs
M. J. Ratcliffe (Eds.)

Logic Programming
in Action c.co1-(;3~

Second International Logic Programming
Summer School, LPSS '92
Zurich, Switzerland, September 7-11, 1992
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editor

J6rg Siekmann
University of Saarland
German Research Center for Artificial Imeiligcnce (DFKI)
Stuhlsatzenhausweg 3, W-6600 Saarbrücken 11, FRG

Volume Editors

Gérard Comyn
Michael J. Ratcliffe
European Computer-Industry Research Centre (ECRC)
Arabellastr. 17, W-8000 Munich 81, FRG

Norbert E. Fuchs
University of Zurich-Irchel, CQmputeLScience Institute
Winterthurerstr. 190, Ch-8057 Zurich, Switzerland

CR Subject Classification (1991): 1.2, D.1.6, FA.!, D.2.1, J.l, J.6

ISBN 3-54()"55930,2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55930-2 Springer-Verlag New York Berlin Heidelberg

Tbis work is subject to copyright. Ali rigbts are reserved, whetber tbe whole Or part of
tbe materiaJ is concerned, specifically the rights of translation, reprinting, re-lise of
illustrations, recitation, broadcasting, reproduction on microfilms or in any otber way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of tbe German Copyright Law of September 9, 1965, in ils
CUITent version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by autbor/editor
Printing and binding: Dnickbaus Beltz, Hemsbacb/Bergstr.
45/3140-543210 - Printed on acid-freepaper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

While the First Logic Programming Summer School, LPSS '90, addressed the theoreticaI
foundations of logic programming, the Second Logic Programming Summer School,
LPSS '92, focuses on the relationship between theory and practice, and on practical
applications.

Logic programming enjoys a privileged position. On the one side, it is fmnly rooted in
mathematical logic, on the other side it is irnmensely practical as a growing number of
users in universities, research institutes and industry are realising. Logic programming
languages, specifically Prolog, have turned out to he ideal as prototyping and application
development languages. Often, one defines an application-specifie language that can be
translated into a logic language. In this case, logic programming not only helps to
conveniently define the syntax of the application-specifie language, but also to express its
semantics in a direct and understandable way.

There is an interplay between the theory and practice of logic programming that has been
essential for its progress. In the introduction to this volume Robert Kowalski - one of the
pioneers of the field - addresses this interplay, and identifies a number of problems where
further research will be necessary to improve the relation between theory and practice. Much
of this research is being done in the framework of the Basic Research Project Compulog,
and the Network of Excellence in Computational Logic Compulog-Net of the European
Community's ESPRIT program.

The interplay between theory and practice is also reflected in the relationships between logic
programming and other fields of computer science, e.g. deductive databases, knowledge
based systems, computationallinguistics, and software engineering. On the one side, these
fields have borrowed concepts and methods from logic programming, while on the other
they have strongly influenced its research directions. This has led to a strong synergy. To
name only two examples, Prolog was originally developed for writing natural language
processing applications, while knowledge-based systems continue to profit from the
powerful metaprogramming techniques provided by logic programming.

The contributions contained in this volume fall into two categories: tutorials and project
presentations. Four tutorials provide an overview of the relation of logic programming to
constraint logic programming, deductive databases, language processing and software
engineering as weIl as sorne theoretical background. Each topic is expanded by project
presentations which give detailed accounts of existing applications, sorne of which are in
the prototype stage, while others are in daily use.

In their tutorial, Constraint Logic Programming - An Informai Introduction, ECRC's
CORE team give an insight into constraint logic programming which is a relatively new
but rapidly expanding subfield of logic programming. Constraint logic programming (CLP)
combines the power of logic programming languages with efficient constraint solving
methods. CLP has proved to be extremely useful for scheduling, planning, and
optimisation problems. This is borne out by the following project presentations. Michel
d'Andrea, in his contribution Scheduling and Optimisation in the Automobile Industry,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

describes a prototype for a job schedulingsystem developed by Bull for the Renault group.
In Factory Scheduling using Finite Domains, Owen Evans shows the advantages fuat
constraint logicprogrammmg offers for solving problems in a factory environment Ilsing
the DecisionPower system sold by ICL. Finally, Pierre-Joseph Gailly and bis colleagues
report on the ESPRIT Prince Project and Its Applications in which a practical constraint
solving system based on the logic programming language Prolog III is being developed.

Logic programming has always had strong relations with deductive databases and expeJ't
systems. In his tutorial, A (Gentle) Introduction ta Deductive Databases, Shalom Tsur
recalls how the limitations and weaknesses of relational databases. especiaIly of relational
query languages, led to the ideas of deductive databases, and points out the many
interconnections to logic programming. Christoph Beierle presents K1Uiwledge Based PPS
Applications in PROTOS-L which shows how an enhanced Prolog developed in the context
of the Protos Eureka project cau beused for Knowledge-Based scheduling applications.
Carlo Chiopris describes the development of the SECReTS Banking Expert Systemfrom
Phase 1 to Phase 2; the application is being used by several ltalian banks for the aualysis
of client data. In his contribution, Logic Engineering and Clinical Dilemmas, John Fox,
who works at the Imperial Cancer Research Fund, focuses on theadvantages of logic
programming for clinical decision making, while Edward Freeman shows how A
Knowledge-Based Approach ta Strategie Planning helps corporations define their strategie
directions based on mndels that relate critical business factors to business targets. In
cooperation with the German mining industry, Lutz Plümer developed two Expert Systems
in Mining, that are near practical applications: Schikorre helps to locate geological seams,
whiie BUT salves the planning problem for underground illumination.

As mentioned above, theprocessing of naturallanguage led to the development of Prolog,
i.e.logic programming and languageprocessing have bren related from the very beginning.
In bis tutorial Natural and Fonnal Language Processing, Michael Hess identifies machine
translation, interaction with computers in naturallanguages, and accessing information in
naturallanguage as three main goals of naturallanguage processing, and shows how logic
progranuning continues to contribute to achieve these goals. In her project presentation,
DeborahDahl introduces Pundit - Natural Language lnteifaces. To De domaîn independent,
Pundit consists of a number of modules that separately perform the tasks ofsyntactic,
semandc and pragmatic analysis. The ESTEAM-316 Dialogue Manager presented by
Thomas Grossi, Didier Bronisy and François Jean-Marie model a part of human dialogue,
viz. advice giving in the domain of financial investments. Robert Kowalski points out the
syntactic similarities of legal language and logic programming languages, and shows how
the formalisation of Legislation as Logic Programs suggests ways in which logic
programming could he extended. Knowledge representation is essential in naturallanguage
processing. Udo PIetat presents in Knowledge Representation for Natural Language
Processing the knowledge representation formalism LULOG which has the power of frrst
order predicate logie and offers a type system similar to the one in KL-ONE. Language
processing is not restricted to naturallanguage aJone. Peter Reintjes has developed A Set Of
Toois for VHDL Design which convincingly demonstrates Prolog's strength as an
implementation language for language-oriented work in general, and hardware description
languages in particular.

Software engineering is another fis:ld that profits enormously from the power and
conciseness of logic programming languages. Keywords that come immeruately to mind are
executable specifications, program synthesis and program transformations. Based on the

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

great experience of his many years in the field, Alan Bundy shows how reasoning about
logic programs helps to improve the efficiency and the reliability of programs. In his paper,
Tutorial Notes: Reasoning About Logic Programs, he presents a unified view that
encompasses the problems of verification, termination, synthesis, transformation, and
abstraction. FormaI specifications in logic programming languages are the topic of Abdel
Ali Ed-Dbali and Pierre Deransart. In their contribution Software FormaI Specification by
Logic Programming: The Example of Standard Prolog they use as a concrete example the
formal specification of the language Prolog itself. This work is part of the emerging
international Prolog standard. One of the largest problems facing software engineering is
the mass of existing programs, many of them badly or not at all documented. Peter Breuer
presents a set of tools demonstrating The Art of Computer Un-Programming: Reverse
Engineering in Prolog These tools were developed with the goal of improving the
comprehensibility and maintainability of existing COBOL programs. A variety of methods
for debugging have been suggested in the logic prograrruning community. Though
extremely powerful, these methods are not necessarily practical. Mireille Ducassé describes
OPIUM - An Advanced Debugging System that is based on traces of program executions
and combines the power of logic prograrruning with great practicality.

Strangely enough, teaching is not normally considered as an application field though its
importance cannot be underestimated. In the framework of the Swiss National Research
Project NFP 23, Fabio Baj and Mike Rosner have developed Automatic Theorem Proving
within the Portable AI Lab. This theorem proving tool helps to teach basic and advanced
topics of logic and logic programming.

Producing the contributions for this volume has involved a lot of time and expense. Severa!
organisations have generously supported us in this and we gratefully acknowledge their
contributions:

Bull
Commission of the European Communities
European Computer-Industry Research Centre (ECRC)
ICL
Industrade AG (Apple Computer Division)
University of Zurich

The papers appearing in this volume demonstrate convincingly that logic prograrruning
fruitfully combines theory and practice. Realistic applications have aIready been
successfully constructed using logic programming languages. We hope this volume will
provide inspiration for others in the future.

July 1992
Gérard Comyn
Norbert E. Fuchs
Michael Ratcliffe

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Introduction

Theory and Practice in Logic Prograrnrning
Robert Kowalski (Imperial College, Great Britain) .. 1

Constraint Logic Programming

Constraint Logic Programming
Thom Friihwirth, Alexander Herold, Volker Küchenhoff,
Thierry Le Provost, Pierre Lim, Eric Monfroy, Mark Wallace
(ECRC, Germany) .. 3

Scheduling and Optimisation in the Automobile Industry
Michel d'Andrea (Bull CEDIAG, France) ... 36

Factory Scheduling Using Finite Domains
Owen V. Evans (lCL, Great Britain) .. .45

The Prince Project and Its Applications
Pierre-Joseph Gailly, Sylvie Bescos (BIM, Belgium),
Wolfgang Krautter (FA W, Germany),
Christophe Bisière (CEFI, Les Milles, France) ... 54

Deductive Databases and Expert Systems

A (Gentle) Introduction to Deductive Databases
Shalom Tsur (University of Texas, USA) .. 64

Knowledge Based PPS Applications in PROTOS-L
Christoph Beierle (IBM, Germany) ... 80

The SECReTS Banking Expert System from Phase 1 to Phase 2
Carlo Chiopris (lCON srI, Italy) .. 91

Logic Engineering and Clinical Dilemmas
John Fox (ICRF, Great Britain) ... 100

A Knowledge-Based Approach to Strategic Planning
Edward H. Freeman (US WEST, USA)•... 109

Expert Systems in Mining
Lutz Plümer (Rheinische-Friedrich-Wilhelm-Universitiit Bonn, Germany) 118

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

Processing of Natural and Formai Languages

Natural and Fonnal Language Processing
Michael Hess (ISSCO, Switzerland) " 127

Pundit - Natural Language Interfaces
Deborilh A. Dahl (Paramax Systems Corporation, USA) 176

The ESTEAM-316 Dialogue Manager
Thomas Grossi, Didier Bronisz, François Jean-Marie
(CAP Gemini Sogeti, France) .. 186

Legislation as Logic Programs
Robert Kowalski (Imperial College, Great Britaln) ... 203

Knowledge Representation for Natnral Language Processing
Vdo Pietat (IBM, Germany) ... 231

A Set of Too!s for VHDL Design
Peter Reintjes (DAZIXlIntergraph, USA) .. ,242

Software Engineering

Tutorial Notes: Reasoning About Logic Programs
Alan Bundy (University of Edinburgh, Scotland) ... 252

Software Fonnal Sp"..-cification by LogicProgramming:
The Example of Standard Prolog
Abdel Ali Ed-Dbali (Université d'Orléans, France)
Pierre Deransart (INRIA, France)· .. 278

The AJt of Computer Un-Programming: Reverse Engineering in Prolog
Peter Breuer (University of Oxford, Great Britain) .. 290

OPIUM - An Advanced DebuggiIlg System
Mireille Ducassé (ECRC, Germany) ... 303

Education

Automatic Theorem Proving Within the Portable AI Lab
Fabio Baj, Michael Rosner (IDSIA Luga11o, Switzerland)313

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Theory and Practice in Logic Programming

Robert Kowalski

Department of Computing, Imperial College
London, England, U.K.

April 1992

Abstract. Logic Programming enjoys a relatively good relationship
between its theory and its practice. Nonetheless, this reIationship needs to be
improved, and doing so is an important direction for research in the future. The
European Community Basic Research Project, Compulog, and the more general
"network of excellence", Compulog-net, are concerned with deveIoping such
improvements.

1 Procedural versus Declarative Interpretations

The procedural interpretations of Hom clauses and of negation as fallure are the basis for
both the theory and practicc of logic programming. For many applications (e.g. databases
and programspccifications) lhe declarative view nccds lo dominate the procedural. For
other applications, the procedural is more important In many cases, both views are
necessary and a smooth progression and interrelationship betwccn the two is necessary.
Achieving a harrnonious balance is not always as easy in practice as it should be in
theory.

Two areas where fulure research would be useful are improving the data structures and
improving the link with object-orientation. Array-like data structures supporting
destructive assignment are convenient in practice. At present the theory allows recursive
data structures and various approximations of arrays. SelS of clauses, viewed as updatable
databases, are a promising alternative.

Many suggestions have becn proposed for combining logic programming with object
orientation. In sorne of these proposaIs objeclS are interpreted as terms; in others as
predicates; in still others as "theories" or selS of clauses. AlI of these proposaIs and their
rclationships nced to be investigated further.

2 Metaprogramming

Programs which manipulate other programs (or sets of clauses) are an important logic
programming technique, used for such applications as providing metadata, implementing
metainterpreters, programming in the large, and distributed intelligent systems. The
GOdel logic programming language is currcntly under development in Compulog,
motivated to a large extent by the goal of providing improved metaprogramming
facilitics. Additional work is necessary to reconcHe the metaIogical techniques which
have proved useful in practice with the foundations that are needed in theory.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

3 Negation as failure

Non-monotonie reasoning is neccssary for many applications, including temporal
reasoning in artificial intelligence and database systems. In recent years it has been
recognised that negation as failure in logic programming provides a practically effective
and theoreticaUy sound technique for non-monotonie reasoning. Further research is
neœssary ta understand better the relationships hetween different semantics for negation as
faHure and to develop appropriate extensions for disjunctive reasoning, integrity
constraints. and the combination of explieit negation and implicit negation as failure.

4 Abduction

Very recently t.'le extension of logic programming to include abductive (hypothetical)
reasoning has hegun ta he investigated. This extension is relatcd ta other extensions such
as eonstraint logie programming and conditiünal answers. It can also he used for non
monotonie reasoning and negation as failure. Further work is needed to relate better its
semantics (viewed as a program specification) with its implementation.

5 Program optimisation

One of the main purposes of semantics is to providc a foundation for proving program
equivalence and LO justify program transformations and optimisations. Such
transformation and optimisation can make a major contribution LO improving programmer
productivity. A number of powerful optimisation methods have becn investigated. Much
more can be donc ta put the theory into practice.

6 Wider implications

Logic programming, appropriately extcnded (e.g. wit.h explicit negation, disjuction,
abduction), begins tü achIcve the expressiveness of a complete, symboHc knowledge
representation formalism. Tt has proved especially promising for formalising legal
reasoning. This application is important, both because lcgal reasoning can be regarded as
prototypical of practical rcasoning in general, and becausc rule-based legaI reasoning
intcgrates naturally and comfortably with other kinds of reasoning, inc1uding casc-bascd
reasoning with opcn-textured concepts. The strong links between iogic programming and
legal reasoning provide cvidence that logic programming may one day prove as lJseful for
computing as legal reasoning is for human affairs. More importantly, it may help us
better to achieve the goals of Imman logic itself: Lü rcason marc clearly and effectivcly as
human beings, even without the use of computcrs.

Related Reading

1. C. Hogger, R. Kowalski: Logic Programming. In EncycIopedia of Artificial
InteUigenœ(ed. S. Shapiro), (second edition, 1992) Vol. l (A-L), pp. 873-891

2. R. Kowalski: Problems and Promises of Computational Logic. In Proceedings
Symposium Computational Logic (ed. J. Lloyd), Springer-Verlag 1990, pp. 1-36

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Constraint Logic Programming

An InformaI Introduction*

Thom Frühwirth, Alexander Rerold, Volker Küchenhoff,
Thierry Le Provost, Pierre Lim, Eric Monfroy, Mark Wallace

ECRC
European Computer-Industry Research Centre
Arabellastr. 17, D-8000 Munich 81, Germany

email: {thom.herold.volker.thierry.pierre.eric.mark}@ecrc.de

Abstract. Constraint Logic Programming (CLP) is a new class of program
ming languages combining the declarativity of logic programming with the
efficiency of constraint solving. New application areas, amongst them many
different classes of combinatorial search problems such as scheduling, plan
ning or resource allocation can now be solved, which were intractable for logic
programming so far. The most important advantage that these languages of
fer is the short development time while exhibiting an efficiency comparable
to imperative languages. This tutorial aim,; at presenting the principles and
concepts underlying these languages and explaining them by examples. The
objective of this paper is not to give a technical survey of the current state
of art in research on CLP, but rather to give a tutorial introduction and
to convey the basic philosophy that is behind the different ideas in CLP.
It will discuss the currently most successful computation domains and pro
vide an overview on the different consistency techniques used in CLP and its
implementations.

1 Introduction

During the last de cade a new programming paradigm called "[ogic programming"
has emerged. The best known representative of this new class of programming lan
guages is Prolog, originated from ideas of Colmerauer in Marseille and Kowalski
in Edinburgh. Programming in Prolog differs from conventional programming both
stylisticallyand computationally, as it uses logic to declaratively state problems and
deduction to solve them.

It has been argued in the literature [Kow79, Ste80] that a program is best divided
into two components called competence and performance or logic and control. The
competence component describes factual information - statements of relationships -
which must be manipulated and combined to compute the desired result. The per
formance component deals with the strategy and control of the manipulations and
combinations. The competence part is responsible for the correctness of the pro
gram; the performance part is responsible for the efficiency. An ideal programming

* This work is partially funded by the ESPRIT project CRIC, Nr. 5291

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

methodology would first be concerned with the competence ("what"), and ouly then,
if at aU, worry about the performance ("hiJw"). Logic programming providesameans
for separation of these concerns, It is based on first order predicatelQgic, and the
performance component is mostly automatic by relying on a built-in computation
mechanism called SLD-resolution.

In this way, logic programming has the unique property that its semantics, oper
ational and declarative, are both simple and elegantand coincide in a natural way.
These semantics, however, have tl:rèir limitations. Fîrstly the objects manipulated by
a logic program are uninterpreted structures - the set of al! possible terms that can
be formedfrom the functions and constants in a given program. Equality only holds
between those objects which are syntactically identical. Every semantic object has
to be explicitly coded into a termi this enforces reasoning at a primitive level. Con
straints on the other hand areused to implicitly describé the relationship between
Buch semantic objects. These objects are often ranging over such rich computation
domains, as integers, rationals or reals.

The second problem related to logic programming stems from its uniform but
simple computation rule, a depth-firstsearch procedure, resulting in a generate and
test procedure with its well-known performance problems for large search applica
tions. Constraint manipulation and propagation have been studied in the Artificial
Intelligence community in the late 19708 and early 1980s [Mon74, Ste80, Madl6] to
make search procedures more intelligent. Techniques like local value propagation,
data driven computation, forward checking (to prune the search space) and look
ahead have been developed for solvingconstraints. These techniques can be sum
marised u):lder the heading "Consistency Techniques".

Constraint Logic Progmmming (CLP) iB an attempt to overcome the difficulties
of logic programming by enhancing a Prolog-like language with constraint solving
mechanisms. Curiously both of these limitations of logic programming can be lifted
using "constraints". However, each limitation iB treated by a quite different notion
of constraint. CLP has hence two complementary lines of descent.

Firstly it descended from work thataimed at introdllcÎng richer data structures
to a logic programming system thus allowing semantic objects, e.g. arithmetic ex
pressions, directly to be expressed and manipulated. The core idea here is to replace
the computational heart of alogie programming system, unification, by constraint
handling in a constraint domain. This scheme, called CLP(X), has been laid out in
the seminal paper of Jaffar & Lassez (JL87]. X has been instantiated with sever al 80

called computation domains, e.g; reals in CLP(R), rationals in CLP(Q), and integers
in CLP(Z).

Secondly CLP has been strongly infiuenced by the work on consistency tech
niques. With the objective of improving the search behaviour of a logic programming
system. Gallaire [GaI85] advocated the Use of these techniquès in logic program.ming.
He proposed the active use of constraints, pruning the search tree in an a priori
way rather than using constraints as passive tests leading te a "generate and test"
or "standardbacktracking" beha,viour. Subsequently the different Inference mecha
nisms underlying the finite domain part of the CLP system CHIP [DVS+88] were
developed. The key aspect is thetight integration between a deterministic process,
constraint evaluation, and a nondeterministic process, search. Jt is this active view
of constraints which lS exploited in CHIP to overcome the well-known performance

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

problems of "generate and test" . This new paradigm exhibits a data-driven compu
tation and can be characterised as "constrain and generate".

Constraint solving has been used in many different application areas such as en
gineering, planning or graphics. Problems like scheduling, allocation, layout, fault
diagnosis and hardware design are typical examples of constrained search prob
lems. The most common approach for solving constrained search problems consists
in writing a specialised program in a procedural language. This approach requires
substantial effort for program development, and the resulting programs are hard
to maintain, modify and extend. With CLP systems a large number of constrained
search problems have been solved, sorne of them were previously solved with con
ventionallanguages. CLP languages dramatically reduce the development time while
achieving a similar efficiency. The resulting programs are shorter and more declara
tive and hence easier to maintain, modify or extend. The wealth of applications shows
the fiexibility of CLP to adapt to different problem areas. Many Operations Research
problems have been solved with the CLP system CHIP [DVS+88, Van88, DSV90].
Another very promising application domain is circuit design [Sim92, FSTW91]. Ex
tensive work has also been devoted to financial applications [Ber89, LMY87]. More
recently applications in user interfaces [HHLM91] and in databases [KKR90] have
been studied. As the subsequent tutorial in this summer school focusses on industrial
applications of CLP, we will not further discuss them in this article.

The aim ofthis informaI tutorial is to present the most prominent ideas and con
cepts underlying CLP languages. It is not intended to present the underlying theory
of this new c1ass of programming languages or to give an overview on the current
state of art in CLP research. There are already technical surveys in the literature,
giving more details on those aspects. In particular the article of (Yan91] is worth
reading. A restricted view is presented in [Coh90, Frü90] discussing work around the
CLP scheme. For the usage of "consistency techniques" in CLP, [Van89] is a valu
able source going from theory to application with a large number of programming
example.

This tutorial is organised as follows: In the next section we will introduce the CLP
scheme and review the most important computation domains that have been devel
oped so far, linear and non-Iinear arithmetic and boolean constraints. Then we will
introduce the concept of fini te domains, consistency techniques and their extension
to arbitrary domains. Next we will explore ways of extending and tuning constraint
systems. Then the work on search and optimisation in CLP will be presented. Finally
current CLP implementations will be reviewed, amongst them the most well-known
systems: CHIP [DVS+88], CLP(R) [JMSY90] and Prolog III [CoI90].

2 The CLP Scheme

In this section we will introduce in an informaI way the basics of the Constraint Logic
Programming Scheme (called CLP(X)), as developed by Jaffar and Lassez [JL87].
The key aspect in the CLP scheme is to provide the user with more expressiveness
and fiexibility concerning the primitive objects the language can manipulate. Clearly
the user wants to design his application using concepts that are as close as possible
to his domain of discourse, e.g. he wants to use sets, boolean expressions, integers,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

