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Foreword

The papers containcd in this volume were presenied at the third annual
symposium on Combinatorial Pattern Matching, held Aprd 29 to May 1, 1992
111 Tucson. Arizona. They were selected from 39 abstracts submitted in response
to the call for papers.

Combinatorial Pattern Matching addresses 1ssucs of searching and match-
ing of strings and more complicated patterns such as trecs, regular expressions,
extended expressions, etc. The goal is to derive nontrivial combinatorial prop-
ertics for such structures and then to exploit these properties in order to achieve
superior performances for the corresponding cormputational problems. In recent
years, a steady flow of high-quality scientific study of this subject has changed a
sparse sel of isolaled results into a full-fledged arca of algorithmics. Still, there
15 currently no central place for disseminating results in this area. We hope that
CPM can grow Lo serve as the focus point.

This area 15 expected to grow even further due to the increasing demand
for speed and efficiency that comes especially from molecular biclogy and the
Genome project, but also from other diverse areas such as information retrieval
(e.g., supporting complicaled search queries), pattern recognition (e.g., using
strings to represent polygons and string matching to identify them), compilers
{c.g., using tree matching), data compression. and pragram analysis {e.g., pro-
gram integration efforts). The stated cbjective of CPM gatherings is to bring
together once a year the researchers active in the area for an informal and yet
intensive cxchange of information about current and future research in the area.

The first two mectings were held at the University of Paris in 1990 and at
the University of London in 1991. ‘These two meetings were informal and ne
proceedings were produced. We hope that these proceedings will contribute 40
the success and growth of this arca.

The conference was supported in part by the National Science Foundation
and the University of Arizona.
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Probabilistic Analysis of Generalized Suffix Trees

(Extended Abstract)

Wojciech Szpankowski

Department of Computer Science, Purdue University,
W, Lafayetie, IN 47907, U.S.A.

Abstract. Suffix trees find several applications in computer science and
telecommunications, most notably in algorithms on strings, data compres-
sions and codes. We comsider in a probabilistic framework a [amily of gen-
cralized suffix trees — called b-suffix trees  built from the first n suffixes of
a random word. in this family of trees, a nencompact suffix trees {i.c., such
that every cdge is labeled by a single symbol) is represented by ¥ =1, and a
compact suffix tree {i.c., without unary nodes) is asymptotically equivalent
to & — ox. Several paramcters of b-suffix trces are of interest, namely the typ-
ical depth, the depth of insertion, the height, the external path length, and
so forth. We establish some results concerning typical, that is, elmost sure
{a.s.), behavior of these parameters. These findings are used to obiain sev-
eral insights into certain algorithms on words and universal data compression
schemes.

1. Introduction

In recent years there has been a resurgence of interest in algorithmic and com-
binatorial problems on words due to a number of novel applications in computer
science, telecommunications, and most notably in molecular biology. In computer
stience, several algorithms depend on a salution to the following problem:; given a
word X and a set of b + 1 arbitrary suflixes Sy, ..., Spq1 of X, what is the longest
common prefix of these suffixes (cf. [2], [6], [8], [15], [16], [27], [28]). In coding theory
(e.g., prefix codes) one asks for the shortest prefix of a suffix S; which is not a prefix
of any other suffixes 5;, 1 < 7 < n of a given sequence X. In data compression
schemes, the following problem is of prime inlerest: for a given "data base” subse-
quence of length n, find the longest prefix of the n» + st suflix 5,41 which is not a
prefix of any other suffixes S; (1 < i < a) of the underlying scquence X (cf. {21],
[29], {17]). And last, but not least, in comparing molecular sequences (c.g., finding
homology between DNA sequences) one may scarch for the longest run of a given
motif (pattern) (cf. [11]). These, and several other problems on words, can be effi-
cienlly solved and analyzed by a clever manipulation of a data structure known as
suffiz tree [2], [19], [27]).

In general, a suffix tree is a digital tree built from suffixes of a given word X, and
therefore it fits into the class of digital search indexes {[14]). A digital tree stores n

* This research was supported in part by NSF Grants CCR-8200305 and INT-8912631,
and AFOSR Grant 90-01687, NATO Grant 0057/83, and Grant R0l LM05118 from the
National Library of Medicine.
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strings {57, ..., 5,7 built over a finite aiphabet 2. If the sirings §51,.. ... S} are
statistically independent and every edge s labelled L} a single symbol from 2 then
the resulting digital tree is called a regular (or independent) trie ([L, {91, [14]). If
all unary nodes of a trie are elirninated, then the tree becomes the PATRICIA trie
Yof. {91, [141, [23]). Finally, if an external node in a regular irie can store up to b
strings (kcys), then such a tree is called a b-tric. As mentioned above, a suflix tree
is a special tric in which the strings {51, ..., 5.} are suffixes of a given sequence X.
Note that in this case the strings are statistically dependent!

As in the case of regular tries, there are several modifications of the standard
suffix tzee. In a nencompaci suffiz free — called also spread suffix tree and position
tree — each edge is labelled by a letter from the alphabet 2. If all unary nodes are
silminated in the noncompart version of the suffix tree, then ihe resulling tree is
called a compart suffiz tree (ef. [2]). Gonnet and Baeza-Yales {9] coined a name PAT
for such 2 suffix trec to resemble the name PATRICIA used for corppact tries. Here,
we also adopt this name. In addition, we introduce a family of suffix trees - called b-
suffix trces — parametrized by an integer & > 1. A tree in such a family is constructed
from the noncompact suffix tree by zliminating all unary nodes & levels above the
fringe (bottoem level) of the tree (later we slightly modify this definition), These
trees have several useful applications in algorithms on words, data compressions,
and so forth, but more importantly b-suffix trees form a spectrum of trees with
noncempact suffix trees (b = 1) at one extreme and corapact suffix teses (b — 00} at
the other extreme. This allows to assess some propertics of PAT trees in a unificd
and substantially easier manmer {cf. [23]).

In this extended abstract, we offer a characterization of generalized suffix trees in
a probabilistic frammework. (Most of the proofs are omitied; and can be found in the
extended version [26].) Guar probabilistic roodel is a very general one, namely we allow
symbals of a siring to be dependent. Moreaver, instead of concentrating on a specific
algorithm we present a list of results ¢oncerning several parameters of suflix trees,
namely: the typical depth D,(f), depth of inserticn L( ) , height. frm and the shortest
feasible path sn] For cxample, the typical depth DPAT for the PA'T tree built from
the string P$T where P and T are the pattern and the text strings respectively,
is used by Chang and Lawler [6] in their design of an approximate string matching
algorithm. On the other hand, the depth of inseriion Lm of a noncompact suffix
tree s of prime interest to the complexity of the Lempel-Ziv universal compression
scheme (cf. [24]), and L s responsible for a dynamic behavior of many algorithms
on words. Furthermore, the height and the shortest feasible path path indicate how
balanced a typical suffix tree 1g, that is, how much one has to worry about worsi-case
situations. ' '

Qur main results can be summarized as follows. ¥or a b—sufﬁx tree built over an
unbounded word X, we prove that the normalized height al /Iogn the normalized

shortest feasible path sx )/lag n and the normalized depth Dt /logn almost surely
{a.s.} convergs to I/hg ), 1/ky and 1/h respectively, where for every 1 < 6 < o we
have hgb) < h < hy. In the above, k is the eniropy on the alphabet X, while the
parameters by and hg) depend of the underlying probabilistic model. {f the word has
fintle lengih, then the above results also hold except for the shoriest feasible path
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which clearly becomes s&) = 1 (see Remark 2(iii)}). The most interesting behavior

reveals the depth of insertion L which converges in prebability (pr.) to (1/h}logn
but not almost surely. We prove thal almost surely Lg’)/ log n oscillates between 170

and I/hgbj‘ More interestingly, almost sure behavior of the compact suffiz tree (i,
PAT tree) can be deduced from the appropriate asymptotics of the d-suffix trees by
taking & — oo. It is worth mentioning that all these results are obtained in a uniform
manner by a technique that encompasses the so called string-ruler approach {cf. [13],
[20]) and the mixing condition technique. Finally, using our results, we establish the
average complexity of some exact and approximate pattern matching algorithms such
as Chung-Lawler [6] and others (cf. [6]}, etc. In addition, the results for noncompact
suffix trees (cf. [25]) were used by us to settle in the negative the conjecture of
Wyner and Ziv [29] concerning the length of the repeated pattern in a universal
compression scherne (cf. [24]). In this paper, we prove the results already announced
iz [25] concerning the length of the last block in the Lempel-Ziv parsing algorithm
[17].

Asymptotic analyses of suffix trees are very scanly in literature, and most of
them deal with noncempact suffir trees. To the best of our knowledge, there are
no probabilistic results on b-suffix trees and compact suffic trees. This can be easily
verified by checking Section 7.2 of Gonnet and Baeza-Yates’ book [9] which provides
an up-to-date compendinm of resulis concerning dala striuctures and algorithins,
‘The average case analysis of noncompact suflix trees was initialized by Apostolico
and Szpankowski {3]. For the Bernoulli model (independent sequence of letters from
a finite alphabet) the asymptotic behavior of the heighl was recently obtained by
Devroye et al. [7], and the limiting distribution of the typical depth in a suffix tree
is reported in Jacquet and Szpankowski [13]. Recently, Szpankowski [25] extended
these results to a more gencral probabilistic model for nencempact suffix trees, that
is, with b = 1. Finally, heuristic arguments were used by Blumer et el [5] lo show
that the average number of internal nodes in a suffix tree is a linear function of n,
and a rigorous proof of this can be found in [13]. Some related topics were discussed
by Guibas and Odlyzko in [11].

2. Main Results and Their Consequences

In this paper, we consider a family of suffix trees called b-suffix trees. A tree
in such a family has no unary nodes mm ali & levels above the fringe level of the
corresponding noncompact suffix tree. Note thal noncempact and compact suffix
trees lie on two extremes of the spectrum of b-suffix frees; namely, a l-suflix tree
is a noncompact suffix tree, and a é-suffix tree becomes a compact suffix tree when
b — oo. For the purpose of our analysis, however, a modified definition of b-suffix
trees is more convenient. Hereafter, by #-suflix l.ree we mean a suffix tree buslt from n
first suffizes of an unbounded sequence X = {X; 152 | that can store up to b suffizes

in an external node. We denote such a suffix tree by S?E,b).
In this paper, we analyze six parameters of b-suflix trees S,(.b); nairely, the mth
depth Lgf)(m), the height 1Y) and the shortest feasible paih s&” , the typical depth

Dslb), the depith of insertion Lﬁf’) and the ezternal path length E,(;a). The depth of the
mth suffix is equal to the number of internal nodes in a path from Lhe root to the





