BIBLIOTHEQUE DU CERIST

Pavel B. Brazdil (Ed.) Ceo i“éé 7

Machine Learning:
ECML-93

European Conference on Machine Learning
Vienna, Austria, April 5-7, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Bditor

Jorg Siekmann

University of Saarland

German Research Center for Artificral Inteliigeace {(DFKD
Stuhlsatzenhavsweg 3, W-6600 Saarbriicken 11, FRG

Yolume Editor

Pavel B. Brazdil
LIACC-CIUP
Rua Campo Alegre 823, P-4100 Porto, Portugal

CR Subject Classification {(1991%: 1.2.6 e

ISBN 3-540-36602-3 Springer-Veriag Beriin Heidelberg New York
ISBN 0-387-56602-3 Springer-Verlag New York Berlin Heidelberg

This work is subiect to copyright. Al rights are reserved, whetber the whole or past
of thie material is concemned, specifically the rights of translation, reprinting. re-use
of {llustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks, Duplication of this publication or parts thereof is
permiited enly wnder the provisions of the Gesman Copyright Law of S8eptember 9,
1965, in its current version, and permission for use must alwavs be obtained from
Springer-Verlag, Violations are liatle for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993

Printed in Germany

Typesetting: Camera ready by anthor/editor
Frinting and binding: Druckhaus Behiz, Hemsbach/Bergsty,
45/3140-343210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Foreword

The European Conference on Machine Learning 1993 (ECML-93) continued with the
tradition of earlier EWSLs (European Working Sessions on Learning). The aim of
these conferences is to provide a platform for presenting the lalest results in the area
of machine lcarning. Although ECML-93 is the first conference under this name, it
can be considered as the sixth meeting of this kind in Enrope.

The scientific programme included the presentation of invited talks, selected papers,
and the presentation of ongoing work in poster sessions. The ECML-93 programime
was complemented by several workshops on specific topics. The proceedings contain
papers related to ail these activities.

The first chapter of the proceedings contains two invited papers. The first one
accompanics the invited talk of Ross Quinlan from the University of Sydney. The
second one is by Stephen Muggleton giving an overview of the area of Inductive
Logic Praogramming (ILP) that has become a very active arca indecd. The paper of
Derek Sleeman accompanying his invited lecture is available on request from the
author, This paper covers some Europcan research projects in the area of ML and their
significance for the {uture development of ML.

The reader may be interested to note that the call for papers was very successful,
resulting in 69 submissions. In order to maintain a good standard of the conference,
all submissions were reviewed by at least iwe members of the programme commiitee
or their close colleagues. Of course, only some of the submitted papers conld actually

be accepted.

The sccond chapter of the proccedings contains 18 sciennfic papers that have been
accepted for the main sessions of the conference. It includes both long papers and
somge short ones which describe the results of ongoing work.

The third chapter contains 18 shorter position papers. In order not 1o niake the
proceedings too bulky, all the papers in this chapler have been condensed.

The final chapter of this book includes three everview papers related to the ECML-93
workshops / panels supplied by the organizers. As the workshops were organized
independently of the main confcrence, this volume docs not include any of the papers
prescnted by ils participants,

BIBLIOTHEQUE DU CERIST

i
Oyganization of ECML-93

Al matiers related (o ihe progravene were coordinated by the Programime Chair who
hiad the support of the ECML-93 Programme Committee. It included the following
members of the ML or Al community:

Francesco Bergadano {lialy) Katharina Morik (Germany)

Ivan Bratkc (Slovenia) 1gor Mozetic {Aonstria)

Pavel Brazdit (Portugal) Stephen Muggleion (UK)

Ken de Jong {USA) Lorenza Saiits (Italy)

Luc deRagdt (Belgium) Jude Shaviik (USA)

Jean-Gabriel Ganascia (France) Derck Sleeman (UK)

Apgonios Kakas (Cyprus) Maarten van Somcren (Metherlands)
Yves Kodmioff (France) Walter Van de Velde (Belgtum)
Nada Lavrac (Slovenia) Ritdiger Wicth {Germany}

Ramodn L. de Manmras (Spain)

Several members of the Programme Comnuttec have taken up an active rolc in the
organization of BECML-93 workshops, and also invested a great deal of effort into
revicwing papers. I wish 1o capress my gratitude to ail the people invoived for this
work.

ECML-93 was organized by the

Depariment of Medical Cybernetics and Artificial Inielligence,
University of Vienna

in cooperagon with the
Avstrian Research Institute for Arificial Intellizence.

Ipor Moretic and Gorbard Widmer have acted in the role of Local Chairs.

BCML-93 was supporied by the following organizagons:

Commission of the Buropean Communities,

Vienna Convention Bureau,

Ausirian Federal Ministry of Science and Resesrch,

Austrian Socisty for Cybematic Swudies {0e8GK),

Aunstrian Society for Anificia! Intelligence (OeGAT),

European Coordirating Commilies for Artificial Intclligence (BECCAD.

The official patrons of ECML-%3 were:
Ausirian Federal Minister of Science and Research, Dr, Erhard Busek,

Mzyor of Vienaa, Dr. Helmut Ailk,
Recior of the University of Vienna, Prof. Dr. Alfred Ebantauer,

BIBLIOTHEQUE DU CERIST

Vil

[would like to thank, on hehalf of all panticipants, all the sponsors and patrons who
supporicd this venue.,

1 appreciate also the effort of the following members of the ML community who were
solicited to help and accepted the task of reviewing papers:

E. Aimeur, Attilio Giordana, . L. Moulinjer,

C. Tsatsarakis, Matjaz Gams, R. Ochlmann,

Siegfried Bell, Bill Gasarch, Erich Prem,

Y. Bennani, Nicolas Graner, Anke Ricger,

Gilles Bisson, 5. Grolimund, G. Ramalho,

Marko Bohanec, Daniele Gunetti, M. Rissakis,

Mauricc Bruynooghe, Achim G. Hoffmann, Céline Rouveirol,

Karine Causse, Klaus P. Janike, Sunil Sharma,

Fengru Chen, Aram Karalic, Ashwin Sriniwasan,

Bojan Cestnik, Jorg-Uwe Kieiz, Irene Stahl,

VY. Corruble, Volker Kiingspor, Joachim Stender,

Marc Denecker, Igor Kononenko Birgit Tausend,

Saso Dzeroski, Miroslav Kubit, Luis Torgo,

Peter Edwards, B. Leroux, Tanja Urbancic,

Wemer Emde, Stan Matwin, Gilles Venturini,

M.C. D'Erceville, Mabel Mosli, Gerhard Widmer,
Stefan Weber,

Finally I wish all those who have acquired a copy of these proceeding many
inleresting insights into machine lcaming! Personally 1 believe that everyone's effort
was well justified!

Porto, February 1993 Pavel B. Brazdil
Programme Chair of ECML-93

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

Contents

1. Invited Papers

J.R. Quinlan, R.M. Cameron-Jones
FOIL: A Midterm Report

S. Muggleton
Inductive Logic Programming: Derivations, Successes and Shortcomings

2. Research Papers
Inductive Logic Programming

I. Stahl, B. Tausend, R.Wirth
Twao Methods for Improving Inductive Logic Programming Systems

P. Idestam-Almguist
Generalization under Implication by Using Or-Introduction

S. Wrobel
On the Proper Definition of Minimality
in Specialization and Theory Revision

P. A.Flach
Predicate Invention in Inductive Data Engincering

P.R.J. van der Laag, S.-H. Nienhuys-Cheng
Subsumption and Refinement in Model Inference

J-U. Kietz
Some Lower Bounds for the Computational Complexity
of Inductive Logic Programming

H. Bostrém

Improving Example-Guided Unfolding
Probabilistic Approaches to Learning
I. Cussens

Bavyes and Pseudo-Bayes Estimates of
Conditional Probabilities and Their Reliability

21

39

41

56

65

83

95

115

124

136

BIBLIOTHEQUE DU CERIST

P. Langiey
Induction of Recursive Rayesian Classifiers

{ndactive Learning

F. Esposito, D. Malerba, G. Semezraro
Decision Tree Pruning as a Search in the State Spuce

L. Toigo
Controlled Redundancy in Incremental Rule Learning

A, Cornuéjols
Gotting Order Independence in Incremental Lesrning

M. Modrzejewskd
Feature Selection Using Rough Sets Theory

Legrning in Dynamic Environmenis

G. Widmer, M. Kubdt

Effective Learning in Dynamic Envirpaments
by Explicit Context Tracking

F. Kilander, C. G. Jansson
LOBBIT - A Control Procedure for COBWEB
in the Presence of Concept Drift

Genetic Algorithms

8. Schilze-Kremer

Genetic Algorithms for Protein Teriiary Structure Prodiction

. Venturini

SIA: A Supervised Indactive Algorithm with Genedc Search

for Learning Aitributes based Concepts

P, Brézellec, H. Soidanc
SAMIA: A Bottom-up Learning Method Using a
Simulated Annealing Algonithm

163

185

213

244

BIBLIOTHEQUE DU CERIST

X[

3. Position Papers
Inductive Logic Programming

1. Stahl
Predicate Invention in ILP - an Overview

F. Bergadano, D. Gunetti
Functional Inductive Logic Programming with Queries to the Uscr

T. Niblett
A Note on Refinement Operators

M. Hagiva
An [terative and Boitom-up Procedure for Proving-by-Example
Learnability

S. Dzeroski, S. Muggleton, S. Russcll
Learnability of Constrained Logic Programs

S.-H. Nienhuys-Cheng, M. Polman
Complexity Dimensions and Learnability

T. Hegedds
Can Complexity Theory Benefit from Learning Theory?

Learning from Time Dependent Data

P.Clark, S.Maiwin
Learning Domain Theones Using Abstract Background Knowledge

M. Kubit, D. Flotzinger, G. Pfurtscheller
Discovering Patterns in EEG-Signals: Comparative Study
of a Few Methods

C. X.Ling, R.Buchal
Learning to Control Dynamic Systems with Auntomatic Quantization

Inductive Learning and Applications

D. Fensel, M.Wiese
Refinement of Rule Sets with Jolo

L. Torgo
Rule Combination in Inductive Learning

311

313

323

329

336

342

348

354

360

366

372

378

384

BIBLIOTHEQUE DU CERIST

G, Seidelmann
Using Heuristics 0 Speed up Induction on Continuous-Valued Attributes

§.-Q, Ganascia, J. Thomas, P.Laublet
Integrating Models of Knowledge and Machine Learning

P.D. Turney
Exploiting Context when Learning o Classify

L. Gaga, V.Mboustakis, G. Charissis, 5. Oiphanoudakis
IDDRD:; An Inductive, Domain Dependent Decision Algorithm

J. Ferteira, J. Correia, T.Jamet, E. Costa
An Application of Machine Learning in: the Domain of Loan Analysis
Meurat Network Learning

R, Bane, L Tchoumaichenko, M. Milgram
Extraction of Knowledge from Data using Constrained Neural Networks

4, Workshop and Panel Overview Papers

E. Piaza, A. Aamodt, A, Ram, W, van de Velde, M. van Someren
Integrated Learning Architectures

W, M. Spears, K.A. De Jong, T. Bick, D B. Foget, H. de Garis
An Overview of Evolutionary Computation

P, Adriaans
ML Techriques and Text Analysis

Authors Index

390

396

402

408

454

420

427

429

442

460

471

BIBLIOTHEQUE DU CERIST

Chapter 1:

Invited Papers

1S1430 NAd INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

FOIL: A Midterm Report

J. R. Quinlan and R. M. Cameron-Jones

Basser Department of Computer Science
University of Sydney
Sydney Australia 2006

quinlan@cs.su.0z.au, mcj@cs.su.0z.au

Abstract: FOIL is a learning system that constructs Horn clause
programs from examples. This paper summarises the development of
FOIL from 1989 up to early 1993 and evaluates its effectiveness on a
non-trivial sequence of learning tasks taken from a Prolog programming
text. Although many of these tasks are handled reascnably well, the
experiment highlights some weaknesses of the current implementation.
Areas for further research are identified.

1. Introduction

The principal differences between zeroth-order and first-order supervised learn-
ing systems are the form of the traning data and the way that a learned theory
is expressed. Data for zeroth-order learning programs such as ASSISTANT
[Cestnik, Kononenko and Bratko, 1986], CART [Breiman, Friedman, Olshen and
Stone, 1984], CN2 [Clark and Niblett, 1987) and C4.5 [Quinlan, 1992] comprise
preclassified cases, each described by its values for a fixed collection of attributes.
These systems develop thecries, in the form of decision trees or production
rules, that relate a case’s class to its attribute values. In contrast, the input
to first-order learners (usually) contains ground assertions about a nurmnber of
muilti-argument predicates or relations and the learned theory consists of a logic
program, restricted to Horn clauses or something similar, that predicts when a
vector of argurments will satisfy a designated predicate.

Early first-order learning systems such as MIS [Shapiro, 1983] and MARVIN
{Sammut and Banerji, 1986] were based on the notion of first-order proof. A
partial theory was modified when it was insufficient to prove a known fact or
able to (mis)prove a known fiction. The dependence on finding proofs meant
that systems like these were relatively slow, most of the time being consumed
in theorem-proving mode, so that they were able to analyse only small training
sets. Later systems such as FOIL [Quinlan, 1590, 1991] and GOLEM [Muggleton
and Feng, 1990] abandoned preoof-based algorithms for mote efficient rmethods;
GOLEM uses Plotkin’s relative least general generahisation to form clauses while
FOIL uses a divide-and-cover strategy adapted from zeroth-order learning. These

BIBLIOTHEQUE DU CERIST

approaches have proved to he more =fficient and robust, enabling larger train-
ing sets to be analysed to learn more complex programs. Later systems such
as CHAM [Kijsirtkul, Numao and Shimura, 1991], FOCL [Pazzani, Brunk and
Silyerstein, 1901; Pazzani and Kibler, 1992] ILE [Rouveirol, 1%91] and FORTE
[Richards and Mooney, 1991] often contain elements of both proof-based and
empirical approaches.

This paper examines FOIL, summarising ite development over the last four vears.
After outlining ifs key features, we describe an experiment designed to evaluate
its program-writing ability, using problems that human Prolog students ate
expected to be able to master. Not surprisingly, FOIL has difficulty with some
of the prokblems. We discuss FOIL’s shortcomings and what they tell us ahout
the research that will be needed to extend it into a useful logic programming
tool.

2. FOIL

In a nutshell, FOIL ig a system for learning function-free Horn clause definitions
of a relation in terms of itself and other relations. The program is actually
slightly more flexible since it can learn several relations in sequence, allows
negated literals in the definitions {using standard Prolog semantics), and can
eraploy eertain ¢onstants in the definitions it produces.

FOIL's input consists of information about the relations, one of which (the iarget
relution} is to be defined by 2 Horn clause program. For each relation it is given
& set of tuples of constants that belong to the relation. For the target relation
it rnight also be given tuples that are known not io beleng to the relation;
alternatively, the closed world assumption may be invoked to state that no tuples,
other than those specified, belong to the target relation. Tuples known to be in
the target relation will be referred to as @ tuples and those niot in the relation as
& tuples. The learning task is then te find a set of clauses for the targes relation
thzt accounis for all the @ tuples while not covering any of the O tuples.

The basic approach used by FOIL is an AQ-like covering algorithm [Michalski,
Mozetié, Hong and LavraZ, 1986]. It starts with a fraining set containing all &
and & tuples, constructs a function-free Horn clause $o ‘explain’ some of the &
suples, removes the covered @ tuples from the training set, and contimues with
the search for the next clause. When clauses covering all the & tuples have been
found, they are reviewed to ehminate any redundant clauvses and reordered szo
that any recursive clauses come after the non-recursive base cases.

Perfect definitions that exactly match the data are not always possible, particn-
latly in real-woild sifuations where incorrect values and missing tuples are to be
expecied. To get arcund this problem, FOIL uses encoding-length heuristics to

BIBLIOTHEQUE DU CERIST

limit the complexity of clauses and programs. The final clauses may cover most
(rather than all) of the & tuples while covering few (rather than none) of the &
tuples. See [Quinlan, 1990] for details.

2.1 Finding a Clause

FOIL starts with the left-hand side of the clause and specialises it by adding
literals to the right-hand side, stopping when no & tuples are covered by the
clause or when encoding-length heuristics indicate that the clause is too complex.
As new variables are introduced by the added literals, the size of the tuples in
the training set mncreases so that each tuple represents a possible binding for all
variables that appear in the partially-developed clause.

If the target relation R has k arguments, the ptocess of finding one clause for
the definition of K can be summarised as follows:

» Initialise the clause to
RW, V2, .. . W) «

and a local traiming set T to the & tuples not covered by any previcus
clause and all the © tuples.

o While T contains & tuples and is not too complex:

— Pind a literal L to add to the right-hand side of the clause.
— Form & new training set 1™:
for each tuple tin T, and
* for each binding b of any new variables introduced by literal L,
- if the tuple t.b (obtained by concatenating ¢ and &) satisfies
L, then add ¢.b to 7" with the same label (P or &) as ¢.

— Replace T by T”.

e Prune the clause by removing any unnecessary literals.

Although FOIL incorporates a simple backup mechanism, the clause-building
process is essentially a greedy search; once a literal is added to a clause, alter-
native literals are usually not investigated.

The key question is how {o determine appropriate literals to append to the
developing clause. FOIL uses two criteria: a liferal must either help to exclude
unwanted & tuples from the training set, or must introduce new variables that
may be needed for future literals. Literals of the first kind are called gainful

BIBLIOTHEQUE DU CERIST

while determinate literals arve included primarily because they introduce new
variables. '

2.2 Choosing Gainful Literals

Consider the pariially developed clause
R(Vi.Va, ... Va) — L1, Ln. oo B

containing vasiables V1, Vo, ..., Vy. Each tuple in the training set 7' looks like
ley, €3, ..., ¢zy for some constents {c;}, and represents a ground imstance of the
variables in the clause. Now, consider what happens when 2 literal Ly, of the
form

PV, Vigr s Vi)

is added to she right-hand side. If the literal contzing one or more new variables,
the arity of the pew training set will increase; let @’ denote the number of
variables in the new clause. Then, each tuple in the new iraining set T will
be of the form {di, do, ..., do} for constants {d;}, and will have the following
pioperties:

e {dy,dy,...,dz) satuplein T, and

» {d;,diy, ., di,} 18 in the relation P,

That iz, each tuple in 7 is an extension of one of the tuples in T, and the ground
instance that it represents satisfies the hiterzl. Ewvery tupie in T thus gives rise
to pero or more tuples in T* with the @ or & label of a suple in 7% being copied
from its ancestor tuple in T

Let T, denote the number of © tuples in T and T the number in T'. The
effect of adding a literal Ly, can be assessed Tom an information perspective as
follows. The information conveyed by the knowledge that a tuple in T has label
& is given by

I{T} = —E«.’)gg(T.;, {:"]TI)

"

and similarly for [{T"}. ¥ I(7"} ie less than I{T} we have ‘gained’ information
by adding ihe literal L, to the clause; if ¢ of the tuples in T have extensions in
TV, the total information gained alyout the & tuples in T is

gain(Lpm) = s % (I{T) — I{T")}.

BIBLIOTHEQUE DU CERIST

FOIL explores the space of possible literals that might be added to a clause at
each step, looking for the one with greatest positive gain.

The form of the gain metric allows significant pruning of the literal space, so
that FOIL can usually rule out large subspaces without having to examine any
literals in them. If a potential literal contains new variables, it is possible to
compute the maximum gain that could be obtained by replacing some or all of
them with existing variables. When the maximum gain is below that of some
literal already considered, the literals resulting from such replacements do not
need to be investigated.

Another form of pruning involves literals that use the target relation itself. Since
we do not want FOIL to produce non-executable programs that fail due to infinite
recursive looping, recursive definitions must be screened carefully. Recursive
literals that could lead to problems are barred from consideration, as described
below.

2.3 Determinate Literals

Some clauses in reasonable definitions will inevitably contain literals with zero
gain. Suppose, for instance, that all objects have a value for some property
D, and the literal B{X,Y) defines the value Y for object X. Since this literal
represents a one-to-one mapping from X to ¥, each tuple in 7" will give rise to
exactly one tuple in 7¥ and so the gain of the literal will always be zero. We
could also imagine a literal P(X,Y) that, for any value of X, supplied several
possible values for ¥'. Such a literal might even have negative gain.

If X is a previously defined variable and ¥ a new variable, there is an important
difference between adding literals D{(X,Y) and P(X,Y) to a clause; the first
will produce a new training set of exactly the same size, while the second may
exclude some & tuples or may cause the number of tuples in the training set to
grow, This is the key insight underlying deferminaie literals, an idea inspired
by GOLEM’s determinate ferms [Muggleton and Feng, 1990]: the value of each
new varlable is forced or determined by the values of existing variables.

More precisely, suppose that we have an incomplete clause
RV, Va,....Vi) &= Ly, L2, o, Lny -

with an associated training set T' as before. A literal L,, is determinate with
respect to this partial clause if L, contains one or more new variables and there
is exactly one extension of each & tuple in T, and no mote than one extension
of each & tuple, that satisfies Ly, . The 1dea 15 that, if L,, 18 added to the clause,
no & tuple will be eliminated and the new training set 7Y will be no larger than
T.

BIBLIOTHEQUE DU CERIST

PQIL notes determinate literals found while searching for geinful literals as above.
The marimum possible gain is given by a literal that excludes sll & tuples and
no $ tuples; in the notation used before, this gain is Ty x I{Z"). Unless a
literal is found whose gain is close to (> 80% of) the maximum possible gain,
FOIL zdds ofl determinate literals to the clause and tries again. This may
seem rather extravagant, since it is unlikely that a2l these Literals will be useful.
However, FOIL incorporates clause-refining mechanisms that remove unnecessary
literals as each clause is completed, so there is no ultimate penalty for this all-in
approach. Since no @ tuples are eliminated and the training set does not grow,
the only computational cost is associated with the introduction of new variables
and the corresponding increase in the space of subsequent possible lMerals. 1t is
precisely the enlargement of this space that the addition of determinate literals
i¢ intended to achieve,

There is a potential runaway situzéion in which determinate lterale found at
one cycle give rise to further determinate literals at the next ad infinstum. To
circumvent this problem, POIL borrows another idea from GOLEM. The depth
of a variable is determined by its first occurrence in the clause. All variables in
the left-hand side of the clauee have depth 0; a variable that first oceurs in some
literal has depth one greater than the greatest depth of any previously-cccurring
variable in that literal. By placing an upper limit on the depth of any variable
introduced by a determinate literal, we rule out indefinite runaway. This limit
does reduce the class of learnable programs. However, the stringent requirement
that a determinate literal must be uniquely satisfied by ell © tuples means that
this ronaway situztion is unlikely 2nd FOIL's default deptln limit of 5 ie rarely
reached.

2.4 Further Literal Forms

We are now moving into areas covered by recent extensions to FOIL. The first
of these concerns the kinds of literals that can appear in the right-hand side of
a clausge.

Early versions of FOIL considered litsrals of the forms

o P(Wh. W, ..., W), ~P(W,Wa, .., #p)
where P is a relation and the W;'s are variables, at lzast one of which must
have occurred already in the clause; and

e Vi=V,, Vi £V;

that compare the values of existing varables.

Two further forms have now been added.

In the first of these, certain constants can be identified as {heory constants that

o I e A — e L

BIBLIOTHEQUE DU CERIST

can appear explicitly in a definition. Examples might include a constant]
representing the null kst in list-processing tasks, or the integers) and 1 in tasks
that involve the natural numbers. For such a theory constant ¢, FOIL will also
consider literals of the forms

Vize, Vi #¢

where V; is a variable of the appropriate type that appears earlier in the clause.
This minor addition is equivalent to declaring a special relation is-c for each such
constant ¢; in fact, the extension is implemented in this way.

The second extension is more substantial. Relations encountered in the real
world are not limited to discrete information but commonly include numeric
fields as well. We could imagine simple relations such as

atomic-weight(E,W}
that provides the (numeric) atomic weight W of each element E, or
quote(C.B.S)

detailing the buy and sell prices for a commodity C. As a first step towards being
able to exploit numeric information like this, FOIL now includes literal types

Vizk, i<k, V>V, VU<V

that allow an existing variable ¥ with numeric values to be compared against a
threshold & found by FOIL or against another variable V; of the same type. Such
an extension falls a long way short of Prolog facilities that allow a continuous
value for V; to be computed in the clause; however, it does permit hound numeric
values to be used in conditions on the right-hand side of a clause.

2.5 Managing Recursion

Recursive theories are expressive and hence powerful, so that the ability to learn
recursive programs is one of the principal advantages of first-order systems like
GOLEM and FOIL. The increase in expressiveness, however, is counterbalanced
by the care that must be taken to avoid nonsensical recursion.

As an illustration, consider the task of learning a program for multiplication of
non-negative integers in terms of addition and decrement. We might have three
relations:

mult{A.B,C) meaning C=AxB
plus(A.B.C) C=A+B
dec(A,B) B=A - 1.

BIBLIOTHEQUE DU CERIST

10

A suitabie definition for multiply ie

muit{A,B,C) — A=, C:O_ :
mult{A,B,C} + dec(A,D}. phus{B E (), mult(D.B,E)

where the last clause captures the identity
AxB=B+(A-1)xB.

This definition seems intuitively to be well-behaved in the semse that it will
always terminate. On the other hand, 2 simpler definition

mult{A,.8,C) « mutt(B.A,C)

will clearly lead to an infinite recursive loop. How does FOIL, which is biased
towards finding simpler definitions, eschew the latter in favour of the former?
The short answer is that, as 2 clause is being developed, recursive literals must
satisfy certain criteria for inclusion in the right-hand side. In particulaz, a
recursive literal on the right-hand side must be judged to be less than the head
of the clause in some ordering of literals.

The earliest version of FOIL used a method based on discovering an ordering
of the constants appearing in tuples. This method guaranteed that 2 single
clause could not lead Lo a recursive loop by calling itself directly. The order
discovery was removed in following releases, which reiled on the user specifying
the constants of each type in an appropriate order. Order discovery mechanisms
have been reinstated in the most recent versions and the method of ordering
recursive literals has been generalised so that the guarantee now applies to sets
of clauses for a single relation, not just to a single clause. The following is meant
to give an informal sketch of the idea, with a complete discussion available in
{Cameron-Jones and Quinlan, 1893}.

Returning to the multiply example above, we see that the clause for she general
case

mult{A,B,C) — dec{A D), plug(B.E,C), muit{2,B.E)

cannot lead to infinite recursion since the literal dec{A.D) guarantees thai D is
always less than A; mult{D B.E} is thus less than mult{A B.C} in an intuitive
ordering of mult literals. FOIL assumes thal some relations provided for = task
will behave like dec in establishing an ordering of their arguments and atbempts
to identify them. For every relaiion R and every pair of armuments 4, B of B
that are of the same type @@, FOIL asks:

Are there orderinge of the constants of type @ that are consistent
with the hypothesis that A < E?

BIBLIOTHEQUE DU CERIST

11

When answers to all these questions have been determined, FOIL establishes a
single definitive ordering of the constants of type @ so that the number of such
inequalities is maximised.

The now-fixed ordering of constants of each type allows us to determine rank-
ings among pairs of variables in an incomplete clause. If such a clause con-
tains variables Vi, V5, ..., V; and the training set consists of tuples of constants
{da1,8a2, ..., 8qz), @ = 1,2, ..., |T|, then V; < V; if they belong to the same type
and d,; always comes before d,; in the constant ordering for that type.

The inequalities among pairs of variables can be extended to an ordering of
literals involving a predicate R and variables. In broad terms, if W;, W, ...
denote variables in V1, V5, ..., V;, then

R(WIs Wz, “avy Wk) < R(Vly szr reey I‘rfc) if
W, < Vy, or
Wa = Vo and Wp < V3, or
Wae="Vyand Wg =Vz and W, < V, o1 ...

Here a, 3, 7y etc. denote argument positions that, together with the ordering of
variables in the clause, specify a particular ordering of the literals involving A.

Suppose now that we have an incomplete definition for relation R that consists
of zero or more completed clauses and a partial clause. A recursive literal
R{(W,, W, ..., Wi) can be added to the right-hand side of the developing clause
only when there are values of «, 3 etc. as above so that

o this literal is less than the left-hand side of the clause, and

¢ the same is true for all recursive literals in the completed clauses.

This may sound complex but its implementation is simple and efficient, The
restriction on recursive literals in the right-hand side of clauses prevents infinite
recursive loops due to a definition of R calling itself directly, yet does not exclude
even complex recursive definitions such as that for Ackermann’s function:

Ack{A,B,C) — A=0, dec(C,B)
Ack(A.B.C) — B=0, dec{A.D), Ack(D.E.,C), dec(E.B)
Ack(A,B,C) — dec(A.D), dec(B,E), Ack(A.E.F). Ack(D,F.C)

In this case, the ordering of literals found by FOIL is

Ack(W;, W, W) < Ack(W, V2, V3) if
Wi<W,or :
Wy, =V and Wi < V5.

BIBLIOTHEQUE DU CERIST

12

In the definition above, dec{A. D} gives D<A in the second and shird clauses,
and dec{B E) in the third clavse gives £E<B, so all recursive literals in these
clauses are less than the heads of the clauses. Consequertly, this definition can
be guarantesd $o terminate when invoked with ground instances of A and B.

2.6 Improved Definttions

Programs like FOIL that depend on greedy search will occasionally follow unprof-
itable paths leading to poor definitions or no definitions a2t all. FOIL’s backup
mechanism is designed to ameliorzte the latter condition by restarting search at
saved backup points. The problem of poor definitions is much more difficult to
circumvent. '

From its earliest version, FOIL has incorporated post-processing of definitions
in which unnecessary litersls are zxcised from finished clauses and redundant
clauses are removed from complete definitions. When there are numerous super-
fluous literals, clause pruning can consume a noticeable amount of time; a recent
extension is a fast heuristic pruning method that reverts to the slow-but-sure
algorithm in the event of failure.

The most recent versions have two additional mechanisms for producing better
clauses. It sometimes happens that, when the possible literals to be added to a
clause are being considered, one literal L would complete the clause but another
literal of higher gain is selected instead. The search car meander along 1o this
way, leading eventually to a clause that is inferior to the one that would have
been produced if L had been chosen. ¥FOIL now remembers the best complete
clavse that could have been obtained by a different choice of literal at any point.
When the clause is complete, the svstem checks {0 see whether the rémembered
clause is at least as good as the final clavse and, if 5o, uses the remembered clause
instead. This extension, which requires hardly any additional computation, is
respongible for much impreoved definitions in some tasks.

We have also observed cases in which & non-recursive literal L, chosen to com-
plete a clause, involves only variables that appear in the left-hand side of the
clause. Such a literal could clearly have appeared at the beginning of the right.
hand side. If the right-hand side contains literals other than [, they may have
had the effect of making the clause too specific. To circumvent this possibility,
the clause iz regrown starting with the single literal £ on the nght-hand side.

The final polishing invoives reordering the clauses. After all clauses making up
a definition have been sifted 25 abovs to remove redundancies, all non-recursive
“base case” clausss are moved to the front so that they appear before any
recursiva clauses.

BIBLIOTHEQUE DU CERIST

13

3. An Experiment

Many evaluations of learning systems involve a limited amount of background
information — just that required for the task at hand - and sometimes care-
fully chosen training examples as well. Such experiments can demonstrate the
feasibility of certain types of learning, but do not address the usefulness of the
learning system in practical applications, where there is usually a large amount
of irrelevant information and where training examples come from a neutral,
unhiased source.

As a step towards a more pragmatic evaluation, we started with Ivan Bratko's
well-known text Prolog Programming for Artificial Intelligence [Bratko, 1986].
Chapter 3 of this book introduces several programs for manipulating hists and
includes a set of student exercises. We conducted trials to see whether FOIL
could learn the expository programs and exercises in the same order as they
appear it the book, omitting only the last two exercises that were quite different
from the others. {One of them, canget, deals with lists specific to the monkey
and bananas problem; the other, flatten, uses structured lists.) A brief sumrmary
of the problems attempted is:

member(E,L) E is an element of list L

cone{L1,12,L3) appending L1 to £2 gives list L3
memberl{E,L) as for member with conc available

last(E.L) E is the last element of L

tast1(E,L) ditto, but without using conc

del(E,L1,L2) deleting an occurrence of E from L1 gives L2
member2(E,L) as for member with del available
insert(E,11,L2) inserting E somewhere 1in 11 gives L2
sublist(L1,L2) L1 is a sublist of L2

permutation{L1,L2) L2 is a permutation of list L1
even/oddlength(L) L has an even/odd number of elements (both
relations to be defined)

reverse(L1,0.2) L2 is the reverse of list L1

palindrome(L) list L is a palindrome

palindromel(1) as above, but not using reverse

shift(L1,12) rotating elements of L1 to the left gives L2

translate(L1,12) L2 is the results of translating L1 using an
element-to-element mapping

subset{51,52) S2 is a subset of set S1

dividefist(L1,L2,13) L2 contains the odd-numbered elernents of L1,
L3 contains the even-numbered elements of L1

We included the additional relation components(L.H,T), meaning list { has head
H and tail T, that corresponds to Prolog’s built-in [H|T] notation for lists. For
each program, all relations encountered previously were available as background

BIBLIOTHEQUE DU CERIST

knowledge so that there were many hrrelevant relations to confuse FOIL’s search.

We also attempted to assemble iraining examples in an unbiased manner. The
trials were repeated for two universes, defined as

o U3, the 40 lists containing up to three elements (where cach elernent is in
the set {1,2,31); and

o U4, the 341 similar lisis containing up to four elements from {1,2,3,4}.

In 2 trial, PGIL was given all & tuples over she relevant universe for cach
relation. In U3, for example, the 142 & tuples for conc include {[],{13],113]}
and ({32}, {21, [322]} but not {{322], [13], [32213]} since, in the last cass, one of the
lsts contains more than three elements. Two relations in the book are defined
over restricted subclasses of lists, sets in the case of subset and lisis without
repetitions in the case of permutation. All other relations are defined over all
Hsts. The < tuples for the relaticn being learned are generally the complement
of the @ tuples. However, for the second universe U4, some relations would then
have an énormous number of such tuples — about 341° = 40 million for cone - so
we used the FOIL option thet selects a randem sample of & tuples to keep them
down to about 00,000. The reiations affected were conc and dividelist (where
we used 0.2% of © tuples), def and insert {20%), translate {40%], and sublist,
permutation, reverse and shift (80%).

FOIL was allowed 1500 seconds on a DECstation 5000,240 for each problem. As
the book had not introduced negation at this stage, negated literals were barred
from definitions. All FOIL's other aptions had their defanlt values, including the
default memory Lmit of 100,000 tuples on any training set.

The outcomes of this experiment are summarised in Table 3.1. In the resuli
column, & +/ means that a correct definition was obtained (often, but not always,
the same as the program in the book). The notation restricted indicates that
the definition was correct for the universe over which the examples were defined,
but would give incorrect resulis for lists of arbitrary length. A common problem
with the restricted definitions is an incorrect base case that relies on fortuitous
propezties of the limited domain. For instance, the definition of reverse found in
universe U3 wae

reverse{A,B) — A=B, conc(A,C,D), sublist{A,C)
reverse(A,B) — components(A, L), reverse(D,E), conc(F.D A}, conc(E.F,B)

The second [recursive) clanse is correct. However, the odd-lonking bese case
exploits the fact that all lists'in U3 have length at most 3; if A is 2 sublist of C
and the result of conc’ing A to C has length at most 3, this ensures that A has
lenpth 0 or 1. Of course, the first clause is correct for such short lists A:

e APE - TRAL v

BIBLIOTHEQUE DU CERIST

Task Tuples Result Time
& = (secs)
member U3 75 45 v 0.1
U4 880 484 v 0.9
conc U3 142 63,858 v 28
U4 1593 79,300 v 34
memberl [VE] 75 45 +/ 1.7
U4 880 484 v 1.7
last U3 39 81 restricted 0.2,
U4 340 1024 v 2.7
lastl U3 39 81 v 0.1
U4 340 1024 v L.9 |
del U3 81 4719 v 472
U4 1024 92,640 time limit > 1500
insert U3 81 4719 v 2.1
U4 1024 92,640 v 56
member? U3 75 45 v 0.1
U4 880 484 N4 0.9
sublist U3 202 1398 Vv 1.8
U4{ 2013 90,697 J 94
permutation U3 52 204 v 1.8
U4 749 3476 N4 337
evenfoddlength U3 { 10/30 30/10 | unsound mutual recursion 0.1
U4 | 273/68 68/273 | unsound mutual recursion 63
reverse U3 40 1560 restricted 2.3
U4 341 92,796 restricted 220
palindrome U3 16 24 v 0.1
U4 41 300 Y4 0.9
palindromel U3 18 24 restricted 028
U4 41 300 restricted 212
shift U3 39 1561 v 4.2
U4 340 92,787 Vv 253
translate U3 40 3120 time limit > 1500
U4 341 92573 time limit > 1500
subset U3 27 37 restricted 0.2
4 81 175 restricted 19
dividelist U3 40 63,960 restricted 182
U4 341 79,302 eITonecus 901

Table 3.1: results on learning programs

BIBLIOTHEQUE DU CERIST

15

One definition produced by FOIL, dividelist in universe U4, was actually in error,
even when only lists in the restricted vniverse are considered. FGIL relies on &
tuples to show up over-generalisations. For this task, the training set included
only 0.2% of the = tuples, none of which happened o reveal that the clause was
defective. This underlines the heuristic nature of any learning from incomplete
information.

Apart from running out of time, the other problem occurred in the task that
required definitions of both evenlength and oddiength. The definitions found for
73 were ’

evenlength(A) « del(B.C.A), oddlength(C)
oddiangth{A} « components(A,B,(), evenlength(C).

Each definition is correct in itself but, together, they lead to recursive looping
since C iz longer than A in the definition of evenlength but shorter in oddiength.
This highlights the fine print in FOIL's guarantee of recursive soundness; an
individual definition will not jead to problems, but two definitions invoking each
other might.

4. Discussion

The resuits of this experiment can oniy be described as mixed. It is encouraging
to see that FOIL can find correct definitions for many of the smail programs,
but less encouraging wien we remember that students are expected to be able
to produce all of them as a raatter of course.

In particulez, the fact that laser defizitions tend to be restricted {if they are found
at all} highlights FOIL’'s sensitivity to irrelevant information. For exarmple, when
ali the superfiuoue relations were removed, a correct definition of subset

subset{A,B) « B=(}
subset{ A, B} — comporenis{A,C,D), components{B,(,E), subset{D.E)}
subset{A,B} +— components(A,L, D), subset{D B}

wes found from U4 in only 0.5 seconds.

Amnother cause for concern is thai recurgive definitions require near-complete
sets of © tuples. If we consider the simplest task, member in universe U3, i is
interesting to observe the effect of deleting a single @ tuple without changing
the & tuples (corresponding to an item of missing information, but no mis-
information}. If the tuple is of the form {X, ¥} where X is an element and ¥ is
a list, then:

BIBLIOTHEQUE DU CERIST

17

s There is no effect if ¥ 15 of length 3.

e HY is of length 1 or 2, at least one recursive continuation is affected.
FOIL still finds a correct definition but adds an exira clause to cover the
apparent “special case”.

When 25% of the @ tuples were deleted at random, the resulting definition was
still “correct” but contained three superfluous clauses.

The tasks in this experiment have the property that each can be defined by a
Horn clause program without the use of negated literals. Even when negated
literals are allowed, the definition language used by FOIL is too weak to capture
some ideas. As an illustration, the first-order expression

(ve likes(z,3)) 2 happy(y)

cannot be written as a Prolog definition without the use of a cut or the establish-
ment of an anciilary concept. Similarly, a program to recognise sentences of the
language g*b*c* requires an extra concept such as sequence-of(Seq,Elt); a Prolog
programmer would see this immediately and define the subsidiary predicate,
FOIL cannot invent new relations of this kind, and can only apply negation to
individual literals. Consequently, there are some quite simple concepts for which
FOIL cannot find general definitions, no matter how many examples it is given.

5. Conclusion

As the title of this paper suggests, FOIL is still under development. In its current
form it is an experimental vehicle for exploring ideas in learning, not a practical
tool for constructing substantial logic programs. In the same way, ID3 circa 1978
was an experimental program that required a lot more work before a practical
tool, C4.5, was obtained.

Several shortcomings of the system were mentioned in the previous section.
Generalising slightly, we can identify the following features that will be required
by any robust system for learning recursive logic programs:

o Construction of new predicates: Logic programmers make frequent use of
predicates that do not appear in the problern statement. This is sometimes
required to express the program in Horn clause form, but more frequently
because ancillary predicates make the program simpler and more efficient.
FOIL has no facilities for inventing new predicates, but the promising
research of Muggleton and Buntine [1988], Kietz and Morik {1993] and
others suggests that such facilities may be able to be grafted on.

BIBLIOTHEQUE DU CERIST

ig

s Slrategy for constructing programs: Human logie programmers are saught
to get the simplest base case first, then to develop the general recursive
case. This kind of strategic approach iz missing from FOIL, which just
attempts to bite off as many & tuples as possible in each ciause. This
super-greedy strategy can lead to problems of the kind illustrated by the
reverse example. Instead of the simple base case

reverse(A.B) « A=[], B=[]

FOIL greedily tries to extend this to include single-element lists, leading
to the restricied definition of section 3.

o Selective use of relations: At the moment, any learning task can be made
harder for FOIL simply by including more and more irrelevant relations,
thereby increasing the number of lterals that must be examined at each
step. We hypothesise that any practical system for learning logic programs
must emnploy a characterisation of each remembered relation, so that =
relation is only considered when there is a prior reason to helieve that it
may be of use,

o Incomplete training sets: It seems unlikely that neer-complete sets of @
tuples will be available when constructing recutsive definitions for relations
in the context of real-world problems. Practical training sets will be small
and, in problems involving synthesis of 2 novel theory, the given tuples will
ot be helpfully selected with the form of the final definition in mind. While
FOIL can cutrently learn non-recursive definitions frormn sparse training
cases, it has difficulty with recursive theories under these conditions.

s Erlended treaiment of numerte fields; Not many first-order systems seem
to have addressed the issue of using continuous-valued informetion. FOIL's
use of numeric fields is Limiied to thresholding and comparisons of known
valies tather than computing new values. Since many practical Prolog pro-
grams involve computation, learning systems that are intended to generate
these programs must somnehow come to grips with camputational clauses.

With the inclusion of theory constants and tests on numeric velues, #OIL can now
express any theory derivable by zeroth-order learning systems such as C4.5. We
have carried out some initial tests running FOIL or zeroth-order attribute-value
data in which there is a single reiation with one argument for each atfribute.
Since FOIL explores a strictly larger hypothesis space than these systeins, it is
not surprising that FOIL is siower. It will be interesting to see whether the
increased sedrch results m more accuraie theories than those learned by zercth-
oider sysiems.

The current version of FOIL is always available by anonymoeus fip from 129.78.8.1,
file name pub /foilN.sh for sorme integer N.

