
Heinrich Wansing 

The Logic of 
Information Structures 

Springer-Verlag 
Berlin Heidelberg New York 
London Paris Tokyo 
Hong Kong Barcelona 
Budapest 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Series Editor 

Jërg Siekmann 
University of Saarland 
German Research Center for Artificial Intelligence (DPlG) 
Stuhlsatzenhausweg 3, 
0-66123 Saarbrücken, Germany 

Author 

Heinrich Wansing 
FB Informatik, Universitat Hamburg 
BodenstedtstraBe 16, 0-22765 Hamburg, Germany 

CR Subject Classification (1991): 1.2 

ISBN 3-540-56734-8 Springer-Verlag Berlin l-!eidelberg New York 
ISBN 0-387-56734-8 Springer-Verlag New York Berlin Heidelberg 

This work is subject to copyright. Ali rights are reserved, whether the whole or part 
of the material is concerned, specificaIly the rights of translation, reprinting, re-use 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other 
way, and storage in data banks. Duplication of this publication or parts thereof is 
permitted only under the provisions of the German Copyright Law of September 9, 
1965, in its current version, and permission for use must always be obtained from 
Springer-Verlag. Violations are liable for prosecution under the German Copyright 
Law. 

© Springer-Verlag Berlin Heidelberg 1993 
Printed in Germany 

Typesetting: Camera ready by author 
45/3140-543210 - Printed on acid-free paper 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Preface 

The present monograph is a revised version of my doctoral thesis at the Fachbereich 
Philosophie und Sozialwissenschaften I of the Free University of Berlin. It contains my 
contribution to the interdisciplinary research project "Systeme der Logik als theoretische 
Grundlage der Wissens- und Informationsverarbeitung" at the Institute for Philosophy 
of the Free University of Berlin. 

1 am very glad that this preface gives me the opportunity to express my gratitude to 
various people and institutions. First of all, I would like to thank my thesis advisers, 
David Pearce and Johan van Benthem. With each of them I associate one of the basic 
ideas which in combination led me to writing this book, viz. (i) to regard negative and 
positive information as equally relevant and (ii) to vary in a systematic way structural 
rules of inference. Without their inspiration this thesis would not have come into ex­
istence, and it would not have been completed without Johan Van Benthem's critical 
comments and encouragement. Moreover, I gratefully acknowledge scholarships from 
the Senat von Berlin and the Studienstiftung des deutschen Volkes. To the latter I am 
indebted for support over many years. A number of colleagues have, in one way or 
another, contributed to the realization of this book. 1 would like to thank Kosta Dosen 
and Dirk Roorda for their critical remarks on an early version of Chapter 5 and several 
stimulating discussions. To Dirk in addition I return thanks for practical help concern­
ing 'huisvesting'. I would also like to thank Peter Schroeder-Heister. His insistance 
on elimination rules enormously helped me to understand the proof-theoretic approach 
towards the problem of functional completeness. André Fbhrmann was so kind to com­
ment on an early version of parts of Chapter 9. I also wish to thank Gerd Wagner for 
numerous conversations and three referees of the Journal of Logie, Language and In­
formation for their reports. Finally, 1 am grateful to Jorg Siekmann for recommending 
this book for Springer Lecture Notes in AI. From the very beginning I could not have 
carried out this work without the support from Petra, Kasimir and my parents. They 
deserve my special, whole-hearted thanks. 

As inrucated in the text, Chapter 5 is based on 'Formulas-as-types for a hierarchy of 
sublogics ofintuitionistic propositionallogic' in D. Pearce & H. Wansing (eds.), Nonc/as­
sical Logies and Information Proeessing, Lecture Notes in AI, Vol. 619, Springer-Verlag, 
Berlin, 1992, and Chapter 4 (the part consisting of Sections 4.1 to 4.4) is (based on) 
my paper 'Functional completeness for subsystems of intuitionistic propositionallogic', 
forthcoming in the Journal of Philosophieal Logie. Chapter 4, in particular Section 4.5, 
is also used in 'On the expressiveness of Categorial Grammar', to appear in J. Wolen­
ski (ed.), The Legacy of Ajdulciewiez, Rodopi, Amsterdam. Material from, essentially, 
Chapter 9 will appear as 'Informational Interpretation of Substructural Propositional 
Logics' in the Journal of Logie, Language and Information. 

Hamburg, March 1993 Heinrich Wansing 
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Chapter 1 

Introduction 

The concept of information can be studied from numerous points of view. Without 
doubt, however, information structure and information processing form central aspects 
of the study of information. Whereas information structure can be regarded as a sub ject 
of model theory, information processing may be viewed as a matter of proof theory. The 
present investigation pursues this logical perspective. It can be considered a systematic 
contribution to the line of research that began with S. Kripke's [1965] interpretation 
of intuitionistic logic in models based on pre-ordered information states. The following 
table identifies the most important topics that will be dealt with. 

proof theory the systematic variation of structural inference rules 
in sequent calculi, which offers various options for 
representing premises as databases and the sequent 
arrow -> as an information-processing mechanism 
(Chapters 2 and 3) 
cut-elimination and consequences thereof 
(Chapters 3 and 6) 
functional completeness wrt a proof-theoretic 
interpretation of logical operations (Chapters 4 and 7) 

model theory the encoding of proofs by typed À- terms and vice 
versa (Chapters 5 and 8) 
information models, i.e. models based on certain abstract 
information structures, where by an abstract information 
structure we understand a non-empty set 1 viewed as a 
set of information pieees or information states represented 
by pieces of information together with certain relations 
or operations on l, possibly sorne designated pieces of 
information, and possibly certain conditions on these 
relations, operations or designated elements 
(Chapters l, 2 and 9) 

Table 1.1: The main topics. 

A general theme, which will be alluded to in considerations on information process­
ing as weil as information structure, is the dichotomy between positive and negative 
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2 1 Introduction 

infonnation (Chapters 2 and 6 - 9). The central daims are that both positive and 
negative infonnation should be treated in their own right as independent and equally 
relevant concepts, and that this position leads to strong, constru.ctive negation. The 
first two chapters prepare the stage for a uniform and more comprehensive discussion of 
infonnation structure and deductive infonnation processing in the remaining chapters 
by providing examples and motivation. 

The whole investigation is concerned with propositionallogics only. The proposition­
al sequent calculi considered can easily be extended to predicate logics by adding the 
usual rules for the existential and universal quantifiers (and, in the presence of strong, 
constructive negation, the usual rules for their strongly negated fonns). We will make 
use of 3 and V as quantifiers in the metalanguage. The metalogic used is classical; 
repeatedly there will be applications of classical reductio ad absurdum as a rule. Where 
misunderstandings are unlikely to arise, sometimes no special attention will be paid to 
the distinction between the mention and use of symbols. 

1.1 Intuitionistic propositional logic IP L 

An obvious starting point for investigating logics of information structures is reviewing 
their most famous exponent, viz. intuitionistic propositional logic l P L. Preparatory 
to the introduction of various formai systems in later chapters, we shall first give a 
presentation of l P L in perhaps somewhat unorthodox language. 

Definition 1.1 The vocabulary of the propositionallanguage L consists of 

a denumerable set PRO P of propositional variables; 
two verum constants: t, T; 
one falsum constant: .L; 
binary connectives: / (right-searching implication), \ (left-searching implication), 

o (intensional conjunction), /\ (extensional conjunction), V (disjunction); 
auxiliary symbols: (, ). 

Definition 1.2 The set of L-formulas is the smallest set r such that 

PROP ç r; 

t, T, .L E r; 

if A, BEr, then (A/B),(A \B),(AoB),(A/\B),(AV B) E r. 

We use P,P"P2,'" etc. to denote propositional variables, A, B, C, A" A2, '" etc. 
to denote L-fonnulas, and X, Y, Z, X" X 2 , ••• etc. to denote finite, possibly empty 
sequences of L-formula occurrences. Sometimes <> will be used to denote the empty 
sequence. Outermost parentheses of fonnulas will not always be written. 

Definition 1.3 The notion of a subformula of A is inductively defined as follows: 

every L-formula A is a su bformula of i tself; 
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1.1 Int uitionistic propositional logic [PL 3 

the subfonnulas of A and the subformulas of B axe subformulas of (B/A), (A \ B), 
(A 0 B), (A Il B), and (A V B). 

An expression X -> A is called a sequent; X is called its antecedent and A its 
succedent. In case that n = 0, Al ... An -> A denotes -> A. Negation in [PL is a defined 
notion, we have -,r A ~ (..L/A), -,IA d,;j (A \ ..L). A .".+ B is used as an abbreviation 
for (A \ B) Il (B \ A) Il (B/A) Il (A/B). Next, we present [PL as a symmetric sequent 
calculus with (i) logical rules, (ii) operational rules for introducing connectives on the 
left hand side (Ihs) and on the right hand side (rhs) of the sequent axrow ->, and (iii) 
a number of structural inference rules. 

Definition 1.4 The rules constituting [PL are: 

logical rules: 

(id) 

(eut) 

operational rules: 

(..L -» 

(-> t) 

(-> T) 

(T -» 

(-> /) 

U -» 

(-> \) 

(\ -» 

(-> 0) 

(0 -» 

(-> Il) 

(II --» 

(--> V) 

(V --» 

structural rules: 

f- A -> A, 

Y -> A XAZ -> B f- XYZ -> B, 

f- X..LY -> A, 

f- X -> t, 

f- -> T, 

XY -> A f- XTY -> A, 

XA->B f- X->(B/A), 

y -> A XBZ -> C f- X(B/A)YZ -> C, 

AX -> B f- X -> (A \ B), 

Y->A XBZ->C f- XY(A\B)Z->C, 

X -> A Y -> B f- XY -> (A 0 B), 

XABY -> Cf- X(A 0 B)Y --> C, 

X --> A X -> B f- X --> (A Il B), 

XAY --> C f- X(A Il B)Y --> C, 

XBY --> Cf- X(AIIB)Y --> C, 

X --> A f- X --> (A V B), 

X --> B f- X --> (A V B), 

XAY --> C XBY --> C f-' X(A V B)Y --> C; 

pennutation (P): X ABY --> C f- X BAY --> C; 

contraction (C): X AAY -> B f- X AY -> B; 

monotonicity (M): XY --> B f- XAY --> B. 
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4 1 Introduction 

The rules (-> /) and (-> \) are directional versions of the deduction theorem. The 
notion of a derivation in [PL of X -> A from a firute, possibly empty sequence of 
sequent occurrences is defined by induction on the rules of [PL, see Appendix 1.5. 
If II is a derivation in [PL of X -> A from the empty sequence, then II is called a 
proof of X -> A in [PL, and if there is a proof of X -> A in [PL, this is denoted by 
1- IPL X -> A. If the context is clear, we shall sometimes just write 1- X -> A. A proof 
of -> A in [PL is also called a proof of A in [PL. If there is a proof of A in [PL, then 
A is called a theorem of [PL. Two formulas A and B are said to be interderivable in 
[PL, if 1- A -> B and 1- B -> A, which is abbreviated by 1- A ..., B. One can easily 
show that 1- _ A .,é B iff 1- A..., B. 

Since P is present, directional implications (A/ B) and (B \ A) resp. directional 
negations ..,' A and ..,' A are interderivable in [PL. Due to the presence of M, the verum 
constants t and T are interderivable. Moreover, Bince C and Mare available, also (AoB) 
and (A /1 B) are interderivable. Thus, in the presence of the structural rules P, C, and 
M one could do without t and intensional conjunction 0, and one could replace the two 
directional implications /, \ resp. negations ..,', ..,' by the more usual implication sign :J 
resp . ..,.' Note that T (and hence t) is definable in [PL as (p/p), for sorne propositional 
variable p. In the sequel we shall sometimes use :J instead of /, \ and .., instead of..,', ..,', 
and forget about 0, t, and T, if, like in [PL, P, C, and M are assumed to be available. 
Note also that since P, C, and the structural inference rule 

expansion (E): X AY -> B 1- X AAY _ B 

as a special case of M are present, the sequences on the lhs of -> may be conceived of 
as finite ut.. 

EXAMPLE As an example of a derivation in [PL we prove the distribution of /1 over V, 
i.e. A "(B V C) -> (A /1 B) V (A /1 Cl, using M and C: 

A->A B_B A_A C-+C 
AB -+ A AB -+ B AC -+ A AC -+ C 
AB -+ A /1 B AC -+ A /1 C 
AB -+ (A /1 B) V (A /1 C) AC -+ (A /1 B) V (A /1 C) 
A (B V C) -+ (A /1 B) V (A /1 C) 
(A /1 (B V Cl) (B V C) -+ (A /1 B) V (A 1\ C) 
(A /1 (B V C))(A /1 (B V Cl) -+ (A /1 B) V (A /1 C) 
(A /1 (B V C)) -+ (A /1 B) V (A /1 Cl. 

1.2 Kripke's interpretation of IP L 

We shall briefly describe Kripke's semantics for [PL and reproduce its interpretation 
in terms of information states as suggested by Kripke. 

Definition 1.5 A Kripke frame is a structure F =< [, ç>, where [ is a non-empty 
set and ç is a pre-order (or quasi-order) on [, i.e. ç is a reflexive and transitive binary 
relation on [. 

IThis is justified on the strength of a replacement theorem that will be proved in Chapter 3. 
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1.2 Kripke's interyretation of JPL 5 

Definition 1.6 A minimal Kripke model based on a Kripke frame F is a structure 
M = < F, Va >, where Va is a basic valuation function from PROPU {l-} into 21 such 
that for every P E PROP U {..L} and every a, b E J: 

if a ç; b, then a E va(P) implies b E va(P). 

Definition 1.7 An intuitionistic Kripke model based on a Kripke frame F is a minimal 
Kripke model M =< F,va >, where va(..L) = 0. 

Definition 1.8 Given a Kripke model (minimal or intuitionistic) M =< J, ç;, Va >, Va 
is inductively extended to a valuation function v from the set of all L-formulas into 21 

as follows: 

v(p) 

v(A 1\ B) 
v(AV B) 

v(A \ B) 
v(T) 

va(P), 

v(A 0 B) 

v(A) U v(B), 

v(BIA) 

v(t) 

pEPROPU{.L} 

v(A) n v(B), 

{a E J 1 (lib E v(A)) a ç; b implies b E v(B)}, 

J. 

By induction on the complexity of A it can easily be shown that for every Kripke 
model M =< J, ç;, Vo >, every L-formula A, and every a, b E J: 

(Heredity) if a ç; b, then a E v(A) implies b E v(A). 

Definition 1.9 (semantic consequence) Let M =< J, ç;, Va > be a Kripke mode!. A 
sequent s = AI'" An --+ A holds (or is valid) at a E J 

iff { a E v(AI 0 ... 0 An) implies a E v(A) if n > 0 
a E v(A) otherwise. 

The sequent s holds (or is valid) in M iff s holds at every a E J. If --+ A holds at a E M 
resp. is valid in M, then also A is said to hold at a E M resp. to be valid in M. The 
sequent s holds (or is valid) in J P L iff s holds in every intuitionistic Kripke mode!. If 
--+ A is valid in JPL, then also A is said to be valid in JPL. 

If AI ... An --+ A is valid in J P L, then for every intuitionistic Kripke mode! M = 
< J, ç;, Va >, v(AI 0 '" 0 An) ç v(A). This notion of validity may be contrasted with 
the weaker requirement that if Ab"" An are valid in JPL, then Ais valid in JPL. 

The elements of J can, according to Kripke, be thought of as "points in time (or 
'evidential situations'), at which we may have various pieces of information" [1965, p. 
98]. We may also identify a state a E J with the pieces of information available at a. A 
propositional variable P is verfied at a E J, Le. a E v(p), iff there is enough information 
at a to prove p. Thus, a fj. vo(p) does not mean that p is falsified at a, it merely says p is 
not verifed at a. The verification of complex L-formulas at a E J is determined by the 
definition of V, given a basic valuation vo. Since ~r A resp. ~I A is defined as .LIA resp. 
A \ .L, for intuitionistic Kripke models we have: 
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6 1 Introduction 

v(~IA) 

{a E I 1 (\lb E v( A)) if a ç;: b, then b E 0} 
{a E I 1 (\lb E I) if a ç;: b, then b li v(A)}. 

As we are dealing with evidential situations in pre-ordered time, these situations or 
information states may develop differently depending on the basic information aquired 
in the course of time. Thus, a ç;: b says that information state a may develop into 
information state b, and transitivity of ç;: becomes rather obvious, intuitively. Moreover, 
it is assumed that every b E I may develop into itself, sinee the information available at 
b "may be al! the knowledge we have for an arbitrarily long time" [Kripke 1965, p. 99]. 
Eventually, because of (Heredity), information is never lost during the joumey through 
time. Thus, 'possible development' is to be understood as 'possible expansion'. 

Theorem LlO IPL is characterized by the dass of ail intuitionistic Kripke models, 
i.e. f- IPL AI'" An -> A iff AI ... An -> A is valid in I P L. 

Soundness, i.e. the 'only if' direction, can be proved by induction on the length of praofs 
in I P L. (Note that the rule M is validity-preserving because 0, which is used to define 
the evaluation of sequents in Krip,ke models, is evaluated in exactly the same way as 
Il.) U sing semantic tableaux, Kripke [1965] shows that every theorem of I PLis valid in 
every intuitionistic Kripke mode!. We shall sketch a proof of the completeness part of 
the above theorem (i.e. the 'if' direction) by defining a canonical intuitionistic Kripke 
model MIPL =< I, ç;:, Vo >, i.e. a model which itself characterizes I P L (cf. e.g. [Tennant 
1978, p. 106 ff.], [Dosen 1989, p. 42 f.J). Let r be a set of L-formulas; r is deductively 
closed under IPL iffr = ru {A II-IPL AI ... An -> A and Ai Er (1::; i::; n)}. 
r is said to be I P L-consistent iff for no sequence AI ... An' Ai Er, A, ... An -> 1- is 
provable in I P L. r is called prime iff for all L-formulas A, B: (A V B) E r implies A E r 
or BEr. The canonical model MIPL is defined as follows: 

• I 

• ç;: 
• vo(p) 
• vo(1-) 

{a 1 a is a prime, and I PL-consistent 
set of L-formulas deductively elosed under IP L}, 

IS the subset relation ç, 
{aEIlpEa}, 
0. 

Obviously, M 1PL is in fact an intuitionistic Kripke mode!. It can now be shown that 
if 'rfIPL A", .An -> A, then A" ' .. ,An belong to a prime, IPL-consistent set deduc­
tively closed under IPL which does not contain A. Using this fact, one can prove that 
for MIPL =< I, ç;:, Vo > the following holds for every L-formula A and every a E I: 

(Canon) a E v(A) iff A E a. 

By means of (Canon), completeness can easily be derived. If A, ... An -> A is valid 
in every intuitionistic Kripke model, in particular it is valid in MIPL. Thus in MIPL, 
v(A,o ... oAn) ç v(A), ifn > 0, and v(A) = I, otherwise. By (Canon), I-IPL Alo ... 0 

An -> A and thus I-IPL AI'" An -> A, by (-> 0) and (cut). 
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1.2 Kripke's interpretation of I P L 7 

In contrast to the situation in intuitionistic Kripke models, 1- may hold at infor­
mation pieces in minimal Kripke models, As a result of this interpretation of 1-, a 
sequent X 1-Y ---> A is not valid in every minimal Kripke mode!' The logic characterized 
by the class of aIl minimal Kripke models is Johansson's [1937J intuitionistic minimal 
propositional !ogic M P L, 2 

Definition 1.11 The rules of M P L are those of I PL without (1- ---> J, 

In M P L nothing particular is assumed about 1-, The falsum constant 1- can therefore 
be viewed just as a designated propositional variable used to define intuitionistic minimal 
negations ~', ~l. The notions of derivation and proof in M PL are defined in the same 
way as for IPL. 

Theorem 1.12 1- MPL A"" An --> A iff A, ... An --> A is valid in every minimal Kripke 
mode!' 

This can be proved in strict analogy to the above proof for I P L. In the canonical 
model MMPL for M P L, however, the pieces of information are prime sets of L-formulas 
deductively closed under M P L which need not be M PL-consistent, and the requirement 
that va( 1-) = 0 is dropped. 

In the construction of the canonical models M IPL and )v(MPL the defined relation 
ç is not only a quasi-order but Even a partial order on the set of information pieces, 
i.e. it is also anti-symmetric. Therefore I P L resp. M PLis also characterized by the 
class of aIl intuitionistic resp. minimal Kripke models based on a partially ordered set 
(poset). Moreover, there is a standard validity-preserving operation on Kripke mode!s 
(see e.g. [Kripke 1965]) which applied to an intuitionistic resp. minimal Kripke model 
based on a poset produces an intuitionistic resp. minimal Kripke model < l, ç, l, Va > 
with 1 Eland where < l, ç, 1 > is a tree (i.e. < l, ç> is a poset such that (i) 1 is 
an initial node: there is no a E I such that a # 1 and a ç 1, (ii) for every a, b, cEl, 
if a ç c and b ç c, then a ç b or b ç a, and (iii) for each a E I. 1 Çn a, where Çn 
is inductively defined as follows: for every a, cEl, a Ça c iff a = c; a Ç, c iff a ç b; 
a Çn+2 b iff there is acE I such that a Çn+l band b ç c J. Thus, I PL resp. M PLis also 
characterized by the class of aIl intuitionistic resp. minimal Kripke models based on a 
tree.3 Kripke's interpretation cau immediately be extended to Kripke models based on a 
tree: the initial node 1 is to be interpreted as the initial piece of information. In Kripke 
mode!s based on a tree, by (HeredityJ, the Evaluation clause for T can equivalently be 
formulated as: 

viT) = {a Il ça}, 

and a sequent A, ... An --> A can equivalently be said to be valid in a Kripke mode! 
< I,Ç,l,vo > 

2The implication, negation fragment of M PL was first axiomatized by Kolmogorov {1925]. 
3There is a1so a standard validity preserving operation converting any Kripke model based on a quasi.:. 

ordered set inta a Kripke mode} based 011 a pose( (see [Kripke 1965]). Moreover, using a technique which 
is usually called 'unraveling', any Kripke model based on a tree cali be converted inta a Kripke model 
based on a finite tree validating exactly the saille L-formulas (see 'selective filtration' in [Gabbay 1981, 
p. 69 r.]). 
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8 1 Introduction 

"If {1EV(A l o ... OAn) implies 1Ev(A) if n>O 
l 1 E v(A) otherwise. 

Thus, a sequent ---> A is provable in l P L resp. M P L iff T ---> A. is provble in 
l P L resp. M P L iff in every intuitionistic Kripke model resp. minimal Kripke model 
< l, [;;;, 1, Vo >, A holds at 1. 

The fact that l PL resp. M PLis characterized by the class of ail intuitiomstic resp. 
minimal Kripke models based on a tree can be used to show that l P Land M P L enjoy 
the following form of the disjunction property: 

<) 1- X ---> A V B iff (1- X ---> A or 1- X ---> B) 

(see [van Dalen 1983, p. 186 f.l). We shall now give another proof of (strong) complete­
ness of M P L wrt the class of all minimal Kripke models. For this purpose we will define 
the canonical model M:WPL for MPL. 

Definition 1.13 The canonical model M:WPL =< l, [;;;, Vo > is defined as follows: 

• ç = ç; 

• vo(p) = {a El 1 p E a}, for every p in PROP U {1-}. 

It can readily be verified that M:WPL is in fact a minimal Kripke mode!. By induction 
on the complexity of Ait can be shown that (Canon) holds for M:WPL' (We use the fact 
that M P L satisfies <).) 

Theorem 1.14 I-MPL A"" An ---> A iff A"" An ---> Ais valid in every minimal Kripke 
mode!. 

In order to prove completeness, assume that A, ... An ---> A is valid in every minimal 
Kripke mode!. Then A"" An ---> Ais valid in M:WPL' Thus, by (Canon), for every a E l, 
A, 0 ... 0 An E a, implies A E a, if n > 0, and A E a, otherwise. By the definition of l, 
this implies that for every sequence of L-formulas X, if X ---> A, 0 ... 0 An is provable 
in M PL, then X ---> A is provable in M P L. In particular A, 0 ... 0 An ---> A is provable 
in MPL. 

Note that in M:WPL every pieee of information is finitely represented. 

1.3 Grzegorczyk's interpretation of IP L 

A less well-known semantics for l P L in terms of information pieces has been devel­
oped by Grzegorczyk. According to Grzegorkzyk [1964, p. 596J "intuitionistie logic can 
be understood as the logie of scientific research", where a "scientifie researeh (e.g. an 
experimental investigation) consists of the successive enrichment of the set of data by 
new established facts obtained by means of our method of inquiry". In the retrospective, 
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1.3 Grzegorczyk's interpretation of JPL 9 

Grzegorczyk's approach to intuitionistic logic constitutes a concrete version of the char­
acterization of JPL by intuitionistic Kripke models based on a tree. Grzegorczyk's 
approach is concrete in the sense that (i) it gives a concrete interpretation to the possi­
ble worlds or information pieces instead of taking them as primitive, (ii) for a particular 
set of information pieces it specifies a particular binary relation on them, and (iii) it 
specifies a basic valuation function Vo : PROP U {1-} --+ 21 In Grzegorczyk's case we 
have: 

• every finite set of propositional variables is a possible world interpreted as a piece 
of information; 

• let J be a nonempty set of information pieces, and let P be a mapping from J in 
nonempty subsets of J such that 

(*) if a = {Pl,'" ,Pn} E J, then either pra) = {a} or for every b E P(a) there 
exist Pn+l,'" 'Pn+k+l (k ~ 0) such that b = {Pl,'" ,Pn,Pn+l,'" 'Pn+l+k+d· 

P is interpreted as "the function of possible prolongations of the informations" in 
J. A binary relation ç on J ("extension of information") is defined in terms of P 
as follows: for every a, b E J, 

a ÇO b iff a = b; 

a çn+I b iff there exists acE J such that a çn C and b E P(c); 

a ç b iff there exists an n E w such that a çn b. 

Thus, if a ç b, then a is a subset of b. A research is defined by Grzegorczyk as a 
structure n =< J, P, 1 >,' where J is a set of information pieces (i.e. a set of finite 
sets of propositional variables), P is a mapping from J int.o 2/ - {0} satisfying (*), and 
every information piece is an extension of the initial information piece 1 E J: if a E J, 
then 1 ç a (where ç is defined as above). Ideally, 1 = 0. It can readily be seen that 
< J, ç, 1 > is a tree. NexL for a given reseaTch R =< J. P. 1 >. Grzegorczyk defines a 
basic valuation function vo : P ROP U {1-} --+ 21, 

VO(p) = {a E J 1 P E a}; vo(1-) = 0. 

The basic valuation function Vo is inductively extended to a valuation function v from the 
set of all L-formulas into 2/ in exactly the same way as for Kripke models. Thus, every 
research < J, P, 1 > can be regarded as an intuitionistic Kripke model < J, Çp,l, Vo > 
based on a tree. Validity of a sequent s = Al ... An --; A. in a research R =< J, P, 1 > 
is defined as the validity of s in < J, çp, l, Vo >. Grzegorczyk proves the following 
characterization theorem: 

Theorem 1.15 A is a theorem of JPL iff .4 is valid in every research. 

4Grzegorcyz uses '0' instead of '1'. 
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10 1 Introduction 

Completeness is proved by Grzegorczyk in an indirect way. He shows that every finite 
tree T induces a research n isomorphic to T such that for every L-formula A, A is valid 
on T according to the topological interpretation of intuitionistic propositionallogic5 iff 
A is valid in n. Thus, if A is valid in every research n, then it is valid on every finite 
tree according to the topological interpretation of [PL, and thus it is a theorem of [PL. 

Grzegorczyk does not define a canonical research for [PL, and it can easily be shown 
that such a research doesn't exist. Suppose that n is a canonical research for [PL with 
the set of information pieces [. Note that the set r = U{a 1 a E I} is finite. Now, take 
any q E P ROP such that q ft r. Then q \ p is valid in n for arbitrary p, although 
IfIPL -> q \ p.6 Thus n fails to be canonical. 

1.4 The BHK interpretation of l PL 

Let us conclude the review of [PL by presenting an interpretation in terms of proofs, 
viz. the so-called Brouwer-Heyting-Kolmogorov interpretation (BHK interpretationl of 
the intuitionistic connectives A, V, :J and the falsum constant 1-.7 To begin with we 
adopt Girard's [Girard, Lafont & Taylor 1989, p. 5J point of view that "by a proof we 
understand not the syntactic formai transcript, but the inherent object of which the 
written form gives only a shadowy reflection. We take the view that what we write as a 
proof is merely a description of something which is already a process in itself". From a 
foundational perspective, the explanatory power of the BHK interpretation depends, of 
course, on the explanatory power of the notions it makes use of1 such as "construction", 
"transform", etc. 8 In this connection Troelstra and van Dalen [1988, p. 9J point out that 
"on a very 'elassical' interpretation of construction and mapping ... [the interpretation 
justifiesJ the principles of two-valued (elassical) logic". With these remarks in mind let 
us consider one recent formulation of t.he BHK interpretation of [PL. 

1 [Troelstra & van Dalen 1988, p. 9J 1 

(Hl) A proof of A A Bis given by presenting a proof of A and a proof of B. 

(H2) A proof of A V B is given by presenting either a proof of A or a proof of B (plus 
the stipulation that we want to regard the proof presented as evidence for A V Bl. 

(H3) A proof of A :J B 9 is a construction which permits us to transform any proof of 
A into a proof of B. 

(H4) Absurdity 1- (contradiction) has no proof; a proof of ~A is a construction which 
transforms any hypothetical proof of A into a proof of a contradiction. 

5 A presentation of the topological semantics for 1 P L can e.g. be found in [van Dalen 1986). 
6Grzegorczyk uses ':J' instead of 'l' and '\'. 
7The question of what can be regarded as a proof of a primitive sentence represented by a propositional 

variable "depends on the particular discipline that is being considered" [Lopez-Escobar 1972, p, 363]. 
8 An very eloquent version of the BHK interpretation can be found in [Dragalin 1988, p. 2ff.]. 
9Troelstra and van Dalen use '_' instead of '::>'. 
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1.5 Appendix: Derivations in sequent calculi 11 

Generally, the BHK interpretation is regarded as a "natural semantics" [Troelstra & 
van Dalen 1988, p. 24J for [PL. According to Girard [1989, p. 11J "Heyting's semantics 
of proofs" even is "[oJne of the greatest ideas in logic". 

1.5 Appendix: Derivations in sequent calculi 

Sequent Calculi are 'meta-calculi'. A single conclusion sequent calculus acts on sequents 
X -+ A, i.e. it manipulates expressions saying that a formula A is a syntactic con­
sequence of a finite sequence of formula occurrences X. At this meta-Ievel we have a 
syntactic consequence relation f- between finite sequences S of sequent occurrences and 
single sequents. If .c is a logic presented as a sequent calculus, then V.c(II, X -+ A, S), 
"II is a derivation in .c of X -+ A from S" is defined in a way induced by the rules of 
.c. As an example we here give the complete definition for [PL: 

o VIPL(A -+ A, A -+ A, <». 

o If V IPL(II l , y -+ A, S.) and V 1PL(II2,XAZ -+ B,S2), 
then VIPL(X~'z~B'XYZ -+ B,SIS2)' 

o VIPL(X..LY -+ A, X..LY -+ A, <». 

o VIPL(X -+. t,X -+ t, <». 

o V IPL( -+ T, -+ T, <». 

o IfVIPL(II,XY -+ A,S), then VIPL(XTr_A,XTY -+ A,S). 

o IfVIPL(II,XA -> B,S), then VIPL(x_~B7A)'X -+ (BjA),S). 

o If VIPL(III> y -+ A, SI) and V IPL(II2, X BZ -+ C, S2), 
then VIPL(X(B}1)~Z_c,X(BjA)YZ -+ C,SIS2). 

o If VIPL(II, AX -+ B, S), then VIPL( x -f;t\B)' X -+ (A \ B), S). 

o If V IPL(II l , y -+ A, SIl and VIPL(II2, X BZ -+ C, S2), 
then V IPL( xy(~~~fz-c' XY(A \ B)Z -> C, Sâ2)' 

o If V IPL(II 1 , X -+ A, SI) and V IPL(II2, y -+ B, S2), 
then VIPL(xY'2~loB)'XY -+ (A OB),SIS2)' 

o IfVIPL(II,XABY -+ C,S), then VIPL(X(AoJJ)Y_c,X(AoB)Y -+ C,S). 

o If VIPL(III> X -+ A,SI) and VIPdII2,X -+ B,S2), 
then VIPL(x!.:I~~B)' X -> (A t\ B), SIS2)' 

o If VIPL(II, XAY -> C, S), then VIPL(X(AA~)Y_C' X(A t\ B)Y -> C, S). 

If VIPL(II, X BY -> C, S), then VIPL( X(AA~)Y_C' X(A t\ B)Y -+ C, S). 
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12 1 Introduction 

• If VIPL(I!, X -> A, 5), then VI pd x (~VB)' X -> (A V B), 5). 

If VIPL(II, X -> B, 5), then V IPL( x _(~VB)' X -> (A V B), 5). 

• IfVIPL(II"XAY -> C,S,) and V IPL(II2,XBY -> C,S2), 
then VIPL(X(A~k~~_c,X(AV B)Y -> C,S,S,). 

• IfVIPL(II,X.4BY -> C,S), then VIPdxBA~_C,XBAY -> C,S). 

• IfVIPL(II,XAAY -> B,S), then VIPL(XA~_B,XAY -> B,S). 

• IfVIPLCII,XY -> B,S), then VIPL(XA~_B,XAY -> B,S). 
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