
u. Kastens P. Pfahler (Eds.)

Compiler Construction
4th International Conference, CC '92
Paderborn, FRG, October 5-7, 1992
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitiit Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe 1
W-7500 Karlsruhe, FRG

Volume Editors

Uwe Kastens
Peter Pfahler

Juris Hartmanis
Departrnent of Computer Science
Cornell University
5149 Upson Hall
Ithaca, NY 14853, USA

Universitiit-GH-Paderborn, Mathematik-Informatik (FB 17)
Warburger Str. 100, W-4790 Paderborn

CR Subject Classification (1991): D.3A, D.3.1, FA.2, D.2.6, 1.2.2

ISBN 3-540-55984-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55984-1 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ail rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
CUITent version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

The International Workshop on Compiler Construction CC '92 provides a
forum for the presentation and discussion of recent developments in the area
of compiler construction. Its scope ranges from compilation methods and
tools to implementation techniques for specifie requirements of languages
and target architectures.

The workshop is held every two years and continues the series of Compiler
Compiler workshops organized in the former GDR since 1986. Its new title
Compiler Construction documents the extension of its scope. It is intended
to establish this series as a forum in Europe that covers the whole range of
compilation aspects. The good response to the call for papers shows the need
for such a forum: 64 papers on a broad variety of topies were submitted by
authors from all over the world. The program committee selected 16 contri
butions for full presentation and 12 for short presentation, both published in
this volume. Further contributions were selected to be presented at a poster
exhibition. Their titles are listed at the end of this volume - abstracts are
published in a report of the Computer Science Series of the Universitat-GH
Paderborn. The workshop program is completed by a keynote speech given
by N. Wirth on "30 Years of Programming Languages and Compilers".

CC '92 is hosted by the Universitat-GH Paderborn. The German Gesellschaft
für Informatik (GI) is the main sponsor of CC '92. IFIP working Group 2.4
(System Implementation Languages) and QI Fachgruppe 2.1.3 (Implemen
tierung von Programmiersprachen) also support CC '92.

We thank all who contributed to the workshop and its organization.

Paderborn, June 1992 Uwe Kastens
Peter Pfahler

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Program Commit tee

Chairman

P. Fritzson (Sweden)

Tibor Gyimothi (Hungary)

R. Nigel Horspool (Canada)

Martin Jourdan (France)

U we Kastens (Germany)

Kai Koskimies (Finland)

Günter Riedewald (Germany)

A. Vladimir Serebriakov (Russia)

Reinhard Wilhelm (Germany)

Uwe Kastens, Paderborn

Organization Peter Pfahler, Paderborn

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Transformation of Attributed Trees Using Pattern Matching
Josef Grosch .. 1

Generating LR(I) Parsers of SmaJl Size
Jose Fortes Gdlvez ... 16

Syntax Directed Translation with LR Parsing
Boi'ivoj Melichar ... 30

Attribute-Directed Top-Down Parsing
Karel Müller ; ... 37

Another Kind of Modular Attribute Grammars
Beate Baum ... 44

Integrated Graphie Environment to Develop Applications Based on
Attribute Grammars
Tibor Gyimothy, Zoltdn Alexin, Robert Szücs 51

Implementing High-Level Identification Specifications
Arnd Poetzsch-Heffter .. 59

Another Solution of Scoping Problems in Symbol Tables
Werner Aflmann ... 66

Compiler Implementation of ADTs Using Profile Data
A. Dain Samples ... 73

The LDL - Language Development Laboratory
Günter Riedewald .. 88

ACTRESS: An Action Semantics Directed Compiler Generator
Deryck F. Brown, Hermano Moura, David A. Watt 95

Creation of a Family of Compilers and Runtime Environments
by Combining Reusable Components
Christian Weber .. 110

The Interprocedural Coincidence Theorem
Jens Knoop, Bernhard Steffen ... 125

Provably Correct Compiler Development and Implementation
Bettina Buth, K.-H. Buth, M. Friinzle, B. von Karger,
Y. Lakhneche, K. Langmaack, M. Müller-Qlm 141

On Interprocedural Data Flow Analysis for Object-Oriented
Languages
Mario Südholt, Christoph Steigner 156

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Testing Completeness of Code Selector Specifications
Helmut Emmelmann .. 163

A Register Allocation Fra.mework Based on Hierarchical
Cyclic Interval Graphs
Laurie J. Hendren, Guang R. Gao, Erik R. Altman,
Chandrika Mukerji .. 176

Register Pipelining: An Integrated Approach to Register
Allocation for Scalar and Subscripted Variables
Evelyn Duesterwald, Rajiv Gupta, Mary Lou Soffa 192

Instruction Scheduling for Complex Pipelines
M. Anton Ertl, Andreas Kmll ... 207

Comparing Software Pipelining for an Operation-Triggered and a
Transport-Triggered Architecture
Jan Hoogerbrugge, Henk Corpomal 219

Scheduling Instructions by Direct Placement
Robert Griesemer ... 229

Compile-Time Analysis of Object-Oriented Programs
Jan Vitek, R. Nigel Horspool, James S. Uhl 236

Partial Evaluation of C and Automatic Compiler Generation
Lars Ole Andersen 251

A Term Pattern-Match Compiler Inspired by Finite Automata
Theory
Mikael Pettersson ... 258

Improving the Performance of Parallel LISP by Compile Time
Analysis
Jürgen Knopp .. 271

FCG: A Code Generator for Lazy Functional Languages
Koen Langendoen, Pieter H. Hartel 278

Compiling Flang
Andrei Mantsivoda, Vyacheslav Petukhin 297

The Implementation of ObjectMath - A High-Level Programming
Environment for Scientific Computing
Lars Viklund, Johan Herber, Peter Fritzson 312

List of Poster Contributions ... 319

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Transformation of Attributed Trees Using Pattern Matching

Josef Grosch

OMO Forschungsstelle an der Universitiit Karlsruhe
Vincenz-PrieBnitz-Str. 1,0-7500 Karlsruhe, Oerrnany

+721-662226
grosch@karlsruhe.gmd.de

AbstracL This paper describes a 1001 for the transformation of attributed trees using pat
tern matching. The trees 10 he processed are defined by a formalism based on context
free grammars. Operations for trees such as composition and decomposition are provid
ed. The approach can he characterized as an amalgamation of trees or terms including
pattern matching, with recursion, attri)lUte grammars, and imperative programming.
Transformations can either modify the input trees or map them 10 arbitrary output. Possi
ble applications are the various transformation tasks in compilers such as semantic
analysis, optimization, or the generation of intermediate representations. The design
goals have been 10 comhine an expressive and high level technique for transformation
with flexibility, efficiency, and practical usability. A reliable development style is sup
ported by static typing and checks for the single assignment property of variables. We
give sorne example transformations and descrihe the input language of our 1001 called
puma. The relationship to similar woIk is discussed. Finally, experimental results are
presented that demonstrate the efficiency of our approach.

Keywords. transformation, attributed trees, pattern matching

1 Introduction
The transformation of trees using pattern matching becomes an accepted technique.
Several tools have been constructed recently that follow this principle [CoP90, HeS91,
LMW89, VoI91]. Toois for code generation successfully use the same technique, too
[AGT89, ESL89]. We present a new tool called puma and its input language for the
transformation and manipulation of attributed trees and graphs [Gro91a]. Puma stands for
pattern matching and unification. Its intended application areas are the various transfor
mation tasks in a compiler operating on abstract syntax trees or arbitrary graph structures.
This includes semantic analysis, optimization, intermediate code generation,
source-to-source translation, and eventually machine code generation.

The trees that are subject to pattern matching are described by a formalism based on
context-free grammars. The tree nodes may be associated with attributes of arbitrary
types. Node types are used to specify the properties of tree nodes. An extension mechan
ism induces a subtype relation among the node types. Pattern matching is extended to
handle subtypes and attributes, too. Operations for the composition and decomposition of
trees are supported by a concise notation.

The building blocks for a transformation are recursive subroutines, classified as
procedures, functions, and predicates, with an arbitrary number of input and output
parameters. The bodies of the subroutines consist of mies which are made up of patterns,
conditions, statements, and expressions. The first two components control the applicabil
ity of a mie. The statements determine what has to be done whenever a mie is applicable.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

The expressions provide values for the output parameters and the function result.

Static type checking with respect to trees is provided. Variables are declared impli
citl y and they are checked for the single assignment property. There is read and write
access to attributes stored in the tree which allows the construction of attribute evaluators.
In ail places it is possible to escape to hand-written code which provides the power and
fiexibility of the imperative programming style.

The output of the generator is a source module in one of the target languages C or
Modula-2. This module allows for easy integration and cooperation with other modules,
either hand-written or generated ones. The pattern matching is local and considers a
region at the top of the CUITent subtree, only. It is implemented by direct code and there
fore efficient.

Our approach can be regarded from several points of view: From the point of view
of imperative programming it is an extension by statically typed, attributed trees, con
structs for composition and decomposition, and pattern matching. From the point of view
of logic programming it omits backtracking and restricts pattern matching to one of the
two terms being a ground term. It adds attributes which are stored in the terms (trees),
static typing, input and output modes for parameters, and an easy escape to imperative
features. From the point of view of functional programming it offers the simple style of
functional programming which has always been present in imperative languages having
functions and recursion. It adds the pattern matching facility. From the point of view of
attribute grammars it allows the specification of attribute evaluation with explicit control
of the evaluation order or visit sequences. This eases the use of global attributes and gives
full control on side-effects.

The intended use of this tool proceeds in three steps: First, a tree is constructed
either by a parser, a previous transformation phase, or whatever is appropriate. Second,
the attributes in the tree are evaluated either using an attribute grammar based tool, by a
puma specified tree traversai and attribute computations, or by hand-written code. Third,
the attributed tree is transformed or mapped to another data structure by a puma generated
transformation module. These steps can be executed one after the other or more or less
simultaneously. Besides trees, puma can handle attributed graphs as weil, even cyclic
ones. Of course the cycles have to be detected in order to avoid infinite loops. A possible
solution uses attributes as marks for nodes already visited.

A Iransformer module can make use of attributes in the following ways: If attribute
values have been computed by a preceding attribute evaluator and are accessed in read
only mode then this corresponds to the three step model explained above. A puma gen
erated module can also evaluate attributes on its own. A further possibility is that an attri
bute evaluator can cali puma subroutines in order to compute attributes. This is especially
of interest when attributes depend on tree-valued arguments.

The tool supports two classes of Iree transformations: mappings and modifications.
Tree mappings map an input tree to arbilrary output data. The input tree is accessed in
read only mode and left unchanged. Tree modifications change a Iree bye. g. computing
and storing attributes at tree nodes or by changing the tree structure. In this case the tree
data structure serves as input as weil as output and it is accessed in read and write mode.

The fust class covers applications like the generation of intermediate languages or
machine code. Trees are mapped to arbilrary output like source code, assembly code,
binary machine code, linearized intermediate languages like P-Code, or another tree struc
ture. A further variant of mapping is to emit a sequence of procedure calls which are

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

handled by an abstract data type.

The second class covers applications like semantic analysis or optimization. Trees
are decorated with attribute values, properties of the trees corresponding to context condi
tions are checked, or trees are changed in order to reftect optimizing transformations.

Puma is part of the Karlsruhe Toolbox for Compiler Construction [GrE90]. In par
ticular it cooperates with the generator for abstract syntax trees ast [Gro91b] and the attri
bute evaluator generator ag [Gro89]. The attributed trees are defined and managed by a
module generated with ast. A second module generated by puma creates and handles
these trees. This way ail the powerful operations for trees and graphs provided by ast are
available such as reader and writer procedures or the interactive browser. For sake of
simplicity we will deviate from reality in this paper and treat the definition of the tree
structure as part of puma.

The rest of this paper is organized as follows: Section 2 presents a few simple
examples of how to describe transformations with puma. Section 3 describes the input
language of the tool. Section 4 sketches the implementation of the generated transformer
module. Section 5 compares our approach with related work. Section 6 presents experi
mental results. Section 7 contains concluding remarks.

2 Tree Transformation by Pattern Matching
The probably easiest way to get an impression of our approach can be obtained by having
a look at a few introductory examples. We will use the abstract syntax of simple arith
metic expressions as input data structure. Besides a few intrinsic attributes describing e. g.
the values of constants we use an attribute called Type. It describes the type of every
subexpression. Its domain are trees, too. The tree definition based on a context-free gram
mar shown in Example 1 specifies the structure of expressions and types.

Example 1: Tree Definition

Expr
Plus
Minus
Const
Adr

>.
>.

Index
Select
Ident

Type

>.

Int
Real
Baal
Array
Record

Fields
NoField
Field

>.

Type <
= Lep: Expr Rep: Expr
= Lep: Expr Rep: Expr

[Value] .
<
Adr Expr •
Adr [Ident: tldent]
[Ident: tldent] .

<

[Lwb] [Upb] Type .
= Fields

<

[Ident: tIdent] Type Fields.

The names before the character '=' can be regarded both as rule names or nontermi
nais. The possible right-hand sides for one nonterminal are enclosed in angle brackets '<'
and '>'. Non-tree valued attributes are enclosed in square brackets T and T. The attri
butes Lwb, Upb, and Value are of the default type int. The attribute Ident is of the user-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

