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Summary 

Given a familiar object extracted from its surroundings, we humans have little 

difficulty in recognizing it irrespective of its size, position and orientation in our field 

of view. Changes in lighting and the effects of perspective also pose no problems. 

How do we achieve this, and more importantly, how can we get a computer to do 

this? One very promising approach is to find mathematical functions of an object's 

image, or of an object's 3D description, that are invariant to the transformations 

caused by the object's motion. This book is devoted to the theory and practice of 

such invariant image features, so-called image invariants, for planar objects. 

Following the introduction in chapter l, the book discusses features that are 

invariant to image translations, rotations, to changes in size and in contrast, with 

particular attention being paid to the effect of using discrete images rather than 

continuous ones. The next chapter presents a tutorial introduction to the theory 

of algebraic invariants which lies at the heart of two important types of invariant 

features: moment invariants for affine transformations, and projective invariants for 

perspecti ve transformations. Chapter 4 is devoted entirely to features invariant to 

affine transformations: the theory behind moment-based invariants, Fourier descrip­

tors and differential techniques is presented, along with a novel technique based on 

correlations, and results of experiments on the stability of coarsely sampled images are 

discussed. Chapter 5 goes one step further and covers features invariant to perspective 

transformations, summarizing work on both differential and global invariants. The 

penultimate chapter, chapter 6, shows how invariant features can be used to recognize 

objects that have been partially ocduded. A thorough treatment of the 'geometric 

hashing' method is given, followed by sorne novel methods of 'back-projection' which 

allow one to verify whether the hypothesized object really is in the image. Many 

authors daim that moment invariants cannot be used under partial occlusion; this 

is not so, and a number of schemes for their use are presented. Not only can they 

be used, but they l:lave sorne significant advantages over other invariant features, a 

fact that is backed up by experiments. The final chapter contains a summary and 

conclusions. 
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Chapter 1 

Introduction 

1.1 Scope 

Research in computer vision is aimed at enabling computers to recognize objects 
without human intervention. Applications are numerous, and include automated in­
spection of parts in factories, detection of fires at high-risk sites and robot vision, 
especially for autonomous robots. For the sake of convenience, the task is usually 
broken up into two stages, 'low-level' vision and 'high-level' vision. Low-level vision 
involves extracting significant features from the image, such as the outline of an ob­
ject or regions with the same texture, and often involves segmenting the image into 
separate 'objects'. The task of high-level vision is then to recognize these objects. 

The following is concerned with high-level vision, in particular with finding 
properties of an image which are invariant to transformations of the image caused by 
moving an object so as to change its perceived position and orientation, and in sorne 
cases its brightness. The idea of invariance arises from our own ability to recognize 
objects irrespective of such movement - if we look at a book from a number of 
different orientations, we have no difliculty in recognizing it as a book each time: 
we can say that a book has properties which are invariant to its size, position and 
orientation. Finding mathematical functions of an image that are invariant to the 
ab ove transformations would thus provide us with a technique for recognizing objects 
using computers, as weil as providing us with a possible mode! for part of human 
V1SlOn. If we wish to recognize an object using a computer, and we assume the 
computer has stored the models (or example views) of the objects to be recognized 
in its memory, and the object to be recognized corresponds to one of these models, 
the straightforward approach searches sequentially through the computer's memory, 
trying out each model and seeing whether it can be positioned in such a way as to 
produce an image that matches that of the object to be recognized, until a good match 
is found. Clearly, this is computationally intensive; ideally, we would like to be able 
to extract the correct model directly from the information contained in the image -
this is precisely what the so-called image invariants allow us to do. 

Images are the projection of the three-dimensional world onto a two-dimensional 
(planar) surface, be it the retina or an array of sensors in a video (CCD) camera. Burns 
et al. [1] have proved that one cannot compute an invariant function of the image 
coordin"tes of a set of general points in three dimensions (3D) from a single view; one 
requires at least two views. If one restricts oneself to planar or near-planar objects 
however, one can obtain a large number of invariants based on a single view, as we 
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2 CHAPTER 1. INTRODUCTION 

z 

Figure 1.1: The perspective camera 

Consider the X -component of a point P in 3D. V is the point of pro­
jection, the image plane is defined by Z = f. Q is the image point 
corresponding to P. x = fXjZ. 

will see in the following chapters. Although the theory only applies ta fiat abjects, 
the resulting features have been used ta recognize non-planar abjects, such as aircraft, 
successfully (see references [2, 3, 4, 5]) and will also work weil for near-planar abjects 
such as machine parts or the tools used in the experiments described in chapter 6. If 
one uses two views from an uncalibrated stereo camera, a number of invariants for 
non-pl anar points and curves exist - see references [6, 7, 8, 9J and in particular the 
excellent collection of articles edited by Mundy & Zisserman [10J. 

1.2 Viewing transformations 

The motion of a so!id abject in 3D is governed by six parameters, three for translations 
and three for rotations. This section shows how image points are affected by these 
six parameters, that different views of copI anar object points are related by planar 
projective transformations and that, if the distance of the coplanar object points from 
the camera (their depth) does not vary much compared with their average depth, the 
planar projective transformation can be approximated by the affine transformation. 

A very good approximation ta image formation in a real camera is given by 
the perspective camera mode!, in which points are projected from 3D anto the image 
plane sa that ail the rays joining object and corresponding image points pass through 
a single point, called the point of projection. If we choose our 3D coordinates so that 
the origin coincides with the point of projection, the Z-axis is perpendicular to the 
image plane and points away from the camera, and the image plane is defined by 
Z = 1 (see figure 1.1), then the image coordinates (x, y) of a 3D point (X, Y, Z) are 
given by 

X 
x=f-; 

Z 

y 
y=IZ· (1.1) 

Let pT = [X Y Z] and p,y = [X' Y' Z'J be a rotated and translated version, then 

p' = Rp+t, 

where R is a 3 X 3 rotation matrix and t is the translation vector. This can be written 
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1.2. VIEWING TRANSFORMATIONS 3 

in full as 

[ ;: ] [~~: ~~~ ~~:] [;] + [ !~ ] 
Z r31 r32 r33 Z t3 

(1.2) 

Combining this with (1.1) allows one to write the image coordinates as a function of 
the original 3D coordinates and the motion parameters. 

If we restrict ourselves to planar objects, Z is related to X and Y: in general, 
object points lie in a plane Z = aX + bY + c for some constants a, band c. Putting 
this into (1.2) gives 

X' (rn + ar'3)X + (r'2 + br,3)Y + (cr'3 + t,) 
anX + a12Y + a,3, 

where an = rn + ar'3 etc. Doing the same for y' and Z' allows us to write (1.2) as 

or p' = Aq. (1.3) 

If we set f = 1, the image coordinates of the transformed point are given by x' = 
X' / Z', y' = y' / Z', from which we see that arbitrarily scaling A does not affect the 
image coordinates, which in turn allows one to set a33 = 1. 

The ab ove uses the actual 3D coordinates (X, Y, Z) and (X', Y', Z') of a point 
and its transformed version; to find invariant functions we must assume no knowledge 
of 3D coordinates, so we must find the form of the transformation linking image points 
in one view to those in another. In fact, they are related by a planar projection, which 
is easily proved using homogeneous coordinafes. Let the image coordinates (x', y') 
be represented in homogeneous coordinates by (h'x, h'y, h'z), with x' = h'x/h'z and 
y' = h'y/h'z (we are nof assuming that h'x = X', h'y = y' or h'z = Z'). Furthermore, 
let h lT = [h'x h'y h'z]. It is clear that h' = ap' for sorne non-zero scalar a, from 
which we see that h' = AI q, A, = aA. Let h represent a second view of the planar 
points, then h = A 2q. If we define B = A2A,' we see that h = Bh/: 

which defines a planar projection (see figure 1.2). As before, we can set b33 = 1. Since 
there are only six degrees of freedom, but planar projection has eight free parameters, 
we see that perspective forms a subset of planar projection. Sin ce the choice of h'z 
is at our disposai, we can set h'z = 1, which means that the image coordinates (5:, f)) 
and (x, y) are related to one another by: 

(l.4) 

Planar projection forms a group [9] and has a number of invariants which will be 
discussed in chapters 3 and 5. 

We can now use equation (1.3) to show that the ab ove planar projective trans­
formation can be approximated by an affine transformation when a planar object's 
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4 CHAPTER 1. INTRODUCTION 

(a) 
Point of 
projection 

-~\ 

t \v 

~\ 
""2 -p;--

(b) 

Figure 1.2: Planar and linear projection. 

(a) Projection of points on one plane ta points on another. (h) Projec­
tion of points on one line to points on another. 

depth is small compared with its distance from the camera. Assume we have a set 
of coplanar points (Xi, Yi', Z!), i = l, ... , N, for which Zi = Z' + 8Z[. The image 
coordinates x~ = XI / Z;, y: = ~'! Z; are approximately gi ven by 

, Xi , Yi' if Z' ~ 8Z;. 
Xi = Z" Yi = Z' . 

Thompson & Mundy [U] use the rule of thumb that (Z:"ax - Z:"in)/Z' should be less 
than 0.1 for the affine approximation ta hold, with Z:"ax being the largest value of Zi 
and Z;';n the smallest. If we let s = Z', (1.3) becomes 

r X' ] [a11 a12 a13 ] [X] yi = a21 a22 a23 Y. 
L Z' 0 0 S 1 

(1.5) 

Defining the e1ements Cij of the 3 x 3 matrix Cl by Cij = aij/S, so that (1.5) becomes 
p' = Clq, letting C2 define a second view and D = C2 C;-' allows one to show that 
the image coordinates h T = [:î: fi 1 J of the second view are related to those of the 
first view h' = [x' y' 1] by h = Dh': 

r :î: ] [d11 d12 d13] i fi = d21 d22 d23 

LlO 0 1 
- an affine transformation. 

This can alternatively be written as 

r ~ ] = [d1J d12
] [x;] + [ dI3

]. 
l Y d21 d22 Y dn 

(1.6) 

Since the affine transformation Îs linear, invariant features are much easier to 1Î.nd 
than in the case of projective transformations. Examples of affine transformations are 
shawn in figure 1.4. Note that parallellines remain paraUel under such transforma­
tions. 

Just as a linear transformation in 3-D is equivalent to planar (2-1::) projection, 
sa a linear transformation in 2-D is equivalent ta a 1-D projection of points on one 
line onto another line - see figure 1.2 (h). 

1-D pro]' ection: f' = o:t + (3 (3 15 real. ,t + b ' 0:" " 
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1.2. VIEWING TRANSFORMATIONS 

0.5 0.5 

0 D 0 

------- -------
-0.5 -0.5 

0 0 

0.1 

o LI===~\ 

-0.1 

o o 

Figure 1.3: Perspective views of a rectangle. 

The projective transformation tends towards an affine one as the abject 
recedes into the distance. Top: the rectangle 's centre is 3 units from 
the point of projection; head on and at 800

• Bottom: 12 and 30 units 
away. 
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6 CHAPTER 1. INTRODUCTION 

EJ I~l Translation 

Rotation 

Changes in scale 

Shear 

Affine transformations 

Figure lA: Examples of affine image transformations. 
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1.3. OVERVIEW 7 

In homogeneous coordinates, with t = x/y and t l = XI/yI, we have 

The ID projective transformation has three degrees of freedom, so we can arbitrarily 
set fi == 1. Any three distinct collinear points can be projected to any other such triple 
of points under a ID projective transformation. 

Further approximations are possible under constrained viewing conditions; for 
instance, if an object is viewed from a fixed camera and is constrained to lie on a fiat 
surface parallel to the image plane near its intersection with the optical (Z) axis (the 
fronto-parullel configuration), the affine approximation reduces to rotations, transla­
tions and scale changes. This is relevant if one would like to automate inspection of 
objects on a conveyor belt for example. An application in which one is only interested 
in rotation invariants is automatic fault detection in the heads of bolts, which slide 
head-up along two parallel guides into a fixed position relative to the camera, Save for 
possible rotations. 

Examples of invariant features in this case are the angle between two lines, 
which is unchanged by image translations, rotations and changes in scale, and the 
ratio of distances along a li ne or the ratio of two areas, both of which are invariant 
to affine transformations. Clearly, any function which is invariant to a given set of 
transformations is invariant ta any subset of transformations - projective invariants 
are also invariant to affine transformations etc. 

1.3 Overview 

An object is said to be partially occluded when part of it is obscured from view 
by another object. Anyone glancing around a room will quickly see that partial 
occlusion is the norm rather than the exception. Our goal is to find robust techniques 
for recognizing partially occluded near-planar objects. To reach it, we must first 
obtain a thorough understanding of invariant features for unoccluded objects, which 
is the task of chapters 2 to 5. These chapt ers build up successively from invariance to 
simple transformations in chapter 2 to invariance to full planar projection in chapter 
5: chapter 2 looks at invariance to translations, rotations, changes in scale, changes 
in contrast and combinations of these, first for ideal (continuous) images and then for 
discrete ones (as processed by computers); chapter 3 presents a tutorial introduction 
to the theory of algebraic invariants, which is fundamentally important when dealing 
with affine invariants, the subject of chapter 4, and projective invariants, the subject of 
chapter 5. Chapter 4 gives a definitive account of methods for obtaining invariance to 
affine trq.nsformations using mom~~ts, as weIl as summarizing alternative r:f'chniques 
and preslnting a nove! one based oh correlations. Chapter 5 shows how to apply the 
results of chapter 3 to recognl'iing.perspective views of abjects, summarizes sorne of the 
authors results as weil as discussing alternative methons. Finally, chapter 6discusses 
schemes for ,",sing the invariant fe",lIures of chapters 'i and ,) to recognize partially 
occluded abjects irmspectivE of viewpoînt, and ~harter 7 provides a surmp.ary and 
conclusions. 

To the author'. knowledge, <ho monograph a:l the subject of using invariant 
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8 CHAPTER 1. INTRODUCTION 

features ta recognize objects has appeared at the time of writing" with most results 
having appeared in conferences and workshops rather than journals (see in particular 
the collection of papers based on a workshop in 1991, reference [10]). Hence chapters 
2 ta 5, although presenting quite a number of new results along the way, are written 
ta provide a comprehensive and up-to-date summary of research performed ta date. 

As mentioned above, chapters 2 ta 5 are written ta provide an understanding 
of invariant functions ta aid in our goal of recognizing partially occluded abjects. 
One important aspect is their robustness ta image distortion. Many authors consider 
the effects of adding Gaussian noise ta the image ta test the robustness of invariants 
(e.g. [14, 15, 16]), but in most cases the amount of noise in the image is almost 
imperceptible; a more useful test of robustness is ta see how the invariant features 
react ta distortions of the object's shape, especially those caused by the discrete nature 
of the image when viewing distant or small abjects. Theoretical results for rotation 
invariance are presented in chapter 2, induding a nove! family of invariant features, 
and experimental results are presented in bath chapters 2 and 4; the main conclusion 
is that the so-called moment invariants are more robust than other invariants, contrary 
ta be!iefs voiced in the literature on the subject (see for example reference [17]). 

When using image features ta recognize abjects, one would like them ta provide 
good discrimination between different abjects. In the case of image invariants, one 
is first interested in invariance ta geometric transformations; having found invariant 
features, one must then investigate whether they provide discrimination. The experi­
ments in chapters 2 and 4 also examine this; again, the moment invariants are shawn 
ta perform weil. 

If we are ta recognize partially occluded abjects, the information required for 
recognition must be available locally as wel! as globally, and the question naturally 
arises as ta whether one can use the image invariants derived in chapters 2 ta 5 ta 
recognize partially occluded abjects. The answer is in the affirmative, and is the 
subject of chapter 6. Numerous authors daim that moment invariants cannat be used 
under partial occlusion (see for example [18]), but this is not sa: a number of schemes 
for their use are presented, and it is shawn that they have significant advantages over 
other invariants, bath in theory and in practice, the latter being demonstrated by 
experiment. 

The next section ends this introductory chapter with a brief discussion of the 
image primitives that are used ta generate invariant functions in chapters 4 ta 6. 

1.4 Image primitives 

In order ta compute invariant functions of an image, one often needs ta extract certain 
features from the image, called primitives, which are then used in the construction of 
invariant functions. For instance, if one is using the angle between lines as an invariant 
then the lines are the primitives. As we will see in the following chapters, one can 
either compute invariant functions based on the intensity function of the image or 
based on the shape of the image boundary (in bath cases one assumes that the object 

lWechsler.'s review [12J_ discusses sorne simple invariants and Kanatani's book [13] contains an 
extensive treatment of imé'ge invariants) but he only conside~s invariance te camera rotations and 
does not attempt to o0tain invariance to general object motion relative to the camera. Furthermore, 
as discussed in chapter 5, sorne of his analysis is incorrect. 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



1.4. IMAGE PRIMITIVES 

(a) (b) 

, , 

Figure 1.5: Finding reference points on a curve. 

(a) E; are end points of a line; l is a point of inflexion; D is a sharp 
discontinuity in curvature. Only D is a robust feature point in this case. 
(b) Pl and P2 are two points where the curve 's convex hull leaves the 
curve itself; they are generally robust reference points, and are called 
bitangent points. 

, , 
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has been correctly separated from the background). Many methods, especially those 
that seek to recognize partially occluded objects, use points and lines as primitives; 
below we will briefly look at how these primitives can be extracted from the object's 
boundary. 

The standard approach to finding reference points relies on differential properties 
of an object's boundary. Discontinuities in curvature and points of inflexion of planar 
curves are invariant under projection, but not always robust: the end point of a 
straight line is a discontinuity in curvature that is difficult to detect when the li ne goes 
into a curve of low curvature; similarly, points of inflexion can often be confused with 
a short line. A more robust technique uses bitangent points where two distinct points 
on the boundary share the same tangent (see figure 1.5) [9J. Also robust are points 
where a discontinuity in curvature is linked with a fairly sharp change in direction. 
These latter points are usually extracted by detecting large extrema of curvature -
although extrema are theoretically not stable under projection, in practice they are 
[19, 20J. 

Further reference points can be obtained by noting where tangents constructed 
using the ab ove points intersect with other tangents or with the boundary [9J (the 
latter being more robust against noise). As pointed out by Lamdan et al. [21J, 
almost ail near-planar objects have concavities, so this approach can be used in most 
cases. Forsyth et al. [9J present a generally robust method of extracting four reference 
points from a concavity that does not rely on extrema of curvature (figure 1.6(a)). 
The method fails when there is a discontinuity of curvature at points A or D such 
that the curvature has a different sign on either si de of the discontinuity (point A in 
figure 1.6b), but in this case one can extract the tangents of the boundary on both 
si des of the dis~ontinuity (figure 1.6b). 

Poirts and lines will be used as image primitives in chapt"r 4 on affine invariants 
and in chapter 5 on projective invariants; although they can beused for the si';'pler 
transformations discussed in ch"pter 2, alternative global techniques will be used 
instead: 
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(b) 

Figure 1.6: Using concavities to obtain projective invariants. 

,'B ~ "C
2 

\ , 
XP4 ., 

C3 

(a) A and D are points where the convex huI/ meets the boundary. B 
and C are the points where lines through A and D are tangent with the 
concave pari of the boundary. (b) One con use the tangents at eitheT 
side of a discontinuity in curvature ta obtain a number of refeTence 
points. C2 and C3 are points where the tangents intersect with the 
boundary on the other side. 
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