
Anne Mulkers

Live Data Structures
in Logic Programs

Derivation by Means of Abstract Interpretation

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

first layer, conslsting of the type and mode analysis 1 basically supplies -~he iogical
terms ta which variables can be bound. The two subsequent layers of the analysis
heavily rely on these descriptions of term values. The skaTing andysis derives
haVi the representation of logical terms as structures in memory can he shared,
and the livencss analysis uses the sharing information to determine wh en a term
structure in memory can be live.

Acknowledgments

This book iB based on my Ph.D. dissertation [59] conducted at the Department
of Computer Science of the K. U .Leu'len, Belgium. The research presented has
been carried out as part of the RFO/ AI/02 project of the Diensien VOOT de
programmatie van net weienscnapsbeleid, which started in November 1987 and
was aimed at the study of implementation aspeds of logie programming: 'Logic
as a basis for artificial intelligence: control and efficiency of dedudive inferencing
and par allelism' .

l am indebted to Professa! Maurice Bruynooghe, my supervisor, for giving
me the opportunity to work on the project and introducing me to the domain
ofabstract interpretation, for sharing his experience in logic programming, his
invaluable insights and guidance. 1 wish to thank Will Winsborough for many
helpful discussions, for his advice on the design of the abstract domain and
safety proofs and his generous support; Gerda Janssens for her encouragement
and support, and for allowing the use of the prototype for type ana.lysis as the
starting point for implementing the liveness analysis; Professors Yves Willems
and Bart Demoen, for managing the RFO / AI/02 project and pro'liding me with
optimal working facilities; Professor Marc Gabin, mysecond supervisor, and
Professors Baudouin Le Charlier and Danny De Schreye, for the;r interest and
he!pful comment", and for serving on my Ph.D. the.is committee. l also want to
thank my family, friends and colleagues for the!r support and companion~hip.

Leuven, March 1993 Anne Mulkers B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

1 Introduction

2 Abstract Interpretation
2.1 Basic Concepts
2.2 Abstract Interpretation Framework
2.2.1 Overview of the Framework
2.2.2 Con crete and Abstract Domains of Substitutions
2.2.3 Primitive Operations
2.2.4 Abstract Interpretation Procedure
2.3 Example: Integrated Type and Mode Inference
2.3.1 Rigid and Integrated Type Graphs
2.3.2 Type-graph Environments
2.3.3 Primitive Operations for Type-graph Environments

3 Related Work
3.1 Aliasing and Pointer Analysis
3.2 Reference Counting and Liveness Analysis .
3.3 Code Optimization

4 Sharing Analysis
4.1 Sharing Environments
4.1.1 Con crete Representation of Shared Structure
4.1.2 Abstract Representation of Shared Structure
4.1.3 The Concrete and Abstract Domains
4.1.4 Order Relation and Upperbound Operation
4.2 Primitive Operations
4.2.1 Unification
4.2.1.1
4.2.1.2
4.2.2
4.2.3
4.3
4.3.1
4.3.2

Xi = X j

Xi = f(Xi" ... ,Xi,)
Procedure Entry
Proced ure Exit. . .
Evaluation
Example: insert/3
Relevance of Sharing Edges

1

5
5
7
8

10
11
14
16
16
23
25

31
31
38
41

47
47
48
55
62
66
68
68
69
85
93
98

110
111
114

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

4.3.3
4.3.4

Imprecision in the Sharing Analysis
EfI.îciency of the Sharing Analysis

5 LÎveness Analysis
5.1 Liveness Environments
5.1.1 Concrete Representation of Liveness Information
5.1.2 Abstract Representation of Liveness Information
5.1.3 The Concrete and Abstract Domains
5.1.4 Order Relation and Upperbound Operation
5.2 Primitive Operations
5.2.1 Unification
5.2.1.1 Xi = X j .•..•..

5.2.1.2 Xi = j(X""", Xi,)
5.2.2 Procedure Entry
5.2.3 Procedure Exit ..
5.3
5.3.1
5.3.2
5.3.3

Evaluation
Example: qsortj3
Precision of the Livenèss Analysis
The Practical Usefulness of Liveness Information.

6 Conclusion

Appendix: Detailed Examples
A.1 List of Types
A.2 append/3
A.3 nrev /2
A.4 buildtree/2 and insert/3
A.5 permutation/2 and select/3
A.6 split/3
A.7 qsort/2 and partition/4 ..
A.8 sameleaves/2 and profile/2
A.9 sift/2 and remove/3

Bibliography

CONTENTS

117
123

127
127
128
133
141
145
147
147
147
153
154
163
165
165
168
171

179

183
184
185
188
193
196
199
202
205
209

213

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Chapter 1

Introduction

In conventional languages, such as C or Pascal, the programmer explicitly con­
trois the utilization of memory by means of declarations and destructive assign­
ments. For example, wh en reversing a linear list L, the list cells of the original
li st can be reused to construct the reversed list in the case that the originallist
is no longer needed for further computations. It is up to the programmer to
de ci de whether he needs to preserve the old list intact and construct a reversed
list which has only the list e/ements in common with the list L (e.g. Rev.Li in
Figure 1.1), rather than reuse the list-constructor cells ofL as weil (e.g. Rev.L2).

~··················1 ,···························1

L--C+I~4I=~~~
'

Figure 1.1: Reversing a linear list.

.......

Applicative languages, in their pure form, do not have destructive assign­
ments. Aiso type declarations are often absent. The declarative nature of these
languages is often cited as an important advantage, which allows programmers
to focus on the logic of the problems they have to solve, rather than on more
technical aspects such as search control and efficient memory usage. Unfortu­
nately, the performance of current implementations of applicative languages do es
not compare weil with procedurallanguages yet. To achieve better utilization of
memory, global flow analysis techniques are being developed that are concerned
with determining the type and liveness of data structures that are dynamically

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

append(nil, 5,5) .
append (LE 1 -U], -1 , [-.E

nrev(nil, nil).

CHAPTER 1. INTRODUCTION

nrev(L.E I-UJ, _y) :- nrevLu, ..RU), append(JW, (-.EJ, 3).

Program 1.1: nrev /2 (Naive reverse)

created durîng program execution. Knowledge about the Iifetime of data struc­
tures guides the compiler in the generation of target code to reuse heap storage
that is no longer accessible from program variables, i.e. ta introduce destructive
operations and avoid the copying of data structures that have no subsequent
references.

In this book, we address the problem of liveness analysis for the class of pure
Horn clause logic programs. The languageconsidered has a countable set of
variables (Vars), and countable sets oÏ function and predicate symbols. A term
ls a variable, a constant, or a compound term f(t 1 , ••• , tr.) where f is a l .. ary
function symbol and thet; are terms. An atom has the form p(t1 , .•. , tm} where
p is a m-ary predicate symbol and the ti are terms. A body is a (possibly ernpty)
finite conjunction of atoms, written Al,"" An. A clause consista of an atom (its
he ad) and a body and Is written A : - B. A program consists of a fini te number
of clauses. A query or goal consists of a body only, written 1- R. We assume that
the reader is acquainted with the basic terminology of logic programmingand the
execution meehanism of Prolog whieh is based on unification and backtracking.
Features sucb as asseri and T'cimet are not considered, Le. wc assume that any
source code for the predicates that can be executed at run time ia available to
the compiler.

The handling of data structures is very flexible in Prolog. Data manipulation
(record allocation as weIl as record access and parameter passing) ia achieved
entirely via unification. An optitnizing compiler can translate general unification
to more conventional memory manipulation operations if information is available
about the mode of use of the predicates. When at Iun time a compound term
becomes accessible for the first time, we can say the term is being construded.
When a pattern is matched against a compound term that is already accessible,
we can say the components of the term are being seleded. Integrated type and
mode analysis in many cases alloVis to predict at compile Ume whether a unifi­
cation isa selection rather than a construction operation. Selection statements
in particular are good candidates to check for the possible creation of garbage
ce Ils, i.e. cens that have nO further refereneeg.

Consider t.he Prolog Program 1.1 for naïve Est reversaI. Wc use theconven­
tion that variable names .tart with an underscore. If we assume that queries to
nrev /2 a.re restricted to have asfirst argument a list that is no longer referenced
after the caB, and as second argument a free variable to retum theoutput, th en
itis possible ta generate ta.rget code for this program that allocates no new

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

list-constructor cells, but rather reuses the list ce Ils of the first argument. In­
deed, under the assumption, the integrated type and mode analysis will infer
that each cali to the recursive clause of nrev /2 has as its first argument a list,
and as second argument a free variable. The unification of the cali with the
clause head selects the head and tail of the first argument list. The principal
list-constructor cell of this li st on the contrary has no subsequent references in
the clause following the unification of the cali with the clause head. This me ans
that the compiler can recognize the principal list cell as garbage and generate
target code that reuses it. For instance, consider the cali to append/3 made by
the same clause. A single element list LE] needs to be constructed. Instead of
allocating a new cell, the compiler can reuse the garbage cell that was detected.

Note that the problem is more complex if there may be multiple references to
the cells of the input list. Most implementations of unification unify a variable
and a compound structure by making the variable a reference to the structure -
not a copy of the structure. The representations in memory of the logical terms
to which variables can be bound typically share sorne of their structure: while
the denoted terms make up a forest of trees, their representations form a more
general directed acyclic graph. This is why in general the sharing analysis plays
a crucial part in the liveness analysis.

In the above example, we can also infer that, the first two arguments in
each cali to append/3 will be lists and that the third argument will be a free
variable. Again, it is possible to detect that, after invocation of the recursive
clause of append/3, the principal cell of the first argument is garbage and can be
reused to construct the value of the third (output) argument. Thus, alliist con­
structions in this example can reuse garbage list cells, eliminating ail allocation
operations. Since the reused cells would otherwise be garbage, we have elim­
inated the garbage-collection overhead associated with the nrev /2 procedure.
Moreover, a compiler can detect that the element field of each reused list cell
already con tains the value desired in the cells new use. The operations filling in
these car fields can be eliminated from the generated target code. The resulting
code closely resembles how a programmer using an imperative language would
solve the problem of reversing a linear list of linked records.

In the present work, we propose an abstract domain and operations to ana­
Iyze the liveness of data structures within a framework of abstract interpretation.
Chapter 2 presents the principles of abstract interpretation for logic programs,
and the application of type and mode analysis on which the domain for liveness
analysis is based. In Chapter 3, we discuss work related to the application of
compile-time garbage collection in the context of both logic and functional pro­
gramming languages. In Chapter 4, we formalize an abstract interpretation for
analyzing how the terms to which program variables are bound at run time, can
share substructure in storage. We also augment the usual con crete semantics
with information about sharing of term structures and discuss whether any im­
plementation commitments are implied. As argued above, the sharing analysis
constitutes a prerequisite for the liveness analysis. The latter is presented in
Chapter 5. In both Chapter 4 and 5, the emphasis is mainly on the precision

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4 CHAPTER 1. INTRODUCTION

and on the soundness of the results that can be obtained, rather than on the
efficiency of the analysis. Due to Imprecision that is inherent to the giobal anai­
ysis algorithms, not ail garbage cells ca.n be detected in arbitrary cases. We will
extensively discuss the strength of the analyses that are proposed.

The study of code optimization schemes that explicitly reclaim or reuse
garbage cells is beyond the "cope of the present book. In [52], Mariën et al.
discussed sorne preliminary experiments on code optimization based on liveness
information. Only opportunities for local reuse of storage cells are considered,
Le. reuse within the saIDe clause where a cell is turned into garbage. Non-local
reuse would require extra run-time data areas to keep track of the free space.
Although possible in principle, non-local reuse therefore will be less beneficial for
code optimization. The reuse of "torage also introduces sorne new requirernents
on the trailing mechanism of standard Prolog implementations tha.t will affect
the performance. We will briefly discuss these issues in Section 3.3 and 5.3.3.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

