BIBLIOTHEQUE DU CERIST

S A
G{J "’" ‘bifg

Anne Mulkers

Live Data Structures
in Logic Programs

Derivation by Means of Abstract Interpretation

Springer-Verlag
Berlin Heidetherg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

sl

first layer, consisting of the lype and mode analysls, basically suppiies ih=z jogica:
terms to which variables can be beund. The two subsequent layers of the analysis
heavily rely on these descriptions of term values. The sharing anclysis derives
hew the repregentation of logical terms as structures in memory can be shared,
and the livenzss enalysis uses the sharing information to determine when a term
structure in memory can be live.

Acknowiedgments

This beok is based on my Ph.1). dissertation ‘53] conducied at the Department
of Compute: Science of the K.U.Leuven, Belginm. The research presented has
been carried out 28 part of the RFO/ALI/02 project of the Diensien voor de
programmatie ven ket wetznschopsbeleid, which started in November 1987 and
was ajmed at the study of implementation aspects of logic programming: ‘Logic
as a basis for artificial intelligence: contrel and cfficiency of deductive inferencing
aud parallelism’.

I am indebted to Professor Maurice Bruynooghe, my supervisor, for giving
rue the opportunily to werk on the project and intreducing me to the domain
of absiract interpretation, for sharing his experience in logic programming, his
invaluable insights and guidance. 1 wish to thank Will W_insbordugh for many
helpful discussions, for his advice on the design of the abetract domain and
safety proefs and his genercus support; Gerda Janssens for her encouragement
and suppert, and for aliowing the use of the prototype for type analysis as the
starting point for implementing the liveness analysis; Professors Yves Willemns
and Bart Demoen, for managing the AFQ/A1/02 project and providing me with
optimal working facilities; Professor Marc Gobin, my second supervisor, and
Professore Baudouin Le Charlier and Danny De Schreye, for their interest and
helpful comments, and for serving on my Ph.1. thesis committee. 1 also want to
thank my family, {riends and colieagues for their support and companionghip.

Leuven, March 1993 Anne Mulkers

BIBLIOTHEQUE DU CERIST

Contents

1 Introduction 1
2 Abstract Interpretation 5
2.1 Basic Concepts . . . - . . v . 0 e e e e e 5
2.2 Abstract Interpretation Framework 7
2.2.1 Overview of the Framework 8
2.2.2 Concrete and Abstract Domains of Substitutions 10
2.2.3 Primitive Operations 11
2.2.4 Abstract Interpretation Procedure 14
2.3 Example: Integrated Type and Mode Inference 16
2.3.1 Rigid and Integrated Type Graphs, 16
2.3.2 Type-graph Environments 23
2.3.3 Primitive Operations for Type-graph Environmenls, 25
3 Related Work 31
3.1 Aliasing and Peointer Analysis 31
3.2 Reference Counting and Liveness Analysis. 38
3.3 Code Optimization.« v v i v it e e e 41
4 Sharing Analysis 47
4.1 Sharing Envirenments 47
4,1.1 Concrete Representation of Shared Structure 48
4.1.2 Abstract Representation of Shared Structure 55
4.1.3 The Concrete and Abstract Domains. 62
4.1.4 Order Relation and Upperbound Operation 66
4.2 Primitive Operations 68
4.2.1 Unification e e e 68
42010 Xy = X5 oo 69
4212 X;= f(Xay o0 Xiy) e 85
4.2.2 Procedure Entry L L 93
4.2.3 Procedure Exit L L Lo, 28
4.3 Bvalvation 110
4.3.1 Example: insert/30, 111
4.3.2 Relevance of Sharing Edges, 114

BIBLIOTHEQUE DU CERIST

Vil CONTENTS
4.3.3 Imprecisich in the Sharing Analysis 7
4.3.4 Bfficency of the Sharing Analysis 123

5 Liveness Analysis 127
5.3 TLiveness Environments 127
5.1.1 Concrete Representation of Liveness Information 128
5.1.2 Abstract Representation of Liveness Information 133
5.1.3 'The Concrete and Abstract Domains. 141
5.1.4 Order Relation and Upperbound Operation 145
5.2 Primitive Operations 147
52.1 Unification o 147
BRAL Xi= Xy oo 147
212 X, = f(,Y,'l,...,X,‘J) . 51
5.2.2 Procedure Entryo oL 154
52.3 Procedure Exito 163
5.3 Evaluation 165
5,3.1 Example; gsort/3 . . ., .. . o e 165
5.3.2 Precision of the Liveness Analysis .,, .. 168
5.3.3 The Practical Usefulness of Liverese Information, .. i71

6 Conclusion 179

Appendix: Detailed Examples 183
Al ListofTypes L 184
A2 append /2 . .. L e 185
A3 mrev/2. Lo 188
A4 buildtree/2 and insert/3 oo oL Lo Ll 183
A5 permutation/2and select/3 L. 196
AB SpHE/3 . L L L. 199
A7 gsert/2and partitionfd oL 202
AB sameleaves/Zand profilef2 205
A9 sift/2andremove/3 L.l 209

Bibliography 213

BIBLIOTHEQUE DU CERIST

Chapter 1

Introduction

In conventional languages, such as C or Pascal, the proegrammer explicitly con-
trols the utilization of memory by means of declarations and destructive assign-
ments. For example, when reversing a linear list L, the list cells of the original
list can be reused to construct the reversed list in the case that the original list
is no longer needed for further computations. It is up to the programmer to
decide whether he needs to preserve the old list intact and construct a reversed
list which has only the list elements in common with the list L (e.g. Rev L1 in
Figure 1.1), rather than reuse the list-constructor cells of L as well (e.g, Rev L2).

JE R —

Figure 1.1: Reversing a linear list.

Applicative languages, in their pure form, do not have destructive assign-
ments. Alsc type declarations are often absent. The declarative nature of these
languages is often cited as an important advantage, which allows programmers
to focus on the logic of the problems they have to solve, rather than on more
technical aspects such as search control and efficient memory usage. Unfortu-
nately, the performance of current implementations of applicative languages does
not compare well with procedural languages yet. To achieve better utilization of
memory, global low analysis techniques are being developed that are concerned
with determining the type and liveness of data structures that are dynamically

BIBLIOTHEQUE DU CERIST

2 CHAPTER 1. INTRODUCTION

2ppend{nil, ¥, ¥).
zppend([£ | U], Y,LE W]} :~ append(.J,.Y,).

nrev{nil, nil).
nrev{[.E | W], ¥) :- arev{U, RBU), appsnd(RYU, [E], _¥).

Programa 1.1: nrev/2 {Naive reverse)

created during program execution. Knowledge about the lifetime of dala siruc-
tures guides the compiler in the generation of target code to reuse beap storage
that is no longer accessible from program variables, i.e. to introduce destiructive
aperations and avoid the copying of daa structures that have no subseguent
references.

In this book, we address the problem of liveness analysis for the class of pure
Haorn clause logic programs. The language considered has a countable set of
variables {Vars}, and countable sets of function end predicaie symbels, A iferm
is a variable, a constant, or a compound term f(#1,...,t;) where f is a p-ary
funciion symbol and the #; are terms. An siem has the form p(iy,. .., 1) where
7 i8 a m-ary predicete symbol and the i; are terms. A bodyis a (possibly empty)
finite conjunction of atomns, weitten &1,..., 8. A ciouse consists of an atom (its
head) and & body and is written & - B. & progrem consists of a finite number
of clauses, A gquery or goalconsiste of & body only, written 7- B, We assume that
the reader is acquainted with the basic terminology of logiz programming and the
=xecution mechanism of Prolog which is based on unificaticn and backtracking.
Features such as esseri and reiraci are not considered, i.e. we assume that any
source code for the predicates that can be exccuted at run lime is available to
the compiler,

The handling of data steuctures is very flexible in Prolog. Data manipulation
{record allocation as well as record access and parameter passing) is achieved
entirely via unification. An ¢ntimizing compiler ¢an (ransiate general unification
to more conventional memory manipulation operations if information is available
abouf the mede of use of the predicates. When at run time a compound term
becomnes accessible for the first time, we can say the term is being construcied.
When a pattern is matched zpainst a compound term that is already accessible,
we canl sav $he components of the term are being selected. Integrated type and
mode analysis in many cases allows to predict at compile time whether 2 unifi-
cation s a selection rabher than a construction operalion. Sclection siatements
in particular are good candidates to check for the possible creation of garbage
cells, 1.e. cells that have no further references,

Consider the Prolog Program 1.1 for naive list reversal. We use the conven-
ticn that variable names start witk an underscore, If we assume thas gqueries to
nrev/2 ore restricted to have as first argument a ligt that is no Jonger referenced
after the call, and as second argument a free variable to return the cuiput, then
it is possible to generate target cede for this program that allocates no new

BIBLIOTHEQUE DU CERIST

list-constructor cells, but rather reuses the list cells of the first argument. In-
deed, under the assumption, the integrated type and mode analysis will infer
that each call to the recursive clause of nrev/2 has as its first argument & list,
and as second argument a free variable. The unification of the call with the
clause head selects the head and tail of the first argument list. The principal
list-constructor cell of this list on the contrary has no subsequent references in
the clause following the unification of the call with the clause head. This means
that the compiler can recognize the principal list cell as garbage and generate
target code that reuses it. For instance, consider the call to append/3 made by
the same clause. A single element list [_E] needs to be constructed. Instead of
allocating a new cell, the compiler can reuse the garbage cell that was detected.

Note that the problem is more complex if there may be multiple references to
the cells of the input list. Most implementations of unification unify a variable
and a compound structure by making the variable a reference to the structure —
not a copy of the structure. The representations in memory of the logical terms
to which variables can be bound typically share some of their structure: while
the denoted terms make up a forest of trees, their representations form a more
general directed acyclic graph. This is why in general the sharing analysis plays
a crucial part in the liveness analysis.

In the above example, we can also infer that, the first two arguments in
each call to append/3 will be lisis and that the third argument will be a free
variable. Again, it is possible to detect that, after invocation of the recursive
clause of append/3, the principal cel! of the first argument is garbage and can be
reused to construel the value of the third (output) argument. Thus, all list con-
structions in this example can reuse garbage list cells, eliminating all allocation
operations. Since the reused cells would otherwise be garbage, we have elim-
inated the garbage-collection overhead assoclated with the nrev/2 procedure.
Moreover, a compller can detect that the element field of each reused list cell
already coutains the value desired in the cells new use. The operations filling in
these car fields can be eliminated from the generated target code. The resulting
code closely resembles how a programmer using an imperative language would
solve the problem of reversing a linear list of linked records.

In the present work, we propose an abstract domain and operations to ana-
lyze the liveness of data structures within a framework of abstract interpretation.
Chapter 2 presents the principles of abstract interpretation for logic programs,
and the application of type and mode analysis on which the domain for liveness
analysis is based. In Chapter 3, we discuss work related to the application of
compile-time garbage collection in the context of both logic and functional pro-
gramming languages, In Chapter 4, we formalize an abstract interpretation for
analyzing how the terms to which program variables are bound at run time, can
share substructure in storage. We also augmment the usunal concrete semantics
with infermation about sharing of term structures and discuss whether any im-
plementation commitments are implied, As argued above, the sharing analysis
constitutes a prerequisite for the liveness analysis. The latter i presented in
Chapter 5. In both Chapter 4 and 5, the emphasis is mainly on the precision

BIBLIOTHEQUE DU CERIST

4 CHAPTER 1. INTRODUCTION

and on the soundness of the results that can be cobtained, rather than on the
efficiency of the analysis. Due {o imprecision that is inherent o the global anal-
ysis algorithms, not all garbage cells can be detected in arbitrary cases. We will
extensively dizcuss the sirength of the analyses that are proposed.

The study of code optimization schemes that explicitly reclaiin or reuse
garbage celis is beyond the scope of the present book. In [52], Marién et al.
discussed some preliminzary experimenie on code optimization based on liveness
information. Only opportunities for local reuse of storage cells are considered,
i:e. reuse within the same clause where a cell is turned into garbage. Non-local
rense would require extra run-time data areas to keep track of the free space.
Although possibie in principle, non-local reuse therefore will be less beneficial for
code optimization, The reuse of storage also introduces some new requirements
on the trailing mechanism of standard Proleg implementations that will affzct
she performance. We will briefly discuss these issues in Section 3.3 and 5.3.3.

