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Summary

Given a familiar object extracted from its surroundings, we humans have little
difficulty in recognizing it irrespective of its size, position and orientation in our field
of view. Changes in lighting and the effects of perspective also pose no problems.
How do we achieve this, and more importantly, how can we get a computer to do
this? Onc very promising approach is to find mathematical functions of an object’s
inage, or of an object’s 3D description, that are invariant to the transformations
caused by the object’s motion. This book is devoted to the theory and practice of
such invariant image features, so-called image invariants, for planar objects.

Follawing the introduction in chapter 1, the book discusses features that are
imvariant to image translations, rotations, to changes in size and in contrast, with
particular attention being paid to the effect of using discrete images rather than
continuous ones. The next chapier presents a tutorial intreduction to the theory
of algebraic invariants which lies at the heart of two important types of invariant
features: moment invariants {or affline transformations, and projective invariants for
perspective transformations. Chapter 4 is devoted entirely to features invariant to
affine transformations: the theory behind moment-based invariants, Fouricr descrip-
tors and differential techniques is presented, along with a novel lechnique based on
correlations, and results of experiments on the stability of coarsely sampled images are
discussed. Chapter b goes one step further and covers features invariant to perspective
transformations, summarizing work cn both differential and global invariants. The
penultimate chapter, chapter 6, shows how invariant features can be used to recognize
objects that have been partially occluded. A thorough treatment of the ‘peometric
hashing’ method is given, followed by some novel methods of ‘back-projection’ which
allow one to verify whether the hypothesized objecl really is in the image. Many
authors claim that moment invariants cannot be used under partial occlusion; this
is not 50, and a number of schemes for their use are presented. Not only can they
be used, bul they have some signilicant advantages over other invariant features, a
fact that is backed up by experiments. The final chapter contains a surrnary and

conclusions.
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Chapter 1

Introduction

1.1 Scope

Research in computer vision is aimed at enabling computers to recognize objects
without human intervention. Applications are numerous, and include automated in-
spection of parls in factories, delection of fires at high-risk sites and robot vision,
especially for auntonomous robois. For ihe suke of convenience, the task is usually
broken up into two stages, ‘low-level’ vision and ‘high-level’ vision. Low-level vision
involves extracting significant features from the image, such as the outline of an ob-
Jject or regions with the same texture, and often involves segmenting the image into
separale ‘objects’. The task of high-level vision is then to recognize these objects.

The following is concerned with high-level vision, in particular with finding
properties of an image which are invariant to transformations of the image caused by
moving an object so as to change its perceived posilion and crientation, and in some
cases its brightness. The idea of invariance arises [rom our own ability to recognize
objects irrespective of such movement — if we look at 2 book from a number of
different orientations, we have no difficulty in recognizing it as a book cach time:
we can say Lhat a book has properties which are invariani to its size, position and
orientation. Finding mathematical funclions of an image that are invariant to the
above transformations would thus provide us with a technique for recognizing ohjects
using computers, as well as providing us with a possible model] for part of human
vision. If we wish to recognize an object using a computer, and we assume the
computer has stored the models (or example views} of the objects to be recognized
in its memory, and the object to be recognized corresponds to one of these models,
the straightforward approach searches sequentially through the computer’s memory,
trying out each model and seeing whether it can be positioned in such a way as to
produce an image that matches that of the object to be recognized, until a good match
is found. Clearly, this is computaticnally intensive; ideally, we would like to be able
to extract the correct model directly from the information conlained in the image —
this is precisely whal the so-called image invariants allow us to do.

Images are the projeciion of the three-dimensional world ento a twe-dimensional
{planar) surface, be it the retina or an array of sensors in a video (CCID}Y) camera. Burns
et al. [1] have proved that one cannot compute an invariant function of the image
coordinates of a sct of general points in three dimensions (31) from a single view; one
requires at least two views. If one restricts onesell to planar or near-planar objscts
however, one can obtain a large number of invariants based on a single view, as we
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Figure 1.1: The perspective camera

Consider the X -component of a point P in 3D. V is the poini of pro-
Jection, the imege plane is defined by Z = f. Q) is the tmage poinit
corresponding to P. » = fX[Z.

will see iIn the following chapters. Although the theory only applies to flat objects,
the resulting features have been used to recognize non-planar objects, such as aireraft,
snccessfully (see references [2, 3, 4, 5]) and will also work well for near-planar objects
such as machine parts or the tools used in the experiments described in chapter 6. If
one uses two views from an uncalibrated stereo camera, a number of invariants for
non-planar points and curves exist — see references [6, 7, 8, 9] and in particular the
excellent colleciion of articles edited by Mundy & Zisserman [10].

1.2 Viewing transformations

The meotion of a solid object i 3D is governed by six parameters, three for translations
and three for rotations. This section shows how image points are affected by these
six parameters, that different views of coplanar object points are related by planar
projective transformations and that, if the distance of the coplanar object points from
the camera {their depth) does not very much compared with their average depth, the
planar projective transformation can be approximated by the affine transformation.

A very good approximation to image formation in a real camera is given hy
the perspeciive camera model, in which points are projected from 3D onto Lhe image
plane =o that all the rays joining object and corresponding image points pass through
a single point, called the point of projection. If we choose our 3D coordinates so that
the origin colncides with the puoint of projection, the Z-axis is perpendicular to the
image plaite and points away from the camera, and the image plane is éofined by
Z = [ {see figure 1.1}, then the image coordinates {z,y) of a 3D point (X, ¥, Z) are
given by

Y
7 y:ff- {i.1)

Let pT = (X ¥ Zland p¥ = [X' ¥' Z’] be a rotated and translated version, then

X

P =Rp+t,

where B 15 a 3 % 3 rotation miatrix and t is the translation vector. This can be written
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in full as
X ri1 iz T X 4
Y" = Tz1 Tz Taa Y —+ fg . (l 2]
Z" Talr Taz Ta3 Z t3

Comnbining this with (1.1) allows one to write the image coordinates as a function of
the original 3D coordinates and the motion parameters.

If we restrict ourselves to planar abjects, Z is related to X and ¥ in general,
object points lie in a plane Z = ¢X + &Y + ¢ for some constants a, & and ¢. Putting
this into (1.2] gives

X = (rnterns)X 4+ (re+ )Y 4 (or + 4)
apX taY + e

i

where a;; = ri; + oz etc. Doing the same for ¥’ and Z' allows us to write (1.2) as

X' an g o3 X
Y" = Qa1 das 2z Y or p" = Aq. (13)
A @31 G312 Qa3 1

If we set f = 1, the image coordinates of the transforied poinl are given by ' =
X/, ¢ =Y'/Z, [rom which we see that arbitrarily scaling A does not affect the
image coordinales, which in turn allows vne to set azz = 1.

The above uses the actual 3D coordinates (X, ¥, Z) and (X*,¥", Z') of a poing
and its transformed version; to find invariant functions we must assume no knowledge
of 3D coordinates, so we must fiud the form of the transformation linking image poiuts
in one view fo those in another. In fact, they are related by a planar projection, which
is easily proved using homogeneous coerdinafes. Let the image coordinates (z',y")
be represented in homogeneous coordinates by (hY, Ay, k%), with ' = b /R, and
¥ = hy fhY; (we are nof assuming that A%y = X', &), = ¥ or % = Z'). Furthermore,
let h'T = [k Ry Byl It is clear that h' = ap’ for some non-zero scalar a, from
which we see that h' = A,q, A; = aA. Let h represent a second view of the planar
points, then h= Asq- If we define B = A, A[! we see that h = Bh*

f}X by fie g hfx'
{W = | bn by by by
hz byt by by hiy

which defines a planar projection (see figure 1.2). As before, we can set by; = 1. Since

there are only six degrees of freedom, bul planar projection has eighl [ree paramelers,

we sce thal perspective forms a subset of plapar projection. Since the choice of &%

is al our disposal, we can set A% = 1, which means thal the image courdinates (£, §)

and (x,y) are related to one another by:
. byt by 4 by

X = 4=
bar by + 17 .

ba1x 4 baay + a3

_— (1.4
bayt + bapy + 1 (14)

Plauar prejection forms a group [9] and has a number of invariants which will be
discussed in chapters 3 and b.

We can now use equalion (1.3) to show that the above planar projective trans-
forination can be approximated by an affine transformation when a planar object’s
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o By
—r
T 1\.{.‘ -7 k \V
- 7 O iy ‘\
A

. 2 P’
Point of
projection ik}

Figure 1.2: Planar and linear projection.

fa) Projection of points on onc plane to points on another. 1b) Projec-
tion of potnts on one line to points on another,

depth is small compared with its distance from the camera. Assume we have a set
of coplanar points (X[, ¥/, 2]), i = 1,...\ N, for which Z{ = Z’ + §Z]. The image
coordinates zf = X!/Z], yi = V//Z! are approximately given by
X! ¥

e S S T i Y A

L= BEog 2 Q0

Thompson & Mundy [11] use the rule of thumb that (27— ZI. /% should be less
than 0.1 for the affine approximation to hold, with Z! being the largest value of Zf

and Z!,;, the smallest. If we let s = 7', (1.3} becomes

’- X' [ d13 13 €13 X
1 Y puod a2y dzz o3 Y - (15)
z [ 0 0 s 1

Defining the elements e of the 3 x 3 matrix O by «; = ay;/3, so that (1.3} becomes
p’ = Ciq, letting C, define a second view and D = C,C7! allows one to show that
the image coordinates h” = [# § 1] of the second view are related to those of the
first view h’ = [2* ' 1] by h = Dh"

i
I
|
ke

[i‘ dun diz dys x’
: i1 = | doy doz daa ¥ — an affine transformation.
i1 0 0 1 1

This can alternatively be written as

[ & diy dy x! d11
{§]={dﬂ d?i][yf:|+]tc§giJ' {1.6)

Since the affine transformation is linear, invariant featurcs are much easier to find
than in the case of projective transformations. Exarnples of affine iransformations are
shown in figure 1.4. Note that parallel lines remain paralle] under such transforma-
tions.

Just as a linear transformation in 3-D is equivalent to planar (2-T0) projection,
s0 a linear transformation in 2-D is equivalent Lo a 1-D projection of points on one
line onto another line — see figure 1.2 (b).
at - 3
yt+ &

1-D projection: t = a, 3,7, § real,

e - . . P I S pom e rammmmameeed ¢ e o semmg W, P et e
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05k B 0.5 1
of 1 Of """ 1
0.5} 1 s} .
0 0
0051 .
0.1F .
of LT\ 4 of M |
Ok 4
-6.05F :
0 G

Figure 1.3: Perspeclive views of a reclangle.

The projective transformation tends towards an affine one as the object
recedes inlo the distance. Top: the rectungle’s centre is 3 units from
the point of projection; head on end of 80°. Bottom: [2 and 30 units
ﬂ'.?.f.’ﬁy,
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Translation

Rotation

Changes in scalz

Shear

lié

Afline transformations

Figure 1.4: Examples of offine image transformations.
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In homogeneous coordinates, with £ = 2 /y and t' = z'/y’, we have

MENIN

v vy dily |’

The 1D projective transformation has three degrees of freedom, so we can arbitrarily
sef. &§ = 1. Any three distinct collinear points can be projected to any other such triple
of points under a 1D prejective transformation.

Further approximations are possible under consirained viewing conditions; for
instance, if an object is viewed from a fixed camera and is constrained to lie on a flat
surface parallel to the image plane near its intersection with the optical () axis (the
fronio-parallel configuration), the affine approximation reduces to rotations, transia-
tions and scale changes. This is relevant if one wonld like to automate inspection of
objects on a conveyor belt for example. An application in which one is only interested
in rotation invariants is automatic fault detection in the heads of bolts, which slide
head-up along two parallel guides into a fixed position relative to the camera, save for
possible ratations.

Examples ol invariant features in this case are the angle between Lwo lines,
which is unchanged by nuage translations, rotations and changes in scale, and the
ratio of distances along a line or the ratic of two areas, both of which are invariani
to affine {ransformations. Clearly, any function which is invariant te a given set of
transformations is invariant to any subset of transformations  projective invariants
are also invariant to affine transformations ete.

1.3 Overview

An object is said to be partially occluded when part of it is obscured from view
by another object. Anyone glancing around a room will quickly see that partial
occlusion is the norm rather than the exception. Qur goal is to find robust techniques
for recognizing partially occluded near-planar objects. To reach it, we must first
obtain a thorongh understanding of invariant features for unoecluded objects, which
is the task of chapters 2 to 5. These chapters build np successively from invariance to
simple transformations in chapter 2 to invariance to full planar projection in chapter
5: chapter 2 looks at invariance to translations, rotations, changes in scale, changes
i contrast and combinations of these, fivst for ideal {conlinuous) images and then for
discrete ones {as processed by computers); chapter 3 presents a tutorial introduction
Lo the theory of algebraic invariants, which is fundamentally importani when dealing
with affine invarianls, the subject of chapter 4, and projective invariants, the subject of
chapter 5. Chapler 4 gives 2 definilive account of metheods for obtaining invariance to
afline transformations using moments as well as summarizing alternative {echniques
and prt’f}%ntmg, a novel one bd.b(_d Sh correlations. Chapter 5 shows how to applv the
resilts of chapter 3 to recogni zﬁng perspective views of objecls, summarizes some of the
authors regulis as well a5 discussing alternative methods. Finally, chapter 6 discusses
schemes for using the invariant feasures of hapters 4 and 5 to recognize partizlly
oecluded ohjects irrespective of viewpoint, and chapter 7 provides a sunimary and
conclusions. : i

To the aunthor’s knowledge, mo monograph o the subject af using invariant
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[catures to recognize ohiccis has appeared ab the time of writing!, with most results
having appeared in conferences and workshops rather than journals (see in particular
the collection of papers based on a workshop in 1991, reference [10.). Hence chapters
2 to 3, although presenting quite a number of new results along the way, are written
to provide a comprchensive and up-to-date summary of rescarch performed to date.

As mentioned above, chapters 2 to 5 are written to provide an understanding
of invariant functions to aid in our goal of recognizing partizlly occluded objects.
One important aspect is their robustness to image distortion. Many authors consider
the effects of adding Ganssian noise to the image to test the robustness of invariants
{e.g. |14, 15, 16[}, but in most cases the amount of noise in the image is almost
imperceptible; a more useful test of robustness is to see how the invariant features
reacl to distortions of the object’s shape, especially those causced by the discrete nature
of the image when viewing distant or small objects. Theoretical results far rotation
invariance are presenied in chapter 2, including a povel family of invariant features,
and experimental results are presented in both chapters 2 and 4; the main conclusion
is that the so-called moment invariants are more rebust than other invariants, contrary
to beliefs voiced in the literature on the subject (sce for example reference [17]}.

When using image features to recognize objects, one would like them to provide
good disciimination between different objects. In the case of image invariants, one
is first interested in invariance to geometric transformations; having found invariant
features. one must then investigate whelher they provide discrimination. The experi-
ments in chapters 2 and 4 also examine this; again, the moment invarianis are shown
to perform well,

If we are 1o recognize partially occluded objects, the information required for
recognition must be available locally as well as globally, and the quesiion naturally
arises as to whether one can use the image invariants derived in chapters 2 to 5 to
recognize pariially occluded objects. The answer is in the alfirmative, and is the
subject of chapter 6. Numerous aulhors claim that moment invariants cannot be used
under partial occlusion (see for example '18]]. but this is not so: a number of schemes
for their use are presented, and it is shown that they have significant advantages over
other invariants, both in theory and in practice, the latter being demonstrated by
experiment.

The pext section ends this introductory chapter with a brief discussion of the
image primitives that are used to generate invariant funclions in chaplers 4 1o 6.

1.4 TImage primitives

In order to compute invariant funcfions of an image, one often needs to extract certain
features from the image, called primitives, which are then used in the copstraction of
invariant functions. For inslance, if one is using the angle between lines as an invariant
then the lines are the primilives. As we will see in the following chapters, one can
either compute invariant {unctions based on the intensity function of the image or
based on the shape of the image boundary (in both cases one assuines that ihe object

Wechsler’s review j12 discusses some simple inveriznis and Kanatani’s book [138] contains an
cxtensive treatiment of imege invariants, but he only conside-s invariance to carnera rotations and
does not attempt to cbtain invariance to general ohject motion relative ta the camera. Furlhermors,
as discussed in chapter 5. some of his analysis is incorrect.
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{a) (D) N

Figure 1.5: Finding reference points an a curve.

fa) k; are end points of a line; T is a point of inflexion; I} is a sharp
discontinuity in curvature, Only D is a robusi feature point in this case.
fb) P, und Po are twa points where the curve’s conver hull leaves the
curve itself; they are generally robust reference poinis, and are called
bitangenl points.

has been correctly scparated from the background). Many methods, especially those
that seek to recognize partially occluded objects, use points and lines as primitives;
below we will briefly look at how these primitives can be extracted from the object’s
Ioundary.

The standard approach to finding reference points relies on differential properties
of an object’s boundary. Discontinuities in curvature and points of inflexion of planar
curves arc invariant under projection, but not always robust: the end point of a
straight line is a discoptinuity in curvature that is difficultl to detect when the line goes
into a curve of low curvature; similarly, points of inflexion can often he confused with
a short line. A mare robust technique uses bitangent points where two distinet points
on the boundary share the same tangent (see figure 1.5) [9]. Also robust are points
where a discontinuity in curvature is linked with a fairly sharp change in dircction.
These latter points are usually extracted by delecting large extrema of curvature —
although extrema are theoretically not stable under projection, in practice they are
[19, 20].

Further reference points can be obtained by noting where tangents constructed
using the above points intersect with other tangents or with the boundary [9] (the
latter being more robust against noise). As pointed out by Lamdan et al [21],
almost all near-planar objects have concavities, so this approach can be used in most
cases. Forsyth ef al. (9] present a generally robust method of extracting four reference
peints from a concavity that does nol rely on extrema of curvature (figure 1.6(a)}).
The method {ails when there is a discontinuity of curvature at points A or D such
that the curvature has a different sign an either side of the discontinuity (point A in
figure 1.6k}, but in this case onc can extract the tangents of the boundary on both
sides of the discontinuity {figure 1.6b).

Poirts and lines will be used as image primitives in chapter 4 on affine invariants
and in chapler 5 on projective invariants; although they can be used for the simpler
transformations discussed in chapter 2, alternative global techniques will be used
instead. :
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Figure 1.6: Using concavitics to obtain projeclive invasianis.

‘a) A and D arc points where the conver hull meets the boundary. B
and C are the points where lines through A and D are tangent with the
concave parl of the boundary. (b) One can use the tangenis afl either
side of a discontinuily in curvature to cblein o number of reference
points. O and Cy are poinis where the tangeals infersect with ihe
boundery on the other side,





