
Y. Bekkers J. Cohen (Eds.)

Memory Management
International Workshop IWMM 92
St. Malo, France, September 17-19, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitat Karlsruhe
Postfach 6980
Vincenz-Priessnitz-StraBe 1
W-7500 Karlsruhe, FRG

Volume Editors

Yves Bekkers
IRISA, Campus de Beaulieu
F-35042 Rennes, France

Jacques Cohen

Juris Hartmanis
Department of Computer Science
Cornell University
5149 Upson Hall
Ithaca, NY 14853, USA

Mitchum School of Computer Science, Ford Hall
Brandeis University, WaItham, MA 02254, USA

CR Subject Classification (1991): D.l, D.3-4, B.3, E.2

ISBN 3-540-55940-X Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55940-X Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ali rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in ils
CUITent version, and permission for use must al ways be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

Storage reclamation became a necessity when the Lisp function cons was originally
conceived 1

• That statement is simply a computer-oriented version of the broader precept:
Recycling becomes unavoidable when usable resources are depleted. Both statements suc
cinctly explain the nature of the topics discussed in the International Workshop on Memory
Management (IWMM) that took place in Saint-Malo, France, in September 1992. This vol
ume assembles the refereed technical papers which were presented during the workshop.

The earlier programming languages (such as Fortran) were designed so that the size of
the storage required for the execution of a program was known at compile time. Subsequent
languages (such as Algol 60) were implemented using a stack as a principal data-structure
which is managed dynamically: information pushed onto a stack uses memory space which
can be later released by popping.

With the introduction of structures (also called records) in mOle recent programming
languages, it became important to establish an additional run-time data structure: the
heap, which is used to store data-cells containing pointers to other cells. The stack-heap
arrangement has become practically universal in the implementation of programming lan
guages. An important characteristic of the cells in the heap is that the data they contain
can become "useless" since they are not pointed to by any other cells. Reclamation of the
so-called "useless cells" can be performed in an ad hoc (manual) manner by having the
programmer explicitly return those cells to the run-time system so that they can be re
used. (In ad hoc reclamation the programmer has to exercise great caution not to return
cells containing valuable data.) This is the case of languages like Pascal or C which provide
primitive procedures for returning useless cells. In the case of languages such as Lisp and
Prolog reclamation is done automatically using a run-time process called garbage-collection
which detects useless cells and makes them available for future usage.

Practically ail the papers in this volume deal with the various aspects of managing and
reclainling memory storage when using a stack-heap model. A peculiar problem of memory
management strategies is the unpredictability.of computations. The undecidability of the
halting problem implies that, in general, it is impossible to foresee how many cells will be
needed in performing complex computations.

There are basically two approaches for performing storage reclamation: one is incre
mental, i.e., the implementor chooses to blend the task of collecting with that of actual
computation; the other is what we like to call the manana method - wait until the en
tire memory is exhausted to trigger the time-consuming operation of recognizing useless
cells and making them available for future usage. A correct reclamation should ensure the
following properties:

- No used cell will be (erroneously) reclaimed.
- Ali use/ess cells will be reclaimed.

Violating the first property is bound to have tragic consequences. A violation of the second
may not be disastrous, but could lead to a premature halting of the execution due to the
lack of memory. As a matter of fact, conservative collectors have been proposed to trade a
(small) percent age of unreclaimed useless cells for a speedup of the collection process.

An important step in the collection is the identification of useless cells. This can be
achieved by marking ail the useful cells and sweeping the entire memory to collect useless

1 The reader is referred to the chapter on the History of Lisp, by John McCarthy, which ap
peared in History of Programming Languages, edited by Richard L. Wexelblat, Academic
Press, 1981, pp 173-183.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

(unmarked) cells. This process is known as mark-and-sweep. Another manner ofidentifying
useless cells is to keep re/erence cOlJnt. whieh are constantly updated to indicate the number
of pointers to a given cell. When this number becomes zero the cell is identmed as useless.
If the mark-and-sweep or the reference count techniques fail to locate any useless cells, the
program being executed has to halt due to lack of storage. (A nasty situation may occur
when successive collections succeed in reclaiming only a few cells. In Buch cases very little
actual computation is performed between consecutive time-consuming collections.)

Compacting collectors are those which compact the useful information into a contiguous
storage area. Such compacting requires that pointers be properly readjusted. Compacting
becomes an important issue in paging systems (or in the case of hierarchical or virtual
memories) since the compacted useful information is likely to result in fewer page faults,
and therefore in increased performance.

An alternative method of garbage-collection which has drawn the attention of impie
mentors in recent years is that of coPUing. In this case the useful cells are simply copied
into a "new' area from the "old" one. These areas are called semi-spaces. When the space
in the "new" area is exhausted, the "old" and "new" semi-spaces are swapped. Although
this method requires twice the storage area needed by other methods, it Can be performed
incrementally, thus offering the possibility of real-time garbage-collection, in which the
interruptions for collections are reasonably short.

The so-called genemtional garbage-collection is based on the experimental fact that
certain cells remain used during substantial periods of the execution of a program, whereas
others become useless shortly alter they are generated. In these cases the reclaiming strategy
consists of bypassing the costly redundant identification of "old generation" cells.

With the advent of distriblJted and pamllel computers reclamation becomes considerably
more complex. The choice of storage management strategy is, of course, dependent on the
various types of existing architectures. One should distinguish the cases of:

1. Distributed computers communicating via a network,
2: Parallel shared-memory (MIMD) computers, and
3. Massively parallel (SIMD) computers.

In the case of distributed reclamation it is important that collectors be fault tolerant: a
failure of one or more processors should not result in loss of information. The term on-the
fiu garbage-collection is (usually) applicable to parallel shared-memory machines in which
one or more processors are dedicated exclusively to collecting while others, called mlJtators,
are responsible for performing useful computations which in turn may generate nseless cells
that have to be reclaimed.

Sorne features of storage management are langlJage-dependent. Presently, one can distin
guish three major paradigms in programming language design: /tmctional, logic, and object
oriented. Although functional languages, like Lisp, were the first to incorporate garbage
collection in their design, both logie and object-oriented language implementors followed
suit. Certain languages have features that enable their implementors to take advantage of
known properties of data in the stack or in the heap so as to reduce the execution time
needed for collection and/or to reclaim as many useless cells as possible.

In the preceding paragraphs we have briefly defined the terms: mark-and-sweep, re/er
ence COlJnt, compacting, coPUing, incremental, genemtional, conservative, distriblJted, par
allel, on-the-fi!!, real-time, and langlJage-dependent /eatlJres. These terms should serve to
gnide the reader through the varions papers presented in this volume.

We suggest that non-specialists st art by reading the three survey papers. The first
provides a general overview of the recent developments in the field; the second specializes
in distributed collection, and the third deals with storage management in processors for logic
programs. The other chapters in this volume deal with the topies of distributed, parallel, and

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

incremental collections, collecting in functional, logic, and object-oriented languages, and
collections using massively parallel computers. The final article in this volume is an invited
paper by H. G. Baker in which he proposes a "reversible" Lisp-like language (i.e., capable of
reversing computations) and discusses the problems of designing suit able garbage-collectors
for that language.

We wish to thank the referees for their careful evaluation of the submitted papers, and
for the suggestions they provided to the authors for improving the quaJity of the present
tion. Finally, it is fair to state that, even with technological advances, there will always be
limited memory resources, especially those of very fast access. These memories will likely
remain costlier than those with slower access. Therefore many of the solutions proposed at
the IWMM are likely to remain vaJid for years to come.

July 1992

Chair
Jacques Cohen

Members
Joel F. Bartlett
Yves Bekkers
Hans-Jurgen Boehm
Maurice Bruynooghe
Bernard Lang
David A. Moon
Christian Queinnec
Dan Sahlin

Program Committee

Brandeis University, Waltham, MA, USA

DEC, Palo Alto, CA, USA
INRIA-IRISA, Rennes, France
Xerox Corporation, Palo Alto, CA, USA
Katholieke U niversiteit, Leuven, Belgium
INRIA, Le Chesnay, France
Apple Computer, Cambridge, MA, USA
Ecole Polytechnique, Palaiseau, France
SICS, Kista, Sweden

Yves Bekkers
Jacques Cohen

Taiichi Yuasa Toyohashi U niv. of Tech., Toyohashi, J apan

We thank all the people who helped the program committee in the refereering pro
cess, some of whom are listed below: K. Ali, M. Banâtre, P. Brand, A. Callebou, P. Fradet,
S. Jansson, P. Magnusson, A. Ma.riën, R. Moolenaar, A. Mulkers,
O. Ridoux, A. Saulsbury, T. Sjôland, L. Ungaro, P. Weemeeuw.

Workshop Coordinator

Yves Bekkers INRIA-IRISA, Rennes, France

Sponsored by

INRIA
University of Rennes 1

CNRS-GRECO Programmation

In cooperation with

ACM SIGPLAN

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

Surveys

Uniprocessor Garbage Collection Techniques
PalJl R. Wilson .. 1

Collection Schemes for Distributed Garbage
S.E. AbdlJllahi, E.E. Miranda, G.A. Ringwood 43

Dynamic Memory Management for Sequential Logic Programming Languages
Y. Bekkers, O. RidolJx, L. Ungaro .. 82

Distributed Systems 1

Comprehensive and Robust Garbage Collection in a Distributed System
N. e. JIJIJI, E. JIJI .. 103

Distributed Systems II

Experience with a Fault-Tolerant Garbage Collector in a
Distributed Lisp System

D. Plain/ossé, M. Shapiro 116

Scalable Distributed Garbage Collection for Systems of Active Objects
N. VenkataslJbramanian, G. Agha, e. Talcott 134

Distributed Garbage Collection of Active Objects with no
Global Synchronisation

l. PlJalJt ... 148

Parallelism 1

Memory Management for Parallel Tasks in Shared Memory
K.G. Langendoen, H.L. MlJller, W.G. Vree 165

Incremental M ulti-Threaded Garbage Collection on
Virtually Shared Memory Architectures

T. Le Sergent, B. BerthomielJ 179

Functional languages

Generational Garbage Collection for Lazy Graph Reduction
J. Seward 200

A Conservative Garbage Collector with Ambiguous Roots for
Static Typechecking Languages

E. ChaillolJx ... 218

An Efficient Implementation for Coroutines
L. MatelJ 230

An Implementation of an Applicative File System
B.e. Heck, D.S. Wise .. 248

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

Logic Programming Languages 1

A Compile-Time Memory-Reuse Scheme for Concurrent Logic Programs
S. Duvvuru, R. Srmdararajan, E. Tick, A. V. S. Sastry, L. Hansen,

X. Zhong .. 264

Object Oriented Languages

Finalization in the Collector Interface
B. Hayes .. 277

Precompiling C++ for Garbage Collection
D.R. Ede/son 299

Garbage Collection-Cooperative C++
A. D. Samples " .. 315

Logic Programming Languages II

Dynamic Revision of Choice Points During Garbage Collection
in Prolog [II/III]

J.F. Pique ... 330

Ecological Memory Management in a Continuation Passing Prolog Engine
P. Tarau .. 344

IncrementaI

Replication-Based Incrementai Copying Collection
S. Nettles, J. D'Toole, D. Pierce, N. Haines 357

Atomic Incrementai Garbage Collection
E.K. Kolodner, W.E. Weihl .. 365

Incrementai Collection of Mature Objects
R.L. Hudson, J.E.B. Moss 388

Improving Locality

Object Type Directed Garbage Collection to Improve Locality
M.S. Lam, P.R. Wilson, T.G. Moher .. 404

Allocation Regions and Implementation Contracts
V. Delacour 426

Parallelism II

A Concurrent Generational Garbage Collector for a Parallel Graph Reducer
N. Rôjemo 440

Garbage Collection in Aurora: An Overview
P. Weemeeuw, B. Demoen 454

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

Massively Parallei Architectures

Collections and Garbage Collection
S.C. Merrall, J.A. Padget .. 473

Memory Management and Garbage Collection of an
Extended Common Lisp System for Massively Parallel SIMD Architecture

T. Yuasa .. 490

Invited Speaker
NREVERSAL of Fortune - The Thermodynamics of Garbage Collection
H.G. Baker .. 507

Author Index .. 525

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

U niprocessor Garbage Collection Techniques

Paul R. Wilson

University of Texas
Austin, Texas 78712-1188 USA

(wilsonl!!lcs.utexas.edu)

Abstract. We survey basic garbage collection algorithms, and variations
such as incremental and generational collection. The basic algorithms in
clude reference counting, mark-sweep, mark-compact, copying, and treadmill
collection. Incrementai techniques can keep garbage collection pause times
short, by interleaving small amounts of collection work with program execu
tion. Genemtional schemes improve efficiency and locality by garbage collect
ing a smaller area more often, while exploiting typicallifetime characteristics
to avoid undue overhead from long-lived objects.

1 Automatic Storage Reclamation

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
App91]. While in many systems programmers must explicitly reclaim heap memory
at sorne point in the program, by using a "free" or "dispose" statement, garbage
collected systems free the programmer from this burden. The garbage collector's
function is to find data objectsl that are no longer in use and make their space
available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversais. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a "dangling pointer" into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough
treatment of older techniques, see [Knu69, Coh81].

1.1 Motivation

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is sorne good reason to coordinate their activities. If objects must be
deallocated explicitly, sorne module must be responsible for knowing when other
modules are not interested in a particular object.

1 We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as weil as full-fiedged objects with encapsulation and
inheritance, in the sense of object-oriented programming.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

Sinee liveness is a global property, this introduces nonlocal bookkeeping into
routines that might otherwise be orthogonal, composable, and reusable. This book
keeping can reduce extensibility, because when new functionality is implemented,
the bookkeeping code must be updated.

The unneeessary complications created by explicit storage allocation are espe
cially troublesome because programming mistakes often introduce erroneous behav
iar that breaks the basic abstractions of the programming language, making errors
hard to diagnose.

Failing to reclaim memory at the proper point may lead to slow memory leaks,
with unreclaimed memory gradually accumulating until the process terminates or
swap space is exhausted. Redaiming memory too soon can lead to very strange be
havior, because an object's space may be reused to store a completely different object
while an old pointer still exists. The same memory may therefore be interpreted as
two different objects simultaneously with updates to one causing unpredictable mu
tations of the other.

These bugs are particularly dangerous because they often fail to show up re
peatably, making debugging very difficult; they may never show up at all until the
program is stressed in an unusual way. If the allocator happens not to reuse a par
ticular object's space, a dangling pointer may not cause a problem. Later, in the
field, the application may crash when it makes a different set of memory demands,
or is linked with a different allocation routine. A slow leak may not be noticeable
while a program is being used in normal ways-perhaps for many years-because
the program terminates before too much extra space is used. But if the code is in
corporated into a long-running server program, the server will eventually exhaust
its swap space, and crash.

Explicit allocation and reclamation lead to program errors in more subtle 'Yays
as weil. It is common for programmers to statically allocate a moderate number of
objects, so that it is unnecessary to allocate them on the heap and decide when and
where to redaim them. This leads to fixed limitations on software, making them fail
when those limitations are exceeded, possibly years later when memories (and data
sets) are much larger. This "brittleness" makes code much less reusable, because the
undocumented limits cause it to fail, even if it's being used in a way consistent with
its abstractions. (For example, many compilers fail when faced with automatically
generated programs that violate assumptions about "normal" programming prac
tices.)

These problems lead many applications programmers to implement some form of
application-specific garbage collection within a large software system, to avoid most
of the headaches of explicit storage management. Many large programs have their
own data types that implement referenee counting, for example. U nfortunately, these
collectors are often both incomplete and buggy, because they are coded up for a one
shot application. The garbage collectors themselves are therefore often unreliable,
as weil as being hard to use because they are not integrated into the programming
language. The fact that such kludges exist despite these problems is a testimony to
the value of garbage collection, and it suggests that garbage collection should be
part of programming language implementations.

In the rest of this paper, we foeus on garbage collectors that are built into a
language implementation. The usual arrangement is that the allocation routines of

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

the language (or imported from a library) perform special actions to reclaim space,
as necessary, when a memory request is hot easily satisfied. (That is, caUs to the
"deallocator" are unnecessary because they are implicit in calls to the allocator.)

Most collectors require sorne cooperation from the compiler (or interpreter), as
weil: object formats must be recognizable by the garbage collector, and certain in
variants must be preserved by the running code. Depending on the details of the
garbage collector, this may require slight changes to the code generator, to emit
certain extra information at compile time, and perhaps execute different instruction
sequences at run time. (Contrary to widespread misconceptions, there is no conflict
between using a compiled language and garbage collection; state-of-the art impie
mentations of garbage-collected languages use sophisticated optimizing compilers.)

1.2 The Two-Phase Abstraction

Garbage collection automatically reclaims the space occupied by data objects that
the running program can never access again. Such data objects are referred to as
garbage. The basic functioning of a garbage collector consists, abstractly speaking,
of two parts:

1. Distinguishing the live objects from the garbage in sorne way, or garbage detec
tion, and

2. Reclaiming the garbage objects' storage, so that the running program can use
it.

In practice, these two phases may be functionally or temporally interleaved, and
the reclamation technique is strongly dependent on the garbage detection technique.

In general, garbage collectors use a "Iiveness" criterion that is somewhat more
conservative than those used by other systems. In an optimizing compiler, a value
may be considered dead at the point that it can never be 'used again by the running
program, as determined by control flow and data flow analysis. A garbage collec
tor typically uses a simpler, less dynamic criterion, defined in terms of a root set
and reachabi/ity from these roots. At the point when garbage collection occurs2 all
globally visible variables of active procedures are considered live, and so are the
local variables of any active procedures. The root set therefore consists of the global
variables, local variables in the activation stack, and any registers used by active
procedures. Heap objects directly reachable from any of these variables could be
accessed by the running program, so they must be preserved. In addition, since the
program might traverse pointers from those objects to reach other objects, any ob
ject reachable from a live object is also live. Thus the set of live objects is simply
the set of objects on any directed path of pointers from the roots.

Any object that is not reachable from the root set is garbage, i.e., useless, because
there is no legal sequence of program actions that would allow the program to
reach that object. Garbage objects therefore can't affect the future course of the
computation, and their space may be safely reclaimed.

2 Typically, this happens when allocation of an object has been attempted by the running
program, but there is not sufficient free memory to satisfy the request. The allocation
routine calls a garbage collection routine to free up 'pace, then allocates the requested
object.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

1.3 Object Representations

Throughout this paper, we make the simplifying assumption that heap objects are
self-identifying, i.e., that it is easy to determine the type of an object at run time.
Implementations of statically-typed garbage collected languages typicaIly have hid
den "header" fields on heap objects, i.e., an extra field containing type information,
which can be used to decode the format of the object itself. (This is especially useful
for finding pointers to other objects.)

DynamicaIly-typed languages such as Lisp and Smalltalk usually use tagged
pointers; a slightly shortened representation of the hardware address is used, with
a smaIl type-identifying field in place of the missing address bits. This also allows
short immutable objects (in particular, smaIl integers) to be represented as unique
bit patterns stored directly in the "address" part of the field, rather than actually
referred to by an address. This tagged representation supports polymorphie fields
which may contain either one of these "immediate" objects or a pointer to an object
on the heap. Usually, .these short tags are augmented by additional information in
heap-allocated objects' headers.

For a purely statically-typed language, no per-object runtime type information is
actually necessary, except the types of the root set.variables.3 Once those are known,
the types of their referents are known, and their fields can be decoded [App89a,
GoI9I]. This process continues transitively, allowing types to be determined at every
pointer traversaI. Despite this, headers are often used for staticallyctyped languages,
because it simplifies implementations at little cost. (Conventional (explicit) heap
management systems often use object headers for similar reasons.)

2 Basic Garbage Collection Techniques

Given the basic two-part operation of a garbage collector, many variations are possi
ble. The first part, distinguishing live objects from garbage, may be done in several
ways: by reference counting, marking, or copying. 4 Because each scheme has a major
influence on the second part (reclamation) and on reuse techniques, we will introduce
reclamation methods as we go.

2.1 Reference Counting

In a reference counting system [Co160], each object has an associated count of the
references (pointers) to it. Each time a reference to the object is created, e.g., when
a pointer is copied from one place to another by an assignment, the object's count
is incremented. When an existing reference to an object is eliminated, the count is

3 Conservative garbage collectors [BW88, Wen90, BDS91, WH91] are usable with !ittle or
no cooperation from the compiler-not even the types of named variables-but we will
not discuss them here.

• Some authors use the term "garbage collection" in a narrower sense, which excludes
reference counting and/or copy collection systems; wc prefer the more inclusive sense
because of its popular usage and because it's less awkward than "antomatic storage
reclamation. "

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

