
C (.18 f - t{t.:U

Amnon Barak Shai Guday Richard G. Wheeler

The MOSIX Distributed
Operating System

Load Balancing for UNIX

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
UniversitiH Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe 1
W-7500 Karlsruhe, FRG

Authors

Amnon Barak
Shai Guday
Richard G. Wheeler

Juris Hartmanis
Comell University
Department of Computer Science
4130 Upson Hall
lthaca, NY 14853, USA

Institute of Computer Science, The Hebrew University of Jerusalem
91904 Jerusalem, Israel

CR Subject Classification (1991): 0.4, C.2.4

ISBN 3-540-56663-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56663-5 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
ofthe material is concemed, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its CUITent version, and permission for use must always be obtained from
Springer-Verlag. Violations are hable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by authors/editors
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Dedicaled 10 our fami/ies.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

This book describes the design and internaIs of the MOSIX distributed operating
system. MOSIX, an acronym for Multicomputer Operating System for UNIX,
integrates a duster of loosely connected computers into a virtual single-machine
UNIX environment. The main property of MOSIX is the high degree of inte
gration among the computers, which may indu de personal workstations, shared
memory and non-shared memory multiprocessors, connected by fast communica
tion links. This integration indudes network transparency, cooperation between
the computers to provide services across machine boundaries, support of dy
namic configuration, and system-initiated load balancing by pro cess migration.
Another property of MOSIX is the ability to scale up the system configuration
to encompass a large number of computers. This is accomplished by using prob
abilistic algorithms that allow each computer to maintain only partial knowledge
about the state of the global system, regardless of the number of computers.

The development of MOSIX was begun in 1981 for a dus ter of PDP-ll
computers. It was based on UNIX Version 7. Since then, four additional versions
of MOSIX have been developed, each version based on the most recent version
of UNIX that was available at the time. The latest version is operation al on a
duster of workstations, where each workstation is itself a multiprocessor.

We describe MOSIX as it is, rather than as it was meant to be, or as it
would be implemented today. The text summarizes sorne relevant parts of UNIX
that provide a basis for understanding MOSIX. Readers interested in detailed
descriptions of UNIX should refer to any of the excellent texts referred to in
this book. The material presented is intended primarily for readers who are
interested in distributed and multiprocessor systems. The reader is assumed
to have sorne knowledge in programming and operating systems, preferably
UNIX. Readers without this background will still benefit from the techniques
and algori thms discussed.

The book consists of eleven chapters. Chapter 1 gives a brief introduction
to MOSIX, placing it in the context of other multicomputer systems. Chap
ter 2 presents an overview of MOSIX, its characteristics, kernel architecture,
and developmental stages. Chapter 3 describes the design of the traditional,
non-distributed UNIX file system, followed by Chapter 4, which describes sev
eral distributed UNIX file systems and the MOSIX file system in particular.
Chapter 5 describes the non-distributed UNIX process structure and the kernel

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII PREFACE

mechanisms that interact with the pro cesses. Chapter 6 presents the MOSIX
process, the internai mechanisms that allow pro cess migration in MOSIX, and
the details of the distributed interprocess communication mechanisms. The un
derlying links between the host-specifie part of the kernel and the user view of
the kernel are presented in Chapter 7.

Chapter 8 describes the load balancing mechanism built into the MOSIX
kernel. Scaling considerations, including examples of probabilistic algorithms
that are used in MOSIX, are presented in Chapter 9. Chapter 10 presents
the performance of the main communication me chanis ms of the MOSIX kernel.
Chapter Il discusses distributed applications. lt presents a brief description of a
language extension for writing distributed programs and gives the performance
results of several examples. It concludes with a description of a monitoring
facility for distributed applications that is supported by extensions to the MOSIX
kernel.

The development of MOSIX has been a cooperative effort of many individ
uals, but some cali for particular mention here. First, we must acknowledge
the significant contributions of Amnon Shiloh to the design and implementation
of ail the MOSIX versions, and for reviewing drafts of the manuscript. Ami
Litman made valuable contributions to the design and development of the
first version of MOSIX. Special thanks to Danny Braniss for his help and to
A vi Bare! for the implementation of NSMOS. Thanks are also due to Robert
Hofner, Roy Laor, Jonathan Masel, On G. Paradise, Gil Shwed, Yuval Yarom
and ail of the other participants on the MOSIX team for their contributions.
We would like to thank National Semiconductor Corporation (Israel) for their
support and equiprnent contributions, and Jennifer Steiner for editing the
manuscript.

The research that led to the development of MOSIX was supported in part
by the U .S. Air Force, Office of Scientific Research, sponsored by the HQ Rome
Air Development Center and the European Office of Aerospace Research and
Development, the Israel Ministry of Science and Technology, the Israel National
Council for Higher Education, the Israel Ministry of Defense, National Semicon
ductor Corporation, and the Israel Academy of Science and Humanities.

The following terms are trademarks: Ethernet (Xerox Corporation), M68000
(Motorola Semiconductor Corporation); NFS (Sun Microsystems, Inc.); PDP-ll,
Q-Bus, VAX, and VMS (Digital Equipment Corporation); ProNET, ProNET-10,
ProNET-80 (Proteon, Inc.); VME532, VR32, NS32000, NS32332, and NS32532
(National Semicondudor Corporation); and UNIX (UNIX System Laboratories).

A. Barak, S. Guday, R.G. Wheeler
Jerusalem, 1993

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

1 Introduction

2 Overview of MOSIX
2.1 The Characteristics of MOSIX
2.2 The Architecture of the MOSIX Kernel
2.3 The History of the MO SIX Project
2.4 Summary

3 The UNIX File System
3.1 The Namespace
3.2 The Traditional File System.
3.3 UNIX Buffer Caching
3.4 UNIX File System CaUs
3.5 Summary

4 Distributed UNIX File Systems
4.1 Extending the Traditional Namespace
4.2 Classifying Distributed File Systems
4.3 MOSIX File System Implementation
4.4 MOSIX File System CaUs
4.5 Summary

5 The UNIX Process
5.1 Organization of the System Memory
5.2 Organization of the Pro cess
5.3 Pro cess Context
5.4 Process States.
5.5 Scheduling Processes
5.6 Pro cess System CaUs.
5.7 Summary

1

5
5
9

12
17

19
20
21
26
32
36

37

37
42
43
49
76

77

78
81
84
87
88
91
98

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

6 The MOSIX Process
6.1 Remote Paging
6.2 MOSIX Pro cess Structure ..
6.3 MOSIX Pro cess System CaUs
6.4 Process Migration
6.5 Interprocess Communication.
6.6 Summary

7 The MOSIX Linker
7.1 The Interface Layer.
7.2 The Transport Layer
7.3 The Network Layer.
7.4 Summary ..

8 Load Balancing
8.1 Foundations of Load Balancing
8.2 Static Load Balancing
8.3 Dynamic Load Balancing .. .
8.4 Pre-emptive Load Balancing ..
8.5 The MO SIX Load Balancing Policy .
8.6 The Load Calculation Algorithms ..
8.7 The Information Dissemination Algorithms
8.8 The Migration Consideration Algorithms .
8.9 Summary

9 Scaling Considerations
9.1 Princip les of Scaling
9.2 Scaling Considerations in MO SIX .
9.3 Probabilistic Algorithms
9.4 Summary

10 System Performance
10.1 Scall Performance.
10.2 Funnel & Pro cess Migration Performance
10.3 Load Balancing Performance .
10.4 DAEMON Toolkit Performance
10.5 Summary

11 Distributed Applications
11.1 Writing Distributed Applications
11.2 Examples of Distributed Applications
11. 3 Monitoring Distributed Applications
11.4 Summary

Bibliography

Index

CONTENTS

99
99

100
103
109
113
114

115
117
124
132
134

135
136
139
140
142
143
147
152
160
167

169
169
172
175
178

179
180
182
183
185
187

189
189
196
207
210

213

217

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Chapter 1

Introduction

Configurations of loosely-coupled multicomputers can be classified as either net
work systems or distributed systems. In a network system, each computer
runs its own operating system. Each of these operating systems is augmented
by communication facilities that permit interaction with the other systems in
the network. In a network system, the user's environment is confined to one
(local) computer, with the added ability to access objects that reside on other
(remote) computers. This last ability, however, is quite limited, since ail network
commands must specify the location of each remote object. For example, users
access remote objects (e.g., reading a file that resides on another computer) by
explicitly using the network name of the computer that has the file. As a result,
network operating systems have a limited degree of resource sharing and they are
therefore commonly used to connect geographically dispersed and heterogeneous
systems.

Distributed systems provide a higher degree of transparency and resource
sharing than network systems. Distributed systems can be divided into two
categories: user-level distributed systems and distributed operating systems. In
a user-Ievel distributed system, the support for distribution is provided in
a layer of software on top of the (non-distributed) operating system. User-level
distributed systems are intended for configurations of machines running different
operating systems with the distributed software layer on top. An example of
this type of distributed system is the Open Software Foundation's Distributed
Computing Environment [17]. Distributed operating systems, on the other
hand, implement support for distribution in the kernel, and are intended for
configurations of machines running the same operating system. The MOSIX
system described in this book is an example of a distributed operating system.

In a distributed operating system, one operating system is used by ail the
computers in the entire network, each computer running its own copy. Distribut
ed operating systems are most commonly used in networks in which ail of the
computers are from the same manufacturer. Distributed operating systems can
also be used in networks of comput ers from different manufacturers if all of the
operating systems have the same functionality (i.e., the same user interface).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2 CHAPTER 1. INTRODUCTION

The main goal of distributed operating systems is to provide resource sharing
over a transparent network. In these systems, the user is provided with a single
virtual machine, with transparent network communication, distribution of the
workload, and automatic resource allocation.

The architecture of many distributed operating systems is based on the
client/server model. Among these distributed operating systems, it is possi
ble to distinguish between asymmetrical client/server systems and symmetrical
client/server systems. In an asymmetrical client/server system, specif
ic machines are assigned service functions (e.g., file servers or name servers),
while other machines are used to execute user tasks. Examples of asymmetrical
client/server distributed operating systems include the V-System [14] and Amoe
ba [29].

The main characteristic of a symmetrical client/server system is the
decentralization of control; each machine is both a server and a client for ail of
the services. In symmetrical systems, each machine can function as an indepen
dent computer, with complete hardware and software facilities, while the entire
network behaves like a single computer. The advantages of symmetrical systems
over asymmetrical systems include improved cost/performance ratio, better re
source utilization, increased availability and reliability, and the possibility to
scale up the configuration to large numbers of computers.

The MOSIX system is a symmetrical distributed operating system that in
tegrates a cluster of loosely connected, independent computers into a virtual
single-machine UNIX environment. The hardware configuration for MOSIX
consists of a clustyr of computers, each with its own local memory, that are
loosely connected by a local area communication network (LAN). In most con
figurations that have been developed to run MOSIX, each computer (node) is
an independent uniprocessor UNIX system, with complete hardware and soft
ware facilities. In the latest configuration running MOSIX, each node is itself a
multiprocessor. Each su ch node may contain up to eight independent processors
that share 1/0 devices and communication controllers over a common bus. In
this book, the terms "no de" machine, and "workstation" are used to refer to
an independent computer. The term "processor" refers to a single Processing
Element (PE) within a multiprocessor workstation.

The main characteristics of MOSIX are:

N etwork transparency - the network is completely invisible to the naive user.

Autonomy - each no de is capable of operating as an independent system.

Cooperation - the nodes work together to provide services across the network.

Decentralized control - each processor makes ail of its control decisions in
dependently.

Dynamic pro cess migration - pro cesses can be migrated among homoge
neous processors.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

CHAPTER 1. INTRODUCTION 3

Load balancing - pro cess migration allows near-optimal assignment of pro
cesses to processors.

Dynamic configuration - nodes may be added and removed with minimal
si de effects.

Increased availability - files and pro cesses can be replicated on different n
odes.

Performance - local and remote operations are highly efficient.

Reliability - a limited degree of reliability is provided through the isolation of
faults.

Replicated kernel and resources - the system is replicated in each node.

Scalability - the configuration may be scaled up to a large number of nodes.

Compatibility - MOSIX is compatible with AT&T UNIX System V.

More details about these characteristics are given in Chapter 2.

The most noticeable properties for executing distributed applications on
MOSIX are its network transparency, the symmetry and fiexibility of its configu
ration, and its dynamic process migration. The combined effect of these proper
ties is that application programs are completely independent of the current state
of the system configuration. Users do not need to change their applications due
to node or communication links failures, nor be concerned about the load of the
various processors. The system automatically attempts to optimize aIl resource
allocation, including migrating I/O-bound jobs to the sites that master the de
vices they use and migrating heavily communicating jobs to nearby processors
so that they benefit from fast services.

The MOSIX kernel is obtained by restructuring the UNIX kernel into
machine-dependent and machine-independent parts (modules). The kernel is
built as a structure of loosely-coupled modules, where the module interfaces are
minimal and weIl defined [6]. The machine-dependent module provides site
dependent services, such as access to local disks. The machine-independent
module provides network-wide services to the application level, such as trans
parent interprocessor communication. Each MOSIX kernel isolat es the users'
pro cesses from the specific machines on which they execute, while at the same
time providing these processes with the standard UNIX interface [2, 3]. This
means that pro cesses execute in a site-independent mode, which allows aIl sys
tem calls to be executed uniformly, regardless of the current location of the
requesting process and the site that has the requested object.

The MOSIX kernel is designed to hide the internai network from the us
er and the application programmer [6]. In order to provide efficient network
wide services, MOSIX kernels interact with each other at the level of kernel
remote procedure calls. The MO SIX kernel can be implemented on any reason
able hardware, but the participating processors must be homogeneous, to allow

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4 CHAPTER 1. INTRODUCTION

pro cess-migration. This does not exdude MOSIX from being part of wider, het
erogeneous networks, where process migration occurs among disjoined sets of
homogeneous processors, improving resource sharing and performance.

Another major objective of the MOSIX kernel architecture is high perfor
mance. An important consideration in the design of this kernel was the avoid
an ce of the high overhead caused by information hiding. Another architectural
consideration was to enable comprehensive debugging of the system on a single
machine. This means that, if necessary, any of the known debugging techniques
can be applied to the MOSIX kernel. The details of the MOSIX kernel architec
ture are given in Chapter 2.

MOSIX belongs to a dass of modular operating systems, designed as a set
of system servers on top of a microkernel that provides low-level services (e.g.,
memory management and interprocess communication). In this type of operat
ing system, the microkernel forms a standard base that can support higher level
system-specific interfaces. The specific interface that is supported by MOSIX is
UNIX. Examples of other microkernel-based operating systems indu de Amoeba
[29], BirliX [20], Chorus [21], and Mach [46].

There are currently only a few distributed operating systems that support
pro cess migration. This is due to the difficulties of managing the migration itself,
the need to change the operating system kernel architecture to support migra
tion, the need to change the environment of the pro cess (e.g., its dependence
on local kernel tables), and the need to provide access to these resources from
other sites. Examples of other operating systems that support process migration
inc\ude Rhodos [49] and Sprite [15, 30]. For further reading about the design of
distributed operating systems see [18]. A comprehensive survey of distributed
systems is given in [12].

The motivation behind the MOSIX project is to research and develop operat
ing systems for message passing-based (as opposed to shared memory) distribut
ed systems. This research began in 1981, with the development of the original
version of MOSIX for a duster of PDP-ll computers. That version was compat
ible with UNIX Version 7 [47]. The second, M68000-based system was compat
ible with UNIX Version 7 with enhancements from BSD 4.1. Three additional
versions have been developed for National Semiconductor's VR32, the VAX fam
ily, and National Semiconductor's VME532 multiprocessor architecture. These
versions are compatible with UNIX System V Release 2 [2]. The development
strategy for ail these versions was to use as many ready-made hardware and
software components as possible. This strategy enabled the development team
to concentrate on su ch issues as the kernel architecture, probabilistic algorithms,
performance, and debugging aids without spending too much effort on hardware
design or the supporting software outside the operating system kernel.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

