
Pavel B. Brazdil (Ed.)

Machine Learning:
ECML-93

European Conference on Machine Learning
Vienna, Austria, April 5 -7, 1993
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editor

JOrg Siekmann
University of Saarland
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, W-6600 Saarbrücken 11, FRG

Volume Editor

Pavel B. Brazdil
LIACC-CillP
Rua Campo Alegre 823, P-4100 Porto, Portugal

CR Subject Classification (1991): 1.2.6

ISBN 3-540-56602-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56602-3 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. AH rights are reserved, whether the whole or part
of the material is concemed, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are hable for prosecution under the Gennan Copyright
Law.
© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Foreword

The European Conference on Machine Learning 1993 (ECML-93) continued with the
tradition of earlier EWSLs (European lVorking Sessions on Learning). The aim of
these conferences is 10 provide a platform for presenting the latest results in the area
of machine leaming. Although ECML-93 is the fIfSt conference under this name, it
can be considered as the sixth meeting of this kind in Europe.

The scientific programme included the presentation of invited talks, selected papers,
and the presentation of ongoing work in poster sessions. The ECML-93 programme
was complemented by several workshops on specifie 1Opies. The proceedings contain
papers related 10 all these activities.

The first chapter of the proceedings con tains two invited papers. The first one
accompanies the invited talk of Ross Quinlan from the University of Sydney. The
second one is by Stephen Muggleton giving an overview of the area of Inductive
Logic Programming (ILP) that has become a very active area indeed. The paper of
Derek Sleeman accompanying his invited lecture is available on request from the
author. This paper covers some European research projects in the area of ML and their
significance for the future development of ML.

The reader may be interested to note that the cali for papers was very successful,
resulting in 69 submissions. In order to maintain a good standard of the conference,
aU submissions were reviewed by at least two members of the programme committee
or their close colleagues. Of course, only some of the submitted papers could actually
be accepted.

The second chapter of the proceedings contains 18 scientific papers that have been
accepted for the main sessions of the conference. It inc1udes both long papers and
some short ones which describe the results of ongoing work.

The third chapter con tains 18 shorter position papers. In order not to make the
proceedings too bulky, ail the papers in this chapter have been condensed.

The final chapter of this book inc1 udes three overview papers related 10 the ECML-93
workshops / panels supplied by the organizers. As the workshops were organized
independentl y of the main conference, this volume does not inc1ude any of the papers
presented by ils participants.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Orga:nization of ECML-93

AlI matters related to the programme were coordinated by the Programme 01a1r who
nad the support of the ECML-93 Programme Committee. It included the following
members of the ML or A.1 community:

Francesco Bergadano (Italy)
Ivan Bratlm (Slovenia)
Pavel Brazdil (portugal)
Ken de Jong (USA)
Luc de Raedt (Belgium)
Jean-Gabrie! Ganascia (France)
Antonios Kakas (Cypros)
Yves Kodratoff (France)
Nada Lavrac (Slovenia)
Ramon L. de Mantaras (Spain)

Katharina Morik (Germany)
Igor Mozetlc (Austria)
Stephen Muggleton (UK)
Lorenza Saitta (ltaly)
Jude Shaviik (USA)
Derek Sleeman (OK)
Maarten van Someren (Netherlands)
Waiter Van de Velde (Belgium)
RüdigerWirth (Germany)

Severai members of the Programme Committee have taken up an active role in the
organization of ECML-93 workshops, and aiso invested a great deal of effort into
reviewing papers. 1 wisil to express my gratitude to ail the people involved for this
work.

ECML-93 was organized by the

Department of Medicai Cybernetics and Artificial Intelligence,
University of Vienna

in cooperation with the

Austrian Research Insùtute for Altificial Intelligence.

Igor Mozetic and Gerhard Widmer have acted in the mie of Local Chairs.

EC~.L-93 was supported by L'le following organizations:

Commission of the European Communities,
Vienna Convelition Bureau,
Austrian Federai Ministry of Science and Research,
Austrian Society for Cyl:.ernetic Studies (OeSGK),
Austrian Society for Artificial Intelligence (OeGAI),
European Coordinating Committee for Artificia! Intelligence (ECCAI).

The official patrons ofECML-93 were:

Austrian Federai Minister of Science and Research, Dr. Erhard Busek,
Mayor of Vienna, Dr. Helmut Zilk,
Rector of the University of Vienna, Prof. Dr. Alfred Ebenbauer.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

1 would like to thank, on behalf of all participants, all the sponsors and patrons who
supported this venue.

1 appreciate also the effort of the following members of the ML community who were
solicited to help and accepted the task of reviewing papers:

E. Aimeur,
C. Tsatsarakis,
Siegfried Bell,
Y. Bennani,
Gilles Bisson,
Marko Bohanec,
Maurice Bruynooghe,
Karine Causse,
Fengru Chen,
Bojan Cestnik,
V. Corruble,
Marc Denecker,
Saso Dzeroski,
Peter Edwards,
WemerEmde,
M.C. D'Erceville,

Attilio Giordana,
Matjaz Gams,
Bill Gasarch,
Nicolas Graner,
S. Grolimund,
Daniele Gunetti,
Achim G. Hoffmann,
Klaus P. Janlke,
Aram Karalic,
Jôrg-Uwe Kietz,
Volker Klingspor,
Igor Kononenko
Miroslav Kubât,
B. Leroux,
Stan Matwin,
Mabel Mosli,

1. Moulinier,
R. Ochlmann,
Erich Prem,
Anke Rieger,
G. Ramalho,
M. Rissakis,
Céline Rouveirol,
Sunil Sharma,
Ashwin Sriniwasan,
Irene S tahl,
Joachim Stender,
Birgit Tausend,
Luis Torgo,
Tanja Urbancic,
Gilles Venturini,
Gerhard Widmer.
Stefan Weber.

FinaBy 1 wish aU those who have acquired a copy of these proceeding many
interesting insights into machine learning! Personally 1 believe that everyone's effort
was weB justified!

Porto, February 1993 Pavel B. Brazdil
Programme Chair of ECML-93

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

1. Invited Papers 1

J. R. Quinlan, R. M. Cameron-Jones
FOIL: A Midterm Report 3

S. Muggleton
Inductive Logic Programming: Derivations, Successes and Shortcomings 21

2. Research Papers 39

Inductive Logic Programming

1. Stahl, B. Tausend, R. Wirth
Two Methods for Improving Inductive Logic Programming Systems

P. Idestam-Almquist
Generalization under Implication by Using Or-Introduction

S. Wrobel
On the Proper Definition of Minimality
in Specialization and Theory Revision

P. A.Flach
Predicate Invention in Inductive Data Engineering

P. R. J. van der Laag, S.-H. Nienhuys-Cheng
Subsumption and Refinement in Model Inference

J.-U. Kietz
Sorne Lower Bounds for the Computational Complexity
of Inductive Logic Programming

H. Bostrôm
Improving Example-Guided Unfolding

Probabilistic Approaches to Learning

J. Cussens
Bayes and Pseudo-Bayes Estimates of
Conditional Probabilities and Their Reliability

41

56

65

83

95

115

124

136

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

P.Langley
Induction of Recursive Bayesian Classifiers

Inductive Learning

F. Esposito, D. Malerba, G. Serneraro
Decision Tree Pruning as Il Search in the State Space

L. Torgo
Controlled Redulldancy in Incrementai Rule Learning

A. Cornuéjo!s
Getting Order Independence in Incrementai Learning

M. Modrzejewski
Feature Selection Using Rough Sets Theory

Learning in Dynamic Environments

G. Widmer, M. Kubât
Effective Learning in Dynamic Environments
by ExplicitContext Tracking

F. Kilander, C. G. Jansson
COBBIT - A Control Procedure for COB WEB
in the Presence of Concept Drift

Genetic Algorithms

S. Schulze-Kremer
Genetic Algorithms for Protein Tertiary Structure Prediction

G. Venturini
SIA: A Supervised Inductive Aigorithm with Genetic Search
ror Learning Attributes based Concepts

P. Brézellec, H. Soldallo
S&1IJIA: A Bottom-up Learning Method Using a
Simulated Annealing Algorithm

153

165

185

I96

213

227

244

262

280

297

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

3. Position Papers

Inductive Logic Programming

1. Stahl
Predicate Invention in ILP - an Overview

F. Bergadano, D. Gunetti
Functional Inductive Logic Programming with Queries 10 the User

T. Niblett
A Note on Refinement Operators

M.Hagiya
An Iterative and Bot1Om-up Procedure for Proving-by-Example

Learnability

S. Dzeroski, S. Muggleton, S. Russell
Learnability of Constrained Logic Programs

S.-H. Nienhuys-Cheng, M. Polman
Complexity Dimensions and Learnability

T. Hegedüs
Can Complexity Theory Benefit from Learning Theory?

Learning from Time Dependent Data

P. Clark, S. Matwin
Learning Domain Theories Using Abstract Background Knowledge

M. Kubât, D. FIotzinger, G. Pfurtscheller
Discovering Patterns in EEG-Signals: Comparative Study
of a Few Methods

c. X. Ling, R. Buchal
Learning to Control Dynamic Systems with Automatic Quantization

Inductive Learning and Applications

D. Fensel, M.Wiese
Refinement of Rule Sets with JoJo

L. Torgo
Rule Combination in Inductive Learning

311

313

323

329

336

342

348

354

360

366

372

378

384

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XII

G. Seidelmann
Using Heuristïcs ta Speed up Induction on ConlÎnuous-Valued Attributes 390

J.-G. Ganascia, J. Thomas, P. LaubJet
Intcgrating Models of Knowledge and Machine Learning 396

P.D.Turney
Exploiting Context WhCll Leaming 10 Oassify 402

L. Gaga, V. Moustakis, G. Charissis, S. Orphanoudakis
IDDD: An Inductive, Domain Dependent Decision Algorithm 408

J. Ferrcira, J. Correia, T. Jamet, E. Costa
An Application of Machine Learning in the Domain of Loan Analysis 414

Neural Network Learning

R. Kane, I. Tchoumatchenko, M. Milgram
Extraction of Knowledge from Data using Constrained Neural Networks 420

4. Workshop and Panel Overview Papers 427

E. Plaza, A. Aamodt, A. Ram, W. van de Velde, M. van Someren
Integrated Leaming Architectures 429

W. M. Spears, K.A. De Jong, T. Back, D. B. Fogel, H. de Gans
An Overview of EvoJutionary Computation 442

P. Adliaans
ML Techniques and Text Analysis 460

Authors Index 471

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Chapter 1:

Invited Papers

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

FOIL: A Midterm Report

J. R. Quinlan and R. M. Cameron-Jones

Basser Department of Computer Science
University of Sydney

Sydney Australia 2006
quinlan@cs.su.oz.au, mcj@cs.su.oz.au

Abstract: FOIL is a learning system that constructs Horn clause
programs from examples. This paper summarÏses the development of
FOIL from 1989 up to early 1993 and evaluates its effectiveness on a
non-trivial sequence of learning tasks taken from a Prolog programming
text. Although many of these tasks are handIed reasonably weil, the
experiment highlights some weaknesses of the current implementation.
Areas for further research are identmed.

1. Introduction

The principal differences between zeroth-order and first-order supervised learn­
ing systems are the form of the training data and the way that a learned theory
is expressed. Data for zeroth-order learning programs such as ASSISTANT
[Cestnik, Kononenko and Bratko, 1986], CART [Breiman, Friedman, Olshen and
Stone, 1984], CN2 [Clark and Niblett, 1987] and C4.5 [Quinlan, 1992] comprise
precIassified cases, each described by its values for a fixed collection of attributes.
These systems develop theories, in the form of decision trees or production
rules, that relate a case's cIass to its attribute values. In contrast, the input
to first-order learners (usually) contains ground assertions about a number of
multi-argument predicates or relations and the learned theory consists of a logic
program, restricted to Horn clauses or something similar, that predicts when a
vector of arguments will satisfy a designated predicate.

Early first-order learning systems such as MIS [Shapiro, 1983] and MARVIN
[Sammut and Banerji, 1986] were based on the notion of first-order proof. A
partial theory was modified when it was insufficient to prove a known fact or
able to (mis)prove a known fiction. The dependence on finding proofs meant
that systems like these were relatively slow, most of the time being consumed
in theorem-proving mode, so that they were able to analyse only smaIl training
sets. Later systems such as FOIL [Quinlan, 1990, 1991] and GOLEM [Muggleton
and Feng, 1990] abandoned proof-based algorithms for more efficient methods;
GOLEM uses Plotkin's relative least general generalisation to form clauses while
FOIL uses a divide-and-cover strategy adapted from zeroth-order learning. These

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

approaches have proved to be more efficient and robust, enabling larger train­
ing sets to be analysed to learn more complex programs. Later systems such
as CHAM [Kijsirikul, Numao and Shimura, 1991], FOCL [Pazzani, Brunk and
Silverstein, 1991; pazzani and Kibler, 1992] ILE [Rouveirol, 1991] and FORTE
[Richards and Mooney, 1991] often contain elements of both proof-ba...oed and
empirical approaches.

This paper examines FOIL, summarising its development over the last four years.
After outlining ies key features, we describe an experiment designed to evaluate
its program-writing ability, using problems that human Prolog students are
expected to be able to master. Not surprisingly, FOIL has difficulty with some
of the problems.We discuss FOIL's shortcomings and what they tell us about
the research that will be needed to extend it into a useful logic programming
tooL

2. FOIL

In a nutshell, FOIL is a system for learning function-free Horn clause dennitions
of a relation in terms of itself and other relations. The program is actually
slightly more flexible sin ce it can learn sever al relations in sequence, anows
negated literais in the definitions (using standard Prolog semantics), and can
employ certain constants in the definitions it produces.

FOIL's input consists of information about the relations, one ofwhich (the target
relation) is to be defined by a Horn clause prograrn. For each relation it is given
a set of tuples of constants that belong ta the relation. For the target relation
it might also be given tuples that are known not to belong to the relation;
alternatively, the closed werld assumption may be invoked to state that no tuples,
other than those specified, belong to the target relation. Tupies known to be in
the target relatiœ. will be referred to as ffi tuples and those not in the relation as
8 tuples. The learning task is then to find a set of clauses for the target relation
that accounts for all the ffi tuples while not covering any of the 8 tuples.

The basic approach used by FOIL is an AQ-like covering algorithm [Michalski,
Mozetië, Hong and Lavraé, 1986J. It st arts with a training set containing all ffi
and 8 tuples, constructs a function-free Hom clause to 'explain' sorne of the ffi
tuples, removes the covered ffi tuples from the training set, and continues with
the search for the next clause. When dauses covering all the ffi tuples have been
found, they are reviewed to eliminate any redundant clauses and reordered so
that any recursiveclauses come after the non-recursive base cases.

Perfect defmitions that exactly match the data are not always possible, particu­
lady in real-world situations where incorrect values and missing tupIes are to be
expeded. To get around this problem, FOIL uses encoding-length heuristics to

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

limit the complexity of clauses and programs. The final clauses may cover most
(rather than ail) of the EB tuples while covering few (rather than none) of the e
tuples. See [Quinlan, 1990] for details.

2.1 Finding a Clause

FOIL starts with the left-hand side of the clause and specialises it by adding
literais to the right-hand side, stopping when no e tuples are covered by the
clause or when encoding-Iength heuristics indicate that the clause is too complex.
As new variables are introduced by the added literals, the size of the tuples in
the training set increases so that each tuple represents a possible binding for ail
variables that appear in the partially-developed clause.

If the target relation R has k arguments, the process of finding one clause for
the definition of Rean be summarised as follows:

• Initialise the clause to

and a local training set T to the EB tuples not covered by any previous
clause and all the e tuples.

• While T contains e tuples and is not too con1plex:

- Find a literal L to add to the right-hand side of the clause.

Form a new training set Tf:

* for each tuple t in T, and

* for each binding b of any new variables introduced by literal L,
. if the tuple t.b (obtained by concatenating t and b) satisfies

L, then add t.b to T' with the same label (EB or e) as t.

Replace T by Tf.

• Prune the clause by removing any unnecessary literais.

Although FOIL incorporates a simple backup mechanism, the clause-building
pro cess is essentially a greedy search; once a literal is added to a clause, alter­
native literais are usually not investigated.

The key question is how to determine appropriate literais to append to the
developing clause. FOIL uses two criteria: a literai must either help to exclu de
unwanted e tuples from the training set, or must introduce new variables that
may be needed for future literais. Literais of the first kind are called gainful

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

while deierminaü literais are included primarily because they introduce new
variables.

2.2 ChoosÎng Gainful Literais

Consider the partially developed clause

containing variables VI, V2, ... , V". Each tuple in the training set T looks like
(Cl,C2, ... ,c,,) for sorne constants {Cj}, and represents a ground instance of the
variables in the clause. Now, consider what happens when a literai Lm of the
form

P(TT. TT. TT. \
- V_~l' Yi~ 1'·" Yip}

is added to the right-hand side. If the literai contains one or more new variables,
the arity of the new training set will increase; let :e' denote the number of
variables in the new clause. Then, each tuple in the new training set T' will
be of the form (dl, d2 , .•• , d",) for constallts {dj J, and will have the following
properties:

* (dl, d2 , ••• ,:1.,) is a tuple in T, and

" (dil' d;" ... , di.) is in the relation P.

That is, each tuple in T' is an extension of one of the tuples in T, and the ground
instance that it represents satisfies the literaL Every tupJ.e in T thus gives rise
to zero or more tuples in T' with the Ef; or e label of a tuple in T' being copied
from its ancestor tuple in T.

Let T+ denote the number of Ef; tuples in T and T.l- the number in T'. The
effect of adding a literai Lm can· be. assessed from an information perspective as
fol1ows. The information conveyed by the knowledge that a tuple in T has label
Ef; is gi ven by

and similarly for leT'). If l(T') i8 less than leT) we have 'gained' information
by adding the liter al Lm to the clause; if s of the tuples in T have extensions in
T', the total information gained about the Ef; tuples in T i8

gain(Lm) = S X (l(T) - l(Tf
)).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

FOIL explores the space of possible literals that might be added to a clause at
each step, looking for the one with greatest positive gain.

The form of the gain metric allows significant pruning of the literai space, 50

that FOIL can usuaUy rule out large subspaces without having to examine any
literais in them. If a potentiai literai contains new variables, it is possible to
compute the maximum gain that could be obtained by replacing sorne or aU of
them with existing variables. When the maximum gain is below that of sorne
literai already considered, the literais resulting from such replacements do not
need to be investigated.

Another form of pruning involves literais that use the target relation itself. Since
we do not want FOIL to prod.uce non-executable programs that fail due to infinite
recursive looping, recursive definitions must be screened carefully. Recursive
literais that could lead to problems are barred from consideration, as described
below.

2.3 Deterrninate Literais

Sorne clauses in reasonable definitions will inevitably contain literais with zero
gain. Suppose, for instance, that all objects have a vaiue for sorne property
D, and the literai D(X, Y) defines the vaiue Y for object X. Since this literai
represents a one-to-one mapping from X to Y, each tuple in T will give rise to
exactly one tuple in T' and 50 the gain of the literai will aiways be zero. We
could also imagine a literai P(X, Y) that, for any vaiue of X, supplied sever ai
possible values for Y. Such a literai might even have negative gain.

If X is a previously defined variable and Y a new variable, there is an important
difference between adding literais D(X, Y) and P(X, Y) to a clause; the first
will produce a new training set of exactly the same size, while the second may
exclude sorne EB tuples or may cause the number of tuples in the training set to
grow. This is the key insight underlying determinate literais, an idea inspired
by GOLEM's determinate terms [Muggleton and Feng, 1990]: the vaiue of each
new variable is forced or determined by the vaiues of existing variables.

More precisely, suppose that we have an in complete clause

R(V1 , V2, ... , Vi:) +- Ll, L2' ... , Lm-l

with an associated training set T as before. A literai Lm is determinate with
respect to this partial clause if Lm contains one or more new variables and there
is exactly one extension of each EB tuple in T, and no more than one extension
of each e tuple, that satisfies Lm· The idea is that, if Lm is added to the clause,
no EB tuple will be eliminated and the new training set T' will be no larger than
T.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

FOIL not.es determinate literaIs found while searching for gainfulliterals as above.
The maximum possible gain Îs given by a literal tnat excludes all e tuples and
no EEl tuples; in the notation used before. this gain is T+ x I(T). Unless a
literaJ is found wnose gain is close ta (2: 80% of) the maximum possible gain,
FOIL adds aU determinate literais ta the clause and tries again. This may
seem rather extravagant. sinee it is unlikely that all these literaIs will be useful.
However, FOIL incorporates clause-refining mechanisms that remove unnecessary
literaIs as each clause is completed, sa there is no ultimate penalty for this aH-in
approach. Since no EEl tuples are eliminated and the training set does not grow.
the only computational cost is associated with the introduction of new variables
and the corresponding increase in the space of subsequent possible literais. It is
precisely the enlargement of this space that the addition of determinate literaIs
is intended ta achieve.

There is a potential runaway situation in which determinate literais found at
one cycle give rise to further determinate Iiterals at the next ad infinitum. To
circumvent this problem. FOIL borrows another idea from GOLEM. The depth
of a variable la determined by itsnrst occurrence in the clause. Ail variables in
the left-hand side of the clause have depth 0; a variable that tirst occurs in sorne
literal has depth one greater than the greatest depth of any previously-occurring
variable in that literaI. By placing an upper limit on thedepth of any variable
introduced by a determinate literal, we rule out indetinite runaway. This limit
does reduee theclass oflearnable programs. However, the stringent requirement
that a determinate literai must be uniquely satistied by all Efl tuples means that
this runaway situation is unlikeIy and FOIL's default depth limit of 5 is tarely
reached.

2.4 Further Literai. Forms

We are now moving bto areas covered by recent extensions to FOIL. The fust
of these concerns the kinds of literals that can appear in the right-hand side of
a dause.

Barly versions of FOIL considered literaIs of the forms

" P(Wl, W2, ...• Wp), ~P(Wl, W2 , ... , Wp)

where P is a relation and the Wj'S are variables. at least one ofwhich must
have occurred already in the cla.use; and

8V;=V;,V;#V;
that compare the values of existing variables.

Two further forms have now been added.

In the nrst of these. certain constants can be identified as theory constants that

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

can appear explicitly in a definition. Examples might include a constant [)
representing the nulliist in list-processing tasks, or the integers 0 and 1 in tasks
that involve the natural numbers. For such a theory constant c, FOIL will also
consider literals of the forms

v; = c, V; # c

where V; is a variable of the appropriate type that appears earlier in the clause.
This minor addition is equivalent to declaring a special relation is-c for each such
constant c; in faet, the extension is implemented in this way.

The second extension is more substantial. Relations encountered in the real
world are not limited to discrete information but commonly include numeric
fields as well. We could imagine simple relations such as

atom ic-weight(E, W)

that provides the (numeric) atomic weight W of each element E, or

quote(C,B,S)

detailing the buy and sell prices for a commodity C. As a first step towards being
able to exploit numeric information like this, FOIL now includes literal types

V; > k, V;:::; k, V; > Vi, V;:::; Vi

that allow an existing variable V; with numeric values to be compared against a
threshold k found by FOIL or against another variable Vi of the same type. Such
an extension falls a long way short of Prolog facilities that allow a continuous
value for V; to be computed in the clause; however, it does permit bound numeric
values to be used in conditions on the right-hand side of a clause.

2.5 Managing Recursion

Recursive theories are expressive and hence powerful, so that the ability to learn
recursive programs is one of the principal advantages of first-order systems like
GOLEM and FOIL. The increase in expressiveness, however, is counterbalanced
by the care that must be taken to avoid nonsensical recursion.

As an illustration, consider the task of learning a program for multiplication of
non-negative integers in terms of addition and decrement. We might have three
relations:

mult(A,B,C) meanmg
plus(A, B, C)
dec(A,B)

C=AxB
C=A+B
B=A-l.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

'0

A suit able definition for multiplyis

muit(A.B.C) <- A=O. C=O
mult(A.B.C) <- dec(A.D), plus(B.E,C), mult(D,B.E)

where the last dause captures the identity

A x B ::; B + CA - 1) x B.

This definition seems intuitively te be well-behaved in the sense that it "nU
always terminate. On the other hand, a simpler definition

mult(A,B,C) <- mult(B.A.C)

will cleady lead to an infinite recurslve loop, How does FOIL, which is biased
towards finding simpler definitions, eschew the latter in favour of the former?
The short answer is that, as El, clause is being developed, recursive literais must
satisfy certain criteria for inclusion in the right-hand side. In particular, a
recursive literaI on the right-hand side must be judged to be less th cm the head
of the clause in sorne ordering of literais.

The earliest version of FOIL used a method based ondiscovering an ordering
of the constants appearing in tuples. This method guaranteed that a single
clause could not lead to a recursive 100p by calling itself directly. The order
discovery was removed in following releases, which relied on the user specifying
the constants of each type in an appropriate order. Order discovery mechanisms
have been reinsta.ted .in the m9St recent versions and the method of ordering
recursive literals has been generalised so that the guarantee now applies to sets
of dauses for a single rela.tion, notjust to a single clause. The following is meant
to give an infonnal sketch of the idea, with a complete discussion available in
[Cameron-Jones and Quinlan, 1993].

Retuming to the multiply example above, we see that the dause for the generai
case

ml,llt(A,B.C) <- dec(A.D), plus(B,E,C). mult(D.B.E)

cannot lead to infinite recursion sinee the literaI dec(A.D) guaraniees that Dis
always less than A; mult(D.B.E)is thus less than mult(A.B,C)in an intuitive
ordering of mult literals. FOIL assumes that some relations provided for a task
will behave like dec in establishing an ordering of their arguments and attempts
to identify them. For everyrelation Rand every pair of arguments A, B of R
that are ofthe same type Q, FOIL asks:

iuethere orderings of the constants of type Q that are consistent
with the hypothesis that A < B?

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

11

When answers to all these questions have been determined, FOIL establishes a
single definitive ordering of the constants of type Q so that the number of such
inequalities is maximised.

The now-fixed ordering of constants of each type allows us to determine rank­
ings among pairs of variables in an in complete clause. If such a clause con­
tains variables V1 , V2 , •.• , v;, and the training set consists of tuples of constants
(d"'l, da2 , ••• , da",), a = 1,2, ... , ITI, then Vi < Vj if they belong to the same type
and da, always cornes before d"'i in the constant ordering for that type.

The inequalities among pairs of variables can be extended to an ordering of
literals involving a predicate R and variables. In broad terrns, if W1 , W2 , .•.

denote variables in Vi, Vi, ... , V"" then

R(W1 , W2 , ... , Wk) < R(Vi, V2 , .•• , Vk) if
W", < V"" or
W", = V", and Wp < Vp, or
W", = V", and Wp = Vp and W.., < Voy, or ...

Here a, /3, "(etc. denote argument positions that, together with the ordering of
variables in the clause, specify a particular ordering of the literals involving R.

Suppose now that we have an in complete definition for relation R that consists
of zero or more completed clauses and a partial clause. A recursive literal
R(W1 , W2 , ••• , Wk) can be added to the right-hand side of the developing clause
only when there are values of a, /3 etc. as above so that

• this liter al is less than the left-hand side of the clause, and

• the same is true for all recursive literals in the completed clauses.

This may sound complex but its implementation is simple and efficient. The
restriction on recursive literaIs in the right-hand side of clauses prevents infinite
recursive loops due to a definition of R calling itself directly, yet does not exclu de
even complex recursive definitions such as that for Ackermann's function:

Ack(A.B.C) +-- A=O. dec(C.B)
Ack(A.B.C) +-- B=O. dec(A.D). Ack(D.E.C). dec(E.B)
Ack(A.B.C) +-- dec(A.D). dec(B.E). Ack(A,E.F). Ack(D.F.C)

In this case, the ordering of literaIs found by FOIL is

Ack(W1 , W2, W3) < Ack(Vi, V2, V3) if
W 1 < Vi, or
W 1 = V1 and W2 < Vi·

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

12

In the ctennition above, dec(A,D) gives D<A in the second and third clauses,
and dec(B,E) in the third clause gives E<B, 50 all recursive literaIs in these
clauses are less than the heads of the clauses. Consequently, this definition can
be guaranteed to terminate when învoked with ground instances of A and B.

2.6 Improved Definitions

Programs like FOIL that depend on greedy search will occasionally foHmv unprof­
itable paths leading to poor definitions or no definitions at alL POIL's backup
mechanism is designed to ameliorate the latter condition by restartingsearch at
saved backup points. The problem of poor definitions is much more difficult to
circumvent.

From its earliest version, rOlL has incorporated post-processing of definitions
in which unnecessary literâls are excised from finished clauses and. redundant
clauses are removed from complete definitions. When there are numerous super­
fluous literais, clause pruning ca.n consume a noticeable amount oftime; a recent
extension is a fast heuristic pruning method that reverts to the slow-but-sure
algorithm in the event of failure.

The most recent versions have two addition al mechanisms for producing better
clauses. It sometimes happens that, when the possible literaIs to be added to a
clause are being considered, one literai L , ould complete the clause but another
literai of higher gain is seleded instead. The search can meander along in this
way, leading eventually to a dause that is inferior to the one that would have
been produced if L had been chosen. FOIL now remembers the best complete
clausethat could have been ohtained by a different choice of literal at any point.
When the clause 18 complete, the system checks to selO whether the remembered
clause is at least as good as the 'final clause and, if so, uses the remembered clause
instead. This extension, which requires hardly any additional computation, 18
responsible for much improved definitions in sorne tasks.

We have also observed cases in whiçh a non-recursive literal L, chosen to com­
plete a clause, involves only variables that appear in the left-hand side of the
dause. Such a literai could dearly have appeared at the beginning of the right­
hand side. If the right-hand side contains literals other than L, they may have
had the effect of making the clause too specifie. To circumvent this possibility,
the clause is regrown starting with the single literai L on the right-hand side.

The final polishing involves reordering the clauses. After all clauses making up
a definition have been sifted as ab ove toremove redundancies, allnon-recursive
"base case" clauses are moved to the front so that they appear before any
recursi ve clauses.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

13

3. An Experiment

Many evaluations of learning systems involve a limited amount of background
information - just that required for the task at hand - and sometimes care­
fully chosen training examples as weil. Such experiments can demonstrate the
feasibility of certain types of learning, but do not address the usefulness of the
learning system in practical applications, where there is usually a large amount
of irrelevant information and where training examples come from a neutral,
unbiased source.

As a step towards a more pragmatic evaluation, we started with Ivan Bratko's
well-known text Pro log Programming for Arlificial Intelligence [Bratko, 1986].
Chapter 3 of this book introduces sever al programs for manipulating lists and
includes a set of student exercises. We conducted trials to see whether FOIL
could learn the expository programs and exercises in the same order as they
appear in the book, omitting only the last two exercises that were quite different
from the others. (One of them, canget, deals with lists specifie to the monkey
and bananas problem; the other, flatten, uses structured lists.) A brief summary
of the problems aUempted is:

member(E.L)
conc(Ll.L2.L3)
memberl(E.L)
last(E.L)
last1(E.L)
del(E.Ll.L2)
member2(E.L)
insert(E.Ll.L2)
sublist(Ll.L2)
perm utation(Ll. L2)
even/oddlength(L)

reverse(Ll. L2)
palindrome(L)
palindromel(L)
shift(Ll. L2)
translate(Ll.L2)

subset(SI.S2)
dividelist(Ll. L2. L3)

E is an element of list L
appending Ll to L2 gives list L3
as for member with conc available
E is the last element of L
ditto, but without using conc
deleting an occurrence of E from Ll gives L2
as for member with dei available
inserting E somewhere in Ll gives L2
Ll is a sublist of L2
L2 is a permutation of list Ll
L has an even/odd number of elements (both
relations to be defined)
L2 is the reverse of list Ll
list L is a palindrome
as above, but not using reverse
rotating elements of Ll to the left gives L2
L2 is the results of translating Ll using an
element-to-element mapping
52 is a subset of set 51
L2 contains the odd-numbered elements of Ll,
L3 contains the even-numbered elements of LI

We included the additional relation components(L.H.T), meaning list L has head
H and tail T, that corresponds to Prolog's built-in [H ITl notation for lists. For
each program, ail relations encountered previously were available as background

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

14

knowledge 80 that there were many irrelevant relations to confuse FOIL 's search.

We also attempted to assemble training examples in an unbiased manner. The
trials were repeated for two universes, defined as

" U3, the 40 lists contaîning up to three elements C where each element is in
the set {l,Z,:f}); and

.. U4, the 341 similar lists containing up to four elements from {1,2,3,4}.

In a trial, FOIL was given aU Ef) tuples over the relevant universe for each
relation. In U3, for example, the 142 Ef) tuples for cone include ([], [13], [13])
and ([32J, [Z], [322]) but not {(322], [13], [32213]) since, in the last case, one orthe
lists contains more than three elements. Two relations in the book are defined
over restrieted subclasses of liats, sets in the case of subset and lista without
repetitions in the case of permutation. Al! other relations are defined over aU
lists. The e tuples for the relation being learned are generally the complement
ofthe Ef) tuples. However, for the second universe U4, sorne relations would then
have an enormous number of such tuples - about 3413 R:I 40 million for cone - 50

we used the FOIL option that selects a raridom sample of e tuples ta keep them
doV\,'1l to about 90,000. The relations affeded were cone and dividelist (where
we used 0.2% of 8 tuples), deland insert (20%), translate (40%), and sublist,
permutation, rel/erse and shift (80%).

FOIL was aUowed 1500 seconds on a DECstation 5000;240 for each problem. As
the book had not introduced negation at this stage, negated literais were barred
from definitions. AlI FOIL 's other options h.ad their default values, including the
default memory limit of 100,000 tuples on any training set.

The outcomes of this experiment are summarised in Table 3.1.. In the result
column, a V means that a correct dennÎtÎon was obtained (often, but not always,
the same as the program in the book). The notation restricted indicates that
the definition was correct for the universe over which the examples were defined,
but would give incorrect results for lists of arbitrary length. A cornmon problem
with the restricted definitions is an incorrect base case that relies on fortuitous
properties of the limited domain. FO!h"1.stance, the definition of reverse found in
universe ua was

reverse(A,B) <- A=B, conc(A,C,D), sublist(A,C)
reverse(A,B) <- components(A,C,D), reverse(D,E), conc(F,D,A), conc(E,F,B)

The second (recursive) clause is correct. However, the odd-looking base case
exploits the fact that alilistsin U3 have length at roost 3; if A is a sublist of C
and the result of conc'ing A to C has length at most 3, this ensures that A has
length 0 or 1. Of course, the first clause is correct for suen short lists A.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

15

Task Tuples Result Time
(11 e (seCS)

member U3 75 45 ..; 0.1
U4 880 484 ..; 0.9

conc U3 142 63,858 ..; 28
U4 1593 79,300 ..; 34

member1 U3 75 45 ..; . 1.7
U4 880 484 ..; 1.7

last U3 39 81 restricted 0.2.
U4 340 1024 ..; 2.7

lastl U3 39 81 ..; 0.1
U4 340 1024 ..; 1.9

dei U3 81 4719 ..; 422
U4 1024 92,640 time limit > 1500

insert U3 81 4719 ..; 2.1
U4 1024 92,640 ..; 56

member2 U3 75 45 ..; 0.1
U4 880 484 ..; 0.9

sublist U3 202 1398 ..; 1.8
U4 2913 90,697 ..; 94

permutation U3 52 204 ..; 1.6
U4 749 3476 ..; 337

even/oddlength U3 10/30 30/10 unsound mutual recursion 0.1
U4 273/68 68/273 unsound mutual recursion 63

reverse U3 40 1560 restricted 9.3
U4 341 92,796 restricted 220

palindrome U3 16 24 ..; 0.1
U4 41 300 ..; 0.9

palindrome1 U3 16 24 restricted 928
U4 41 300 restricted 212

shift U3 39 1561 ..; 4.2
U4 340 92,787 ..; 253

translate U3 40 3120 time limit > 1500
U4 341 92,573 time limit > 1500

subset U3 27 37 restricted 0.2
U4 81 175 restricted 19

dividelist U3 40 63,960 restricted 182
U4 341 79,302 erroneous 901

Table 3.1: results on learning prograrns

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

16

One definition produced by FOIL, dividelist in universe U4, was actually in error,
even when only lists in the restricted unÎverse are considered. FOIL relies on e
tuples to show up over-generaHsations. For this task, the training set included
only 0.2% of the e tuples, none of whiehhappened to reveal that the clause was
defective. This underlineS the heuristic nature of any learning from incomplete
information.

Apart from running out of time, the other problem occurred in the task that
required definitions of both evenlength and oddlength. The definitions found for
U3 were

evenlength(A) ~ del(B,CA), oddlength(C)
oddlength(A)<- components(A,B,C), èvenlength(C).

Each definition is correct in itself but, together, they lead to recursive looping
sinee C is longer than A in the definition of evenlength but shorter in odd!ength.
This highlights the fine print in FOIL's guarantee of recursive soundness; an
individual definition will not lead to problems, but two definitions invoking each
other might.

4. Discussion

The results of this experiment can only be described as mixed. It is encouraging
to see that FOIL can find correct definitions for many of the aman programs,
but less encouraging when we remember that students are expected to be able
to produce ail of them as a matter of course.

In particular, the fact that later definitions tend to be restricted (ifthey are found
at all) highlights F0I1's sensitivityto irrelevant information. For example, when
aH the superfiuous relations wereremoved, a correct definition of subset

subset{A,B) <-- B=[]
subset(A,B) <- components(A,C,D), components(B,C,E), subset(D,E)
subset(A,B) <- components(A,C,D), subset(D,B)

was found fromU4 in only 0.5 seconds.

Another cause for con cern is that recursive definitions require near-complete
sets of EB tuples. If we consider the simplest task, member in universe U3, it 18
interesting to observe the effect of deleting a single EB tuple without changing
the e tuples (corresponding to an item of missing information, but no mis­
information). If the tuple is of the form (X, Y) where X is an element and Y is
a list, then:

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

17

• There is no effect if Y is of length 3.

• If Y is of length 1 or 2, at least one recursive continuation is affected.
FOIL still finds a correct definition but adds an extra clause to cover the
apparent "special case".

When 25% of the E9 tuples were deleted at random, the resulting definition was
still "correct" but contained three superfluous clauses.

The tasks in this experiment have the property that each can be defined by a
Horn clause program without the use of negated literaIs. Even when negated
literals are allowed, the definition language used by FOIL is too weak to capture
sorne ideas. As an illustration, the first-order expression

(V:v likes(:1J, y)) J happy(y)

cannot be written as a Prolog definition without the use of a cut or the establish­
ment of an ancillary concept. Similarly, a program to recognise sentences of the
language a*b*c· requires an extra concept such as sequence-of(Seq,Elt); a Prolog
programmer would see this immediately and define the subsidiary predicate.
FOIL cannot invent new relations of this kind, and can only apply negation to
individualliterals. Consequently, there are sorne quite simple concepts for which
FOIL cannot find general definitions, no matter how manyexamples it is given.

5. Conclusion

As the title of this paper suggests, FOIL is still under development. In its current
form it is an experimental vehicle for exploring ideas in learning, not a practical
tool for constructing substantiallogic programs. In the same way, ID3 circa 1978
was .an experimental program that required a lot more work before a practical
tool, C4.5, was obtained.

Sever al shortcomings of the system were mentioned in the previous section.
Generalising slightly, we can identify the following features that will be required
by any robust system for learning recursive logic programs:

• Construction of new predicates: Logic prograrnrners make frequent use of
predicates that do not appear in the problem statement. This is sometimes
required to express the program in Horn clause form, but more frequently
because ancillary predicates make the program simpler and more efficient.
FOIL has no facilities for inventing new predicates, but the promising
research of Muggleton and Buntine [1988], Kietz and Morik [1993] and
others suggests that such facilities may be able to be grafted on.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

18

.. Strategy for constructing programs: Ruman logic programmers are taught
to get the simplest base case first, then to develop the general recursive
case. This kind of strategie approach il! missing from FOlL, which just
attempts to bite off as many $ tuples as possible in each clause. This
super-greedy strategy can lead to problems of the !cind illustrated by the
reverse example. Instead of the simple base case

reverse(A,B) A=[]. B=[]
FO IL greedily tries to extend tbis to include single-element lists, leading
to the restriàed definition of section 3 .

.. Selective use of relations: At the moment, anylearning task can be made
harder for FOIL simply by including more and more irrelevant relations,
thereby increasing the number of literaIs that must be examined at each
step. We hypothesise that any practical system for leaming logic programs
must employ a characterisation of each remembered relation, so that a
relation is ooly consideted when there is a prior reason to believe that it
may be ofuse .

.. lncomplete frainingseis: It seems unlikely that near-complete sets of Et)

tuples will be available when constructing recursive definitions for relations
in the context of real-world problems. Practical training sets will be small
and, in problems involving synthesis of a novel theory, the given tuples will
not be helpfuHy selected with the form of the final definition in minci. While
FOIL can currently learn non-recursive definitions from sparse training
cases, it has difficulty with recursive theories under these conditions.

$ Extended treatment ofnumeric fields: Not many first-order systems seem
to ha.ve addressed the issue of using continuous-valuedinformation. FOIL 's
use of numenc fields is limited to thresholding a.nd comparisons of known
values rather than computing new values. Sinee many practical Prelog pro­
grams involve computation, leaming systems that are intended to generate
these programs must somehow come ta grips with computation al clauses.

With the inclusion of theory constants and tests on numeric values, FOIL can now
express auy theory derivabie by zeroth-order learning systems such as Coi.5. We
have carried out sorne initial tests Iunning FOIL on zeroth-order attribute-value
data in which there is a single relation with one argument for each attribute.
Since FOIL explores a strictly larger hypothesis space than these systems, it is
not surprising that FOlL is slower. !twill be interesting to see whether the
increased search results in more accurate theories than those learned by zeroth­
order systems.

The current version of FOIL is alwaysavailable by anonymousftp from 129.78.8.1,
file name pub/foilN.sh for some integer N.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

