
R.S. Bird C.c. Morgan
J. c.P. Woodcock (Eds.)

Mathematics of
Pro gram Construction
Second International Conference,
Oxford, D.K., June 29 - July 3, 1992
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universiliit Karlsruhe
Postfach 6980
Vincenz-Priessnitz-StraBe 1
W-7500 Karlsruhe, FRG

Volume Editors

Richard S. Bird
C. Carroll Morgan
James C. P. Woodcock

Juris Hartmanis
Corne li University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Oxford University Computing Laboratory, Programming Research Group
Il Keble Road, Oxford OXI 3QD, U.K.

CR Subject Classification (1991): 0.1-2, F.2-4, G.2

ISBN 3-540-56625-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56625-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ali rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in ils current version, and permission for use must always be obtained from
Springer-Verlag. Violations are Iiable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Gerrnany

Typesetting: Camera ready by author/editor
printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

Not very long ago, the uninhibited use of mathematics in the development of
software was regarded as something academics should do amongst themselves in pri
vate. Today, there is more and more interest from industry in formai methods based
on mathematics. This interest has come from the success of a number of experiments
on real industrial applications (see, for example, LNCS, Vol. 551). Thus, there is not
only a belief, but also evidence, that the study of computer programs as mathemati
cal objects leads to more efficient methods for constructing them. However, if we are
to be of service to those actually creating computing systems in industry, we must
extend and improve our work.

The papers in this volume were presented at the Second International Confer
ence on the Mathematics of Program Construction, held at St Catherine's College,
Oxford, during the week of 29 June - 3 July, 1992. The conference was organised
by Oxford University Programming Research Group, and continued the theme set
by the first-the use of crisp, c1ear mathematics in the discovery and design of al
gorithms. In this second conference, we see evidence of the ever-widening impact
of precise mathematical methods in program development. There are papers apply
ing mathematics not only to sequential programs, but also to parallel and oncurrent
applications, real-time and reactive systems, and to designs realised directly in hard
ware.

The scientific programme for the conference consisted of five invited lectures
delivered by distinguished researchers, a further 17 papers selected by the programme
committee, and six ad hoc contributions presented on the final day. These were as
follows:

A Short Problem
J .L.A. van de Snepscheut

Compiler Verification
Greg Nelson

An Alternative Derivation of a Binary Heap Construction Function
Lex A ugusteij n

A Derivation of Huffman's Algorithm
Rob R. Hoogerwoord

Ga/ois Connexions
Roland Backhouse

A n Elegant Solution
J.L.A. van de Snepscheut

A record of Augusteijn's and Hoogerwoord's contributions may be found at the end
of this volume.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Acknowledgments

The conference received sponsorship from BP Research and Prentice Hall Interna
tional. The administration was provided by the Continuing Professional Develop
ment Centre of the Department for Continuing Education, Oxford University.

1 am most grateful to Miss Frances Page for her expert assistance.

Oxford, February 1993

Organising Committee

R.S. Bird, C.C. Morgan, J .C.P. Woodcock

Programme Commit tee

J .-R. Abrial (Paris)
E. Astesiano (Genova)
R.-J.R. Back (Abo)
R.S. Bird (Oxford)

B. N ordstrom (Boteborg)
G. Nelson (DEC SRC)
E.-R. Olderog (Oldenburg)
B. Ritchie (RAL)
D. Sannella (Edinburgh)
M. Sheeran (Glasgow)

J.C.P. Woodcock

W.H.J. Feijen (Eindhoven)
E.C.R. Hehner (Toronto)
L.G.L.T. Meertens (CWI)
B. Moller (Augsburg)

J .L.A. van de Snepscheut (CaITech)
W.M. Turski (Warsaw)

C.C. Morgan (Oxford)
J.M. Morris (Glasgow)

J .C.P. Woodcock (Oxford)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

Invited Lectures

Extended Calculus of Constructions as a Specification Language 1
Rod Burstall

On the Economy of Doing M athematics ... 2
Edsger W. Dijkstra

Pretty-Printing: An Exercise in Functiona/ Programming 11
John Hughes

True Concurrency: Theory and Practice 14
Ugo Montanari

Programming for Behaviour ... 18
Wladyslaw M. Turski

Contributed Lectures

Calculating a Path A/gorithm .. 32
Roland C. Backhouse and A.J .M. van Gasteren

Solving Optimization PToblems with Catamorphisms 45
Richard S. Bird and Oege de Moor

A Time-Interval Calculus ... 67
S. M. Brien

Conservative Fixpoint Functions on a Graph 80
J.P.II.W. van den Eijnde

An Aigebraic Construction of Predicate Transformers ., 100
Paul Gardiner, Clare Martin and Oege de Moor

Upwards and Downwards Accumulations on Trees 122
Jeremy Gibbons

Distributing a Class of Sequential Programs 139
II. Peter lIofstee

(Relational) Programming Laws in the Boom Hierarchy of Types 163
Paul F. lIoogendijk

A Logarithmic Implementation of Flexible Arrays 191
Rob R. lIoogerwoord

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Designing Arithmetic Circuits by Refinement in Ruby 208
Geraint Jones and Mary Sheeran

An Operationa/ Semantics for the Guarded Command Language 233
Johan J. Lukkien

Shorter Paths to Graph A/gorithms ... 250
Bernhard Müller and Martin RussJing

Logica/ Specifications for Functiona/ Programs 269
Theodore S. Norvell and Eric C.R. Hehner

!norder Traversa/ of a Binary Heap and its Inversion in Optima/
Time and Space .. 291
Berry Schoenmakers

A Ca/cu/us for Predicative Programming 302
EmiJ Sekerinski

Derivation of a ParaI/el Matching A/gorithm 323
Yellamraju V. Srinivas

M odu/ar Reasoning in an Object- Oriented Refinement Ca/culus 344
Mark Utting and Ken Robinson

Additional Contributions

An Alternative Derivation of a Binary Heap Construction Function 368
Lex Augusteijn

A Derivation of Huffman's A/gorithm ... 375
Rob R. Hoogerwoord

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Extended Calculus of Constructions as a
specification language

Abstract

Rad Burstall

Department of Computer Science
University of Edinburgh

Edinburgh
Scotland

Huet and Coquand's Calculus of Constructions, an implementation of type theory,
was extended by Luo with sigma types, a type of pairs where the type of the second
component depends on the value of the first one. This calculus has been implemented
as 'Lego' by Pollack. The system and documentation is obtainable thus:

ftp ftp.dcs.ed.ac.uk
cd export/lego ,

after which one should read the file README.
The sigma types enable one to give a compact description of abstract mat he

matical structures such as 'group', to build more concrete structures of them, such
as 'the group of integers under addition' and to check that the con crete structure
is indeed an instance of the abstract one. The trick is that the con crete structure
includes as components proofs that it satisfies the axioms of the abstract structures.
So 'group' is asigma type and 'group of integers un der addition' is an n-tuple of
types, operators and proofs which is an element of this sigmatype. We can define
functions which enrich such structures or forget them to simpler ones.

However the calculus is intentional and it is too restrictive to identify the math
ematical notion of 'set' with 'type'. We will discuss how sets and functions between
them may be represented and the notational difficulties which arise. We put forward
a tentative suggestion as to how these difficulties might be overcome by defining the
category of sets and functions in the calculus, then using the internaI language of
that category to extend the type theory. This would be a particular example of a
more general reftection principle.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

On the Economy of doing Mathematics

prof. dr. Edsger W. Dijkstra

Department of Computer Sciences
The University of Texas at Austin, U.S.A.

Every honest scientist regularly does sorne soul searching; he then tries to anal
yse how weil he is doing and if his progress is still towards his original goal. Two
years ago, at the previous conference on the Mathematics of Program Construction,
1 observed sorne of su ch soul searching among the scientists there present, and 1
observed more doubt th an faith. The first part of this talk is therefore devoted to
my explanation of why 1 think most of those doubts unjustified.

One general remark about an unexpected similarity between the programming
community and the mathematical community first. In the past, art and science of
programming have seriously suffered from the concept of "the average program
mer" and the widespread feeling that his (severe) intellectuallimitations should be
respected. Industrial pressure and propaganda promoted the view that, with the
proper programming language, programming did not pose a major challenge and
did not require mental gifts or education, thus creating an atmosphere in which
self-censorship withheld many a scientist from exploring the more serious forms of
programming methodology. 1 would Iike to point out that, in very mu ch the same
way, mathematics has suffered and still suffers from the tyranny of "the average
mathematician". Improvements in notation, in language or concepts are rejected
because such deviations from the hallowed tradition would only confuse the aver
age mathematician, and today's mathematical educators who think that they are
doing something great by turning a piece of mathematics into a video game are
as misguided as earlier recruiters for the programming profession. The similarity
is striking, the only difference between the average mathematician possibly being
that the latter tends to believe that he is brighter than everybody else. And this
concludes my general introductory remark.

* * *
Let us now have a look at various supposed reasons for losing faith III mathe

matical construction of programs.

1. "Formai program derivation is no good because industry rejects it." Weil, what
else do you expect? For four decades, the computing industry has been guided by
businessmen, bean-counters, and an occasion al e1ectronic engineer. They have
carefully seen to it that computing science had no influence whatsoever on their
product line, and now the computer industry is in problems, computing science
gets the blame. (lronically, many CS departments now feel "guilty" and obliged
to turn out more "practical" graduates, i.e. people with the attitudes that got
the computer industry into trouble in the first place.) Having put the blame on
our doorstep, they have "justified" rejecting our work, and they have to continue
to do so so as to save their own image.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

ln short: when industry rejects formai methods, it is not because formai methods
are no good, but because industry is no better.

2. "Formai methods are no good because the practitioner rejects them." This may
sound convincing to you, but only if you don't know the practitioners. My eyes
were opened more than 20 years ago on a l!!tturing trip to Paris with, on the way
back, a performance in Brussels. It was the first time 1 showed to foreign audi
ences how to write programs that were intended to be correct by construction. In
Paris, my talk was very weil received, half the audience getting about as excited
as 1 was; in Brussels, however, the talk fell fiat on its face: it was a complete
flop. 1 was addressing the people at a large software house, and in my innocence
had expected them to be interested in a way of designing programs such that
one could keep them firmly under one's intellectual control. The management
of the company, which derived its financial stability from its maintenance con
tracts, felt the design of flawless software not to be in the company's interest, so
they rejected my recommendations for sound commercial reasons. The program
mers, to my surprise, rejected them too: for them, programming was tedious,
but debugging was fun! It turned out that they derived the major part of their
professional excitement from not quite understanding what they were doing and
from chasing the bugs that should not have been introduced in the first place.
In short: formai techniques are rejected by those practitioners that are hackers
instead of professionals.

3. "Formai methods are no good because quite a few colleagues in your own CS
department are opposed to them." This sounds like a much more serious objec
tion, but fades away as soon as you know the reasons why your colleague objects.
The one main reason is that, deep in his heart, your colleague is a hacker, that
by advocating formai techniques you are promoting quality standards he cannot
meet, and that, consequently, he feels discriminated against. Such a colleague
should be pitied instead of taken seriously. The other main reason is political.
Once growth of the Department has been accepted as the target, one can no
longer afford to present computing as a serious science, the mastery of which is
sufficiently demanding to scare away the average student. Such a political col
league has adopted the morals of the best-seller society, and should be despised
instead of taken seriously.

4. "Formai methods are no good, for even mathematicians have not accepted
them." This sounds really serious, for mathematics embodies an intellectual tra
dition of thousands of years. Closer inspection shows that that is precisely one of
its problems. While the Renaissance sent ail of classical "science" to the rubbish
heap, much of dassical mathematics was accepted as the standard. This is one
of the explanations of the fact that, to this very day, the Mathematical Guild
is much more medieval than, say, the Physical Guild, and that informality -
not to say, handwaving - is the hallmark of the Mathematical Guild Member:
frantically trying to distinguish between form and contents, he neglects the form
and thus obscures the contents. Never having given formai techniques, i.e. the
manipulation of uninterpreted formulae, a fair chance, he does not have the right
to say that they are no good.

This may be the place to point out that most programmers and most mathe-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

mati cians work in linguistically comparable situations. The programmer uses sym
bols of a "programming language" , the mathematician uses symbols of a "reasoning
language". For the sake of compatibility, both languages are accepted as de facto
standards, although both are bad, and totally defective as carriers of a formaI sys
tem. These people do, indeed, work in an environ ment in which formaI techniques
are hard to apply directly, but this is the consequence of well-identified shortcomings
of the "languages" they have accepted as standards.

* * *
Suddenly having to run a children's party for kids ranging from 8 to 13 years of

age, 1 gave them pencil and paper and asked them the well-known question whether
it is possible to cover with 31 2x1 domino es the 8x8 square from which 2 unit squares
at opposite corners have been removed. They aIl tried doing it and failed each time.
After about 20 minutes, the consensus was that it could not be done, but they agreed
that impossibility could not be concluded from a sample of failed efforts. They also
agreed that neither the party nor their patience would suffice for an exhaustive test,
and their attention was on the verge of turning to something else when 1 showed to
them how the impossibility can be established by means of the well-known counting
argument inspired by the colouring of the chessboard. You should have seen the
excitement on those young faces! They were absolutely fascinated, and rightly so,
for even in this simple setting they had caught a glimpse of the unequalled power of
mathematics.

In connection with this problem, 1 would like to point out two things. Firstly, it is
not just brute force versus reasoning, for even the exhaustive "experiment" requires
an argument that no cases bave overlooked. In other words, the two approaches
represent two extremes on a spectrum of arguments: a very clumsy one and a very
effective one. Secondly, the problem has effortlessly been generalized to many other
sizes tban 8x8. The importance of these observations is that mathematics emerges
as something very different from what the Oxford Dictionaries give you, viz. "tbe
abstract science of space, number, and quantity"; mathematics rather emerges as
"the art and science of effective reasoning", regardless of what the reasoning is
supposed to be about. The traditional mathematician recognizes and appreciates
matbematical elegance when he sees it. 1 propose to go one step furtber, and to
consider elegance an essential ingredient of matbematics: if it is clumsy, it is not
matbematics.

For the improvement of the efficiency of the reasoning process, tbree main devices
have been found effective:

1. adopting a notation that captures what is essential and nothing more (among
other things to enable wbat A.J .M. van Gasteren has called "disentanglement")

2. restricting steps to a well-defined (and modest) repertoire of manipulations
3. adopting a notation that yields formulae that are well-geared to our manipulative

needs.

Remark Alfred North Wbitehead almost understood this; be was, however, willing
to sacrifice ease of manipulation to brevity. A small study of tbe ergonomies of

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

formula writing shows that the stress on his kind of brevity was misguided. (End of
Remark.)

Ali these devices are closely connected to notation, and it is worth pointing out
that the typical mathematician is very ambivalent about the importance of notation:
on the one hand he knows that a good notation can make the difference between
day and night, on the other hand he considers explicit attention to notation wasted.
Quite typical was the reaction of a rather pure mathematician that had attended
several days of lectures that W.H.J. Feijen and 1 gave in the second half of the 70s:
he was very impressed by the power of our formai apparatus but regretted our de
viations from standard notational conventions, not realising that these deviations
had been a conditio sine qua non. The probable explanation of the mathematical
ambivalence towards notation is that the average mathematician is still a Platonist,
for whom formulae primarily have a descriptive rôle and are not meant for uninter
preted manipulation, "in their own right" so to speak; moreover, his unfamiliarity
with formai grammars makes many notational issues impossible for him to discuss.

But let me give you three tiny examples of the importance of notation.

1. Among a large number of electronic engineers 1 have established that, while ail
are certain that "and" distributes over "or" , a significant majority is ignorant of
or very uncomfortable with the inverse distribution. This shocking observation
has a simple observation: in their crummy notation, the familiar distribution
is rendered by the familiar x(y + z) = xy + xz, the unfamiliar distribution is
rendered by the unfamiliar x + yz = (x = Il)(X + z).

2. With E, TI, '<1,3, i or l for the quantifier Q, the "l-point rule" is

(Qi: i = n : t.i) = t.n

For E and TI, mathematicians know it, probably in the forms

n n

Lt(i) = tin) and II t(i) = t(n).

For '<1 and 3, they do not know the I-point rule, working, as they do, in these cases
without "range" for the dummy; they would have to code them as something
like

('<Ii)(i = n =? t(i)) = t(n) and(3i)(i = n 1\ t(i)) = t(n),

forms sufficiently opaque to make these formulae unknown. (And not knowing
these I-point rules really hurts, as they are the main devices for equating a
quantified expression to an expression without quantifier.)

3. As a final example: recently 1 saw for a nonassociative relation between predicates
an infix operator, say M, being introduced. An important property of M was
rendered by

[('<Ii:: p.iMq.i) =? «'<Ii:: p.i)M('<Ii:: q.i))]

Had we written M.(x, y) for xMJj, we could have used that quantification dis
tributes over pair-forming, i.e.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

[(Vi:: (p.i,q.i) == ((Vi ::p.i), (Vi:: q.i))].

and with the dummy w of type "predicate pair" , the above property of M could
have been written

[(\fw :: M.w) ~ M.(\fw :: w)].

an implication familiar from conjunctivity. But it is hard to exploit the fact that
quantification distributes over pair-forming if the pair has been pulled apart by
an infix operator.

The ambivalence towards notation is retlected in what 1 am tempted to cali
"hybrid theories"; these are very traditional and are warmly recommended to this
very day. The designer of a hybrid theory has the feeling of creating two things:
firstly, the subject matter of the theory, and, secondly, a "language" to discuss the
subject matter in. Besides metaphors, jargon and definitions, "language" includes
here formalisms as weil.

The idea behind the hybrid theories is that arguments and calculations, by defi
nition formulated in the new language, are to be understood, interpreted, and given
"meaning" in terms of the new subject matter. Usually the language is a semi-formal
system, in which many steps of the argument are "justified" by an appeal to our
intuition about the subject matter.

By giving enough care to the design of the language, by making it sufficiently
elaborate and unambiguous, the validity of conclusions about the subject matter
becomes a linguistic characteristic of the sentences describing the argument. In the
ultimate case, reasoning about and in termS of the subject matter is replaced by the
manipulation of uninterpreted formulae, by calculations in which the original subject
matter has disappeared from the picture. The theory is now no longer hybrid, and
according to your taste you may say that theory design has been degraded to or
simplified to a linguistical exercise.

1 have observed that even in the presence of a simple and effective formalism,
mathematicians of a more conservative persuasion are opposed to such calculational
manipulation of formulae and advocate their constant interpretation in terms of
the constituents of the intended mode!. They defend this interpretation, also called
"appeal to intuition" mainlyon two grounds. Their first argument is that the close
ties to the intended model serve as a source of inspriation as to what to conjecture
and how to prove it. 1 have my doubts about this but 1 don't need to elaborate
on those because the sudden focus on "the source of inspiration" reveals a lack of
separation of concerns: because there is a job to be done we are interested in the
structure of arguments and not in the psychological habits and mental addictions
of individual mathematicians. Their second argument for constant interpretation
is that it is an effective protection against the erroneous derivation of what, wh en
interpreted, is obvious nonsense: in short, constant interpretation for safety's sake.
It is my contention that. the second argument. reflects a most harmful mistake,
from which we should recover as quickly as possible: adhering to it is ineffective,
paralyzing, misleading, and expensive.

It. is ineffective in the sense that it only protects us against those erroneous con
clusions for which the model used readily provides an obvious counter example.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

It is of the same level as trying to base confidence in the correctness of a pro gram
on testing it.
It is paralyzing. Vou see, a calcul us really helps us by freeing us from the fet
ters of our minds, by the eminently feasible manipulation of formulae whose
interpretation in terms of a model completely defies our powers of imagination.
Insistence on constant interpretation would rule out the most effective use of the
calculus.
It is misleading because the mode! is always overspecific and constant interpreta
tion invites the introduction of steps that are only valid for the mode! the author
has at that moment in mind, but are not valid in general. It is this hybrid rea
soning that has given all sorts of theorems a very fuzzy range of validity. People
working with automatic theorem proyers discovered that in geometry most the
orems are wrong in the sense that "the obvious exceptions" are not mentioned
in the theorem statements; more alarming is that those exceptions don't surface
in the published proofs either.
It is expensive because the constant "translation" from formulae to interpreta
tion is a considerable burden. (In order to reduce this burden, P. Halmos strongly
recommends to avoid formulae with quantifiers!)

The moral is clear: for doing high-quality mathematics effective!y verbal and
pictoral reasoning have to be replaced by calculational reasoning: logic's rôle is no
longer to mimic human reasoning, but to provide a calculational alternative. We have
no choice, and, as a result, we are entitled to view the design of a mathematical theory
as a linguistic exercise, and to rate linguistical simplifications as methodological
improvements.

A major su ch improvement is the restriction to unambiguous formulae. It is
easily implemented and is a great simplification compared to the unwritten mies
of disambiguation that are invoked by "but everyone understands what is meant".
1 remember how 1 was ridiculed by my colleagues, and accused of mannerism and
arrogance, just because 1 avoided a few tradition al ambiguities, but that was a
quarter of a cent ury ago and by now the mathematical community cou Id be wiser.

A next step is to recognize that it is not string or symbol manipulation that we are
doing, but formula manipulation; we replace not just substrings but subexpressions
and formula manipulation is therefore simplified by easing the parsing. Context
dependent grammars, for instance, are not recommended. 1 remember a text in
which x = y /\ z had to be parsed as x = (y /\ z) for boolean x, y, but as (x = y) /\ z
otherwise, and such a convention is definitely misleading. These are not minor details
that can be ignored. (The only calculational errors 1 am aware of having made in
the last de cade were caused by parsing errors.)

1 would now like to draw your attention briefly to a linguistic simplification of
a somewhat different nature, which took plac~ in an area familiar to ail of us, viz.
program semantics. In this area, the 60s c\osed after the work of Naur and Floyd
with Hare's Axiomic Basis, where the rules of the games were couched as "inference
rules" , expressed in their own formalism. A main reason for publishing in the 70s the
predicate tranformer semantics was that the latter eliminated the whole concept of
inference rules by subsuming them in the boolean algebra of predicates, which was
needed anyhow. The paper was written under the assumption that this simplification

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

would be noticed without being pointed out; in retrospect 1 think that assumption
was a mistake.

Let me now turn to what might turn out to be the most significant simplification
that is taking place these decades. If it is as significant as 1 estimate, it will need a
name; my provisional name, descriptive but a bit long, is "domain removal" . Let me
illustrate it with a very simple but striking example.

Let us consider the transitive relation Q(("fish"), for ail p, q, r

p Q(q /\ q Q(r => p Q(r,

and the two ways of correcting the erroneous conclusion that p Q(q holds for and
p, r. The erroneous argument is "choose a q su ch that p Q(q and q Q(r both hold;
p Q(r then follows from transitivity". The obvious error is that such a q need not
exist, i.e. we can only demonstrate

(3q ::p Q(q/\ q Q(r) => pQ(r.

The traditional argument goes as follows. Assume the antecedent (3q :: p Q(
q /\ q Q(r); this means that we can choose a value that we shall cali k su ch that
p Q(k /\ k Q(r; and now we can conclude p Q(r on account of the transitivity of Q(.

The alternative argument can be rendered by:
We observe for any p, r

(3q ::pQ(q/\q Q(r) =>PQ(r
= {predicate calculus}
(Vq :: p Q(q /\ q Q(r => p Q(r)
= {Q(is transitive}
true

These two arguments illustrate the difference in vitro, sa to speak. In the tra
ditional argument, identifiers are used to name variables of the appropriate type,
identifier k, however, names a value of that type. In the alternative argument, the
identifiers ail name variables, and, consequently, the possible values of the variables
have disappeared from the picture. By not mentioning the values, their domain has
been removed. In demonstrating an existential quantification by constructing a
witness and conversely, in using an existential quantification by naming a wit
ness, Gentzen's Natural Deduction advocates proofs of the needlessly complicated
structure.

Whether identifiers are names of variables or (unique!) names of values turns out
to be a traditional undarity. "Consider points A, B, C and D in the real Euclidean
plane, etc.": it is now unclear whether coincidence is excluded or not.

Proofs of uniquness traditionally suffer from this complication. It means that for
sorne given P one has to show

P.x /\ P.y => x = yforallx, y.

Authors that are unclear about the status of their identifiers are uncomfortable
about this because, with x and y unique names of values, x # y holds by definition.
They feel obliged to embed the above, packaging it as a reductio ad absurdum:

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

"Let P.x; assume that there is another value y such that P.y. But P.x 1\ P.y
implies x = y, which is a contradiction, hence no such y exists."

Another complication is that value-naming easily induces case analysis. Some
time ago the problem of the finite number of couples circulated. You had to show
that in each couple husband and wife were of the same age if

(i) the oldests of either sex had the same age, and
(ii) if two couples did a wife swap, the minimum ages in the two new combinations

were equal to each other.

The traditional argument is in two steps. It first establishes on account of (i)
and (ii) the existence of a couple of which both husband and wife are of maximum
age. In the second step it establishes that then on account of (ii) in any other couple
husband and wife are of the same age. When formulating this carefully, taking into
account that there need not exist a second couple and that more than one man
and one woman may enjoy the maximum age, 1 could not avoid ail sorts of case
distinctions. The trouble with this argument is of course, that it has to refer to a
specifie couple. Here is, in contrast, the calculation in which no specifie husband,
wife, age or couple is named; the variables x, y are of type "couple". We are given

1. (l y :: m.y) = (T y :: f.y)
2. (lIx, y:: m.x ! f.y = f.x 1 m.y)

and observe for any x

m.x = f.x
= {T 1 calcul us: law of absorption}
m.x 1 (T y :: m.y) = f.x 1 (T y :: f.y)
= {(i)}
m.x 1 (l y :: f.y) = f.x 1 (l y :: m.y)
= {T 1 calcul us: 1 distributes over n
(l y :: m.x 1 f.y) = (T y :: f.x 1 m.y)
= {(ii)}
true

which concludes the proof without any case analysis. (Sorne of the simplification is
due to the fact that the range in (ii) includes x = y, the rest of the simplification is
due to the fact that the calculation names no specifie couple, only variables of type
"couple" .)

The fact that in useful calculations like the above the possible values of the
variables are totally irrelevant and can therefore profitably be ignored has been seen
and explained in 1840 by D.F. Gregory - in "On the Real Nature of Symbolic
Algebra" [Trans. Roy. Soc. Edinburgh 14, (1840), 208-216]:

"The light, then, in which 1 wou Id consider symbolic algebra, is, that it is
the science which treates of the combination of operations defined not by
their nature, that is by what they are or what they do, but by the laws of
combination to which they are subject."

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

10

Gregory knew that the domain of values could be ignored. So did John D. Lipson,
in whose book "Elements of Algebra and Algebraic Computing" 1 found the above
quotation. The amazing thing is that aIl texts about algebra 1 saw, Lipson's book
included, introduce algebras as defined on a (named) set of values! Gregory's insight
seems uniformly ignored. Sad.

Ali this has a direct parallel in programming. In order to establish the correctness
of a program one can try a number of test cases, but for ail other applications of the
program one has to rel y on an argument as to why they are correct. The purpose of
the argument is to reduce the number of test cases needed, and 1 would like you to
appreciate the dramatic change that occurs when the number of test cases needed
is reduced to zero. Suddenly we don't need a machine any more, because we are no
longer interested in computations. That is, we are no longer interested in individual
machine states(because that is what computations are about). Reasoning about
programs then becomes reasoning about subsets of machine states as characterised
by their characteristic predicated, e.g.

{ slX.s }

The next step - known as "lifting" - is to rewrite relations between predicates,
e.g. rewrite

('Vs: SES: X.s == Ys 1\ Z.s)

as

[X == y 1\ 5],

because the most effective way of eliminating machine states from our considerations
is by removal of the last variable that ranges over them. From variables of type
"machine state" - like "s" - we have gone to variables of type "predicate" - like
"X, Y, andZ" -. 1 cannot stress enough the economy of not having to deal with
both types of variables. In other words, besides being ineffective, quality control of
programs by means of testing is conceptually expensive.

The characteristic functions of singletons are called "point predicates" . My great
surprise over the last ten years is the power of what became known as "pointless
logic" , i.e. predicate calculus without the axiom that postulates the existence of point
predicates. The calculus is extremely elegant: it is like purified set theory, for which
traditional sets composed of elements are an over-specific mode!. It is extremely
powerfu!. It admits extension to "pointless relational calcul us" which for me had
many surprises in store. For notions like transitivity and well-foundedness 1 grew
up with definitions in terms of individual elements, bu the use of those elements is
an obfuscation, for the concepts can be beautifully embedded in pointless relational
calculus. Of ail 1 have seen, it is the ultimate of removal of the inessentia!.

Finally, let me add to these pleasant surprises a pleasant observation: the average
calculational proof is very short. 1 can truly do no better than relay to you the
valuable advice my dear mother gave me almost half a century ago: "And, remember,
when you need more than five lines, you are probably on the wrong track." .

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

