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Preface

Computer vision seeks a process that starts with a noisy, ambiguous signal from a TV
camera and ends with a high-level description of discrete objects located in 3-dimensional
space and identified in a human classification. In this book we address this process at
several levels. We first treat the low-level image-processing issues of noise removal and
smoothing while preserving important lines and singularities in an image. At a slightly
higher level, we describe a robust contour tracing algorithm that produces a cartoon of the
important tines in the image. Finally, we begin the high-level task of reconstructing the
geomeltry of objccts in the scene,

The problems in computer vision are so interrelated that to solve one we must solve
them all. This book manages to make serious progress at several levels of visual recon-
struction by working in a restricted world of simple pictures of simple objects.

We use a model that represents a scene as a group of overlapping shapes corresponding
to the projections of objects.  In constructing this representation from an image, the
algorithm must imitate the process in human perception of inferring contours and surfaces
that are occluded or are net present in the luminance tunction. Consequently, the work
depends strongly on what we know aboul the psychology of perception, especially [rom
the Gestalt school and its heirs.

We define the problem in this way: to find adecomposition of the domain D of animage
that has the [ewest disrupted cdges—junctions of edges. crack tips, corners, and cusps—by
creating suitable continuations for the disrupted edges. The resuit is a decomposition of
7} into overlapping regions &y U ... U R, ordered by occlusion, called the 2.1-D Sketch.

Chapters 2 through 3 describe algorithms that have been implemcented in the C language
for a SUN workstation running Unix! and X-Windows, using a library of computer vision
functions catled HVision. The programs rom this book are available via anonymous F¥P
from inlernet host math . harvard. edu, in the dircetory vision.

H computer vision is to have a hope of serious long-term progress in the engineering
sense, we must adopt the tradition from the numerical analysis community of sharing
computer code. In this way, the next gencration of results is built upon the combined best
parts of the previous peneration, : : : '

14Inix is a trademark of AT&T Bell Lahoratories
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Chapter 1

Overview

In the picture on the facing page, the potato partly covers the nectarine and also hides part
of the botile. This partial overlap, or occlusion, ol farther objects by those nearer, is one
of the most fundamental obstacles that the visual system must overcome to achieve its
goal of recognizing and locating objects in our three-dimensional world.

Most of the structurally impaortant lines in what we see are the boundaries that separate
objects from the view of the things behind them. For the past 25 years, researchers in
computer vision have been twying to find lines and edges in images in order to recognize
objects automatically. What has been missing in this endeavor is that most of what we see
is partially covered by something nearer. In this book we have tried ta lay out a practical
way of incorporating occlusion into the task of finding obiect outlines.

Can we really believe that occlusion is detected at alow level? Even without stereopsis
and motion cues, we can experience a striking impression of depth from a single, stationary
Tetingl image such as from a photograph or painting. The main cue toe occlusion in
this setting coemes from the poinls where objects overlap in a scene. These are edge
terminations, which occur most often where one object outline stops, abruptly abuts
against the outline of a nearer object, and forms a junction in the shape of the capital letter
“T". Look again at the still life, and notc how nearly all the occlusion relations can be
readily computed based on the T-junctions.

One theory has it that the impression that one fruit is in front of another comes from
first recognizing the objects, or at Icast familiar shapes, and then noticing that they are
incomplete examples of those shapes. This umplies that we have already performed
a difficult task- to recognize a shape from an incomplete example of it-in order then
to infer that it is indeed incomplete, and therefore partly occluded. A more plausible
model for early visual Qr;ganization, and one which psychologists support increasingly,
is-a process driven by locating disrupted boundaries and building continuations for them
behind occluding surfaces, with recognition coming later. By reconstructing just this first
“bit” of the third dimension, the visual system has simpler shape data from which to find
objects. ' o

Here are two illustrations of how higher-level cognition does not have a decisive effect
on visual organization. Firstly, we readily perceive occlusion among unfamiliar shapes,
as in Figure 1.1. This supports the idea that familiar shape is not necessarily what tells
us which vegetable is in front of which in the still life. Sccondly, the contemporary
psycnologist Gaetanc Kanizsa, notabie as much for his art ag for his psychology, has
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Figure 1.1: One unfamiliar shape occludes another.

sketched pictures for which our perception directly contradicts what we know about the
world. In figure 1.2, forexample, the man and woman are entangled in the fence. Knowing
that they are behind the fence does not change this unusual perception. Thus perceptual
organization follows its own set of rules that depend decisively on ceclusion but not on
nighcr-level object recognition. Simply put, we navigate in the world suceessfully by
seeing what's in front of what independently of knowing what’s what.

In this book we make explicit some of the these hidden rules of perceptual organization,
and then cast them in a model thar lets us compute the relative depth of objects from
acclusion cues—in other words, to find depth from overlap.

1.1 Segmenting with depth

We propose a model that iets us reconsmuet object shapes from a picture of several
mterposed objects, including parts that are occluded by nearer objects. The model also
determines the nearness relations of the objects.

This is a novel approach to0 one of the principal goals of computer vision, that of
segrienting an image. Roughly speaking, to segment means to find regions of interest in a
picture, so thai these regions can be parceled out for further analysis. The ultimatc aim of
our aigorithm will be similar; however, regions of interest will row be allowed to overlap
and occlede one another, and in addition, the hidden parts of incomplete regions will be
restored by hypothetical completions,

Tmage segmentalion has come to mean the process of cutting up a picture into the
simplest shaped picees possible while keeping the color or luminance of cach piece as
uniform as possible. An image is given as a function g{=, y}. (=, y eI representing the
light intensity or color vector produced by a 3D world and striking a lens from direction
{2,y). The aim is 1o szgment the domain D, i.e. partition £ inic regions By, ..., Ay such
that £; is the part of the image in which the nearest object is some object O; and on the
boundary betwsen any two regions Jf; and ;. obizct O; accludes object O; or vice-versa.

This assumes that we have some decisive way to find the regions that correspond
to distinct objects. In general, the variety of lighting siwations, surface characteristics
and textuires in the world make it necessary to iniegrate visual input of various types:
depth cues from stereo and moiion, texture boundaries, shading and shadows. To build a
praciical system, we restrict oursclves to single, stationary images of objects with uniform
nontextured surfaces where shadows and shading do not hide important abject features.

= e ine emerr ame e e oa ez . R a—ne - B TR O TRt TR e TTI L n TO R TR S rea
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Figure 1.2: The man and woman arc cntangled in the fence.

Our model also addresses another goal of vision, that of computing or estimating what
David Marr called the Z%D sketch associated 10 an image [24]; i.e., the depthimage #(ix, 3)
recording the distance from the lens to the nearest cbject in the direction (r,y) and ity
normalized parrial dertvatives:

P(-b:‘f] = 5?;\/1 ;+32
glry) = "W’V +z 2 i ,,z

Marr proposed multiple sources of information contained in the intensity image g{x, y)
from which one could hope to estimate the 21D sketch (z, p, ). This too has proved hard
to implement except under strong constraints, for cxdmplc whcrc VEIy accurate sterec
or motion data is available, or where the lighting and surface reflectances are heavily
constrained. -

Our model achieves a synthesis of these two goals, segmentation and the: 2 D sketch,
while avoiding the numecrical burden of the 2 D sketch and at the same time si mphfymg
2D scgmentation by incorporating occlusion cxph( itly. Hence in the language of computer
vision, we might call our model the 2.1D sketch.

Consider figure 1.3{a}, an image of several blades of grass against a hght background.
Figure 1.3(b) shows the 12 disjoint regions that result from cutting (a) along visible nbject
boundarics. Howcver, the 12 regions do not correspond to 12 distinet objects in the
world: there are only 4 objects reflecting light—the 3 blades of grass and the.background
“object”. Although each of the original objects ligs at varying depth, there is 4 simple
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ordering of the objects that indicates which objects occlude which. We can describe the
scene as a stage set with 4 “wings”, transparent xcept where they contain an object. The
hackground is last in the set and 15 everywhere opaque. This is shown in figure 1.3(c).

This is what we mean by a 2.1D sketch: it is a set of regions B; in the domain D of
the image which fill up £ but whkich may overlap, plus a pardal ordering < on the Tegions
indicating which are in front of which others, Often there will be a background object
F2o behind all others for which &y = D. Our contertion is that this type of segmentation
is more naturzl than the kind with disjoint, unordered R; and that it captures the most
accessible part of the 21D sketch.

1.2 KEdge terminations and continuations

The chief reason we expect the 2.1D sketch to be readily computable is the presence of
edge terminations, and in particular ‘[-junctions. T-junctions are points where the edges
in the image form a “T™, with one edge 1) ending abruptiy in the middle of a second
edge I3, Such points often arise because I'; is an occlusion edge and T\ is any kind of
edge—occlusion, shadow, surface-marking—of a more distant object whose continuation
disappears behind T,

The importance of T-Junctions in the human visual system has been known for a long
time, but their role and power have been greatly clarified by recent work, In particular,
it has become increasingly clear that T-unctions are computed early in the visual process
and are not merely part of an object recogniton paradigm as in the early blocks world
algorithms of Guzman, Roberts, Waliz, ewc (cf. [39]). The gestalt school of psychology
and, particularly, the conternporary psychologist Gaetana Kanizsa have made a thorough
and deep analysis of T-junctions [17]. Consider figure 1.4 from Kanizsa. 1.4(a) and
L.4(b) differ only in the addition of diagonal lines which change the corners in 1.4(a) to
T-junciions in 1.4¢h); 1.4(b} is unmistakably 3-dimensional. More importantly, we infer
that something is being occluded and fill in the hidden parts. 1.4(a) and 1.4(c) differ only
in the subtraction of short connecting lines which change corners in 1.4(a} to terminators
in 1.4(c).

A terminating line is a weak form of T-junction in that it signals ceclusion approx-
imately perpendicular to the line at ity end. Likewise corners can be thought of as
degenerate lorms of T-junctipns, especially when pairs of their edges are aligned, as in
Kanizsa's triangle iltusion {see figure 1.5). In general, when several edge terminations
are aligned, we tend to perceive a contour “connecting” the terminations along which one
surface occludes another. The alignment of terminations seems 1o cause the hypothetical
T-junctions to mutually confirm one another.

A striking confirmation of the reality of these se-called illnsions and the illusory
contours that we see was found by R. von der Heydt and his colleagues [157 The
responses of single cells in visual areas arc codified by describing their visnal field: the
area within which moving or statignary bars and edges produce activity, They found,
however, that meny cells in visual area V2! responded when no actual stimulus was

'¥nown as Brodmann area 18 in man. this area is adjacent to {he primary visual area Vi (= area 17 =
striate cortex) and is a recipient of a high proportion of its axonal onput.

o maAtE . o YA, AT MU A L AWM T F TS S et o s Ak e e T pg e AT R AR T ” S—
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(a)

Figure 1,3: (a) blades of grass image; (b} a disjoint segmemation; (¢} a seglnellfalion with
overlaps.
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Figure 1.4: A demonstrarion from Kanizsa of the impertance of T-junctions and iermina-
toTs.

Figure 1.5: Kanizsa's mriangle illusion: not three Pac-Man shapes, but three circles
occluded by a nearer white triangle.
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T

Figure 1.6: Aligned terminators elicit neuronal responses aleng the subjective contour,

present in their visual field, but rather when edges outside this field produced illusory
contours that crossed the ficid. Thus, stimuli such as in figure 1.6 cvoke responses from
“horizontal line-detector” cells whase job is normally to find horizontal lines of high
conirast.

In all these cases, the mind seems to create a 3D scene in which occluded parts of
visible objects are reconstructed. In the case of the Kanizsa triangle, the mind goes further
and creates missing outlines of the nearer occluding triangle, and compensates for their
absence in the raw data by a percepiual impression that the white triangle is brighter than
the more distant white background.

Contours such as as the sides of the Kanizsa triangle are known as subjective contours,
because they are not present in the gray level image, yot they are particularly vivid under
certain circumstances. Nakayama and Shimojo [31] have studied the mechanics of these
subjective surfaces, and have produced numerous demonstrations that the pictorial cues to
occlusion are used in an early processing stage of human vision that drives the grouping
processes, Theirs and related results in psychology that bear directly en the 2.1D sketch
model arc discussed in Chaper 4.

1.3 A variational model

To set down the requitements of the 2.1D sketch more preciscly, we define an energy
functional that takes its minimum at an optimal 2.1 sketch of an input image. We begin
by recalling the variatienal model used for image segmentation without overlaps.

The piecewise smooth model of the segmentation problem in computer vision asks
how ta ¢lip a picture into as few and simple pieces as possible while keeping the color of
each piece as smooth and/er slowly varying as pussible. One approach to the problem,
taken by Mumford and Shah [28], is to define a functional that takes its minimum at an
optimal piecewise smooth approximation to a given image. The image is a function ¢
defined on a domair /7 in the plane. It is approximated by a function f, which is smooth
except at a finite sct I of piccewise C! contours which mect @2 and meet each other only
at their endpoints. The functional defined below gives a measwre of the maich between
an image ¢ and a segmentation f, I _

I t o f_ ds.
1

Fus(1) = i [[(f —oFax+ | 1V
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The first term asks that f approximate g, the second asks that [ vary slowly except at
boundaries, and the third asks that the st of contours be as short, and hence as simple
and straight as possible. The contours of I' cut D into a finite set of disjoint regions
f1,..., £, the connected components of D\T.

In this book, however, we seek 4 model that incerporates partially the way that g
derives from a 2D projection of a 3D scene. Rather than base our 2.1D model on a set
af curves T that cuts 2 into disjoint regions, we ask for a set of regions R; whose union
cquals D, and with a partial ordering that represents relative depth. The overlapping of
regions gives in 4 sense the most primitive depth information. The domain D is considered
as a window that reveals the value of g only on 4 portion of the plane. As a result, contour
integrals will exclude pertions of a contour that coincide with the boundary of £,

We now seek a functional F; ; much like Fy-s that achieves a minimum at the optimal
overlapping segmentation of ¢. Let {Hy,. .., A} be asetof regions such that |; f; = D,
with a partial ordering < that represents occlusion, e.g., f; < i; means H; occlodes ;.

B =R\ |J R

Ri<Ry
is the “visible” portion of R;. Throughout the book, R; denotes a closed subset of D with
piecewise smooth boundary and connected interior. The expression ({ /%], <) denates an

ordercd set of overlapping regions, which we will call a segmeniation.
We then define the energy Fp |({R;}, <) as

s

z — _ i it
z (Iu, /R:(g T b dx—l—c-/&dx-!—faﬁl\an qb{x}db) .

=l
In this formula, my i the mean of g on &, and « is the curvature of 08, L.e. ||%| where
- parameterizes 9, by arc length, The function ¢ : R — R is defined by

() = v+axt forle| < gfe
CHEI= v+ 8le| for x| > Bla

2

The scalar constants i, v, ¢, o and 3 in the definition of ¢, determine the characteristics
of a segmentation which minimizes F, ;. Their dimensions are:

i~ intensity™!.dist. ™!
Moo~ dist.*l

a o~ dist.

2~ dimensionless

e ~ dist.”*

Before analyzing the functional, we should describe its relation 1o the 2.1D sketch
model, and to the computer algorithm that finds the 2.1D sketch of an image, The model
refers fo the representadion of an image by a set of possibly overlapping shapes, together
with depth relations between them. Writing down' a functional £; ; is a way of describing
concisely what makes a good sct of shapes for a given image. For example, the first term
of £, asks that the varions visible parts of a single region ought to be of nearly the same

S AL M wimaThes Rt U TR RN CEIMREEITCOCET T T BB e L L an et e Tk RO R R o T Tk —





