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Preface

The present monograph is a revised version of my doctoral thesis ai the Fachbereich
Philosophie und Sozialwissenschaften I of the Free University of Berlin, It contains my
contribution to the interdisciplinary research project “Systeme der Logik als theoretische
Grundlage der Wissens- und Informationsverarbeitung” at the Institute for Philosophy
of the Free University of Berlin.

I am very glad that this preface gives me the opportunity to express my gratitude to
various people and institutions. First of all, I would like to thank my thesis advisers,
David Pearce and Johan van Benthem. With each of them I asscciate cne of the basic
ideas which in combination led me to writing this book, viz. {i) to regard negative and
positive information as equally relevant and (ii) to vary in a systematic way structural
rules of inference. Without their inspiration this thesis would not have come into ex-
istence, and it would not have been completed without Johan van Benthem’s critical
comments and encouragement. Moreover, I gratefully acknowledge scholarships from
the Senat von Berlin and the Studienstiftung des deutschen Volkes. To the latter I am
indebted for support over many years. A number of colleagues have, in one way or
another, contributed to the realization of this hook. 1 would like to thank Kosta Doden
and Dirk Roorda for their eritical remarks on an early version of Chapter § and several
stimulating discussions, To Dirk in addition I return thanks for practical help concern-
ing ‘huisvesting’. I would alsc like to thank Peter Schroeder-Heister. His insistance
on elimination rules encrmously helped me 1o understand the proof-theoretic approach
towards the problem of functional completeness. André Fuhrmann was so kind to com-
ment on an early version of parts of Chapter 9. I also wish to thank Gerd Wagner for
nummerous conversations and three referees of the Journal of Logic, Language and In-
formation for their reports. Finally, I am grateful to Jorg Siekmann for recommending
this book for Springer Lecture Notes in Al From the very beginning I could not have
carried out tlis work without the support from Petra, Kasimir and my parents. They
deserve my special, whele-hearted thanks.

As indicated in the text, Chapter 5 is based on ‘Formulas-as-types for a hierarchy of
sublogics of intuitionistic propositional logic’ in D. Pearce & H, Wansing (eds.), Nenelas-
sicel Logics and Information Processing, Lecture Notes in AI, Vol. 619, Springer-Verlag,
Berlin, 1992, and Chapter 4 (the part consisting of Sections 4.1 to 4.4) is (based on)
my paper ‘Functional completeness for subsystems of intuitionistic propositional logic’,
forthcoming in the Journal of Philosophical Logic. Chapter 4, in particular Section 4.5,
is also used in ‘On the expressiveness of Categorial Grammar’, to appear in J. Wolen-
ski (ed.), The Legacy of Ajdukiewscz, Rodopi, Amnsterdam. Material from, essentially,
Chapter 9 will appear as ‘Informational Interpretation of Substructural Propositional
Logics’ in the Journal of Logic, Lunguage and Information.

Hamburg, March 1993 Heinrich Wansing
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Chapter 1

Introduction

The concept of information can be studied from numerous points of view. Without
doubt, however, information structure and information processing form central aspects
of the study of information. Whereas information structure can be regarded as a subject
of model theory, information processing may be viewed as a matter of proof theory, The
present investigation pursues this logical perspective. It can be considered a systematic
contribution to the line of research that began with 3. Kripke's [1965] interpretation
of intuitionistic logic in models based on pre-ordered information states. The following
table identifies the most important topics that will be dealt with.

proof theory | the systematic variation of structural inference rules

in sequent calculi, which offers various options for
representing premises as databases and the sequent
arrow - as an information-processing mechanism
(Chapters 2 and 3)

cut-elimination and consequences thereof

't (Chapters 3 and 8)

functional completeness wrt a proof-theoretic
interpretation of logical operations {Chapters 4 and 7)
model theory | the encoding of proofs by typed A-terms and vice

versa (Chapters 5 and 8)

information models, i.e. models based on certain abstract
information structures, where by an abstract information
structure we understand a non-empty set I viewed as a
set of informaiton pieces or information sieles represented
by pieces of information together with certain relations
or operations on I, poseibly some designated pieces of
information, and possibly certain conditions on these
relations, operations or designated elements

{Chapters 1, 2 and 9)

Table 1.1: The main topics.

A general theme, which will be alluded to in considerations on information process-
ing as well as information structure, is the dichotomy between pesitive and negative
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information (Chapters 2 and 6 - 9). The central claims are that both positive and
negative information should be treated in their own right as independent and equalily
relevant concepts, and that this position leads to strong, constructive negation. The
first two chapters prepare the stage for a uniform and more comprehensive discussion of
information structure and deductive information processing in the remaining chapters
by providing examples and motivation.

The whole investigation is concerned with propositional logics only. The propasition-
al sequent calculi considered can easily be extended to predicate logics by adding the
usual rules for the existential and universal quantifiers (and, in the presence of sirong,
constructive negation, the usual rules for their strongly negated forms). We will make
use of 3 and ¥ as quantifiers in the metalanguage. The metalogic used is classical;
repeatedly there will be applications of classical reductic ad absurdum as a rule. Where
misunderstandings are unlikely to arise, sometimes no special attention will be paid to
the distinction between the mention and use of symbols,

1.1 Imtuitionistic propositional logic IPL

An obvious starting point for investigating logics of information structures is reviewing
their most famous exponent, viz. intuitionistic propositional logic JPL. Preparatory
to the introduction of various formal systems in later chapters, we shall first give a
presentation of [PL in perhaps somewhat unorthodox language.

Definition 1.1 The vocabulary of the propositional langnage L consists of

a denumnerable set PROP of propositional variables;

two verum constants: £, T;

one falsum constant: 1;

binary connectives: [ (right-searching implication), \ (left-searching implication},
o (intensional conjunction), A (extensional conjunction), V (disjunction);

auxiliary symbols: (, ).

Definition 1.2 The set of L-formulas is the smallest set T" such that
PROPCT,
t, T, LeT,;
if A, BeTl, then (A/B),(A\B), (Ao B),(AAB),{AVB)eT.
We use p,p1, P2, .. . etc. 1o denote propositional variables, A, B, C, 4;, 4a, ... etc.
to denote L-formulas, and X, Y, Z, X;, X3, ... etc. to denote finite, possibly empty

sequences of L-formula occurrences. Sometimes <> will be used to denote the emply
sequence. Qutermost parentheses of formulas will not always be written.

Definition 1.3 The notion of a subformula of A is inductively defined as follows:

every L-formula A is a subformula of itself;
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the subformulas of 4 and the subformulas of B are subformulas of (B/A4}, {A\ B),
(45 B), (A B), and (4 B).

An expression X — A is called a sequent; X is called its antecedent and A its
succedent. In case that n = 0, A, ... A, — A denotes — A. Negation in IPL is a defined
notion, we have "4 & (1/4), +4 = (4\ 1). A =* B is used as an abbreviation
for (AN B)A(B\ A) A (B/A) A(A/B). Next, we present JPL as a symmetric sequent
caleulus with (i) logical rules, (ii) operational rules for introducing connectives on the
left hand side (lhs) and on the right hand side (rhs) of the sequent arrow —, and (3ii)
a number of structural inference rules.

Definition 1.4 The rules constituting JPL are:

logical rules :

(id) F A A,

(eut) YA XAZ-—- B}ty XYZ - B,

operational rules:

(L —) FX1Y — A4,

(—t) FX =t

(=) o,

(T =) XY —-AFXTY — A,

/) XA B & X~ (B/A),

(/=) Y>A XBZ-CF X{B/AYZ > C,

(—\) AX - B+ X - (4\ B),

{\ =) Y4 XBZ-CVF XY(4\B)Z - C,

(— o) X—4 Y-BFXY S5({AoB),

{o —) XABY - C+ X(AoB)Y — C,

(—A) X—-A X—-BFX-(AARB),

(A —) XAY - CF X(AAB)Y = C|
XBY - CF X(AAB)Y - C,

(— v} X—-4AFXS(AVE)
X—BFX-{AVB),

(v =) XAY = C XBY - CF X(Av B)YY - C;

structural rules :

permutation {P}: XABY — CF XBAY — C;
contraction (Cj: XAAY - B+ XAY — B;
monctomicity (M): XY — B F XAY — B.
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The rules (— /) and {— \} are directional versions of the deduction theorem. The
notion of a derivation in IPL of X — A from a finite, possibly empty sequence of
sequent occurrences is defined by induction on the rules of IPL, see Appendix 1.5.
U II is a derivation in JPL of X — A from the empty sequence, then II is called a
proof of X — A in IPL, and if there is a proof of X — A in [PL, this is denoted by
Frpr, X — A. If the context is clear, we shall sometimes just write - X — A. A proof
of — A in IPL is also called a proof of A in IPL. If there is a proof of A in TPL, then
A is called a theorem of JPL. Two formulas A and B are said to be interderivable in
IPL.if+ A — B and B — A, which is abbreviated by F A « B. One ¢an easily
show that F —» A =" Biff+ 4 — B.

Since P is present, directional imptications (A/B) and (B \ A) resp. directional
negations " A and ~/ 4 are interderivable in 7PL. Due to the presence of M, the verum
constants t and T are interderivable. Moreover, since C and M are available, also (Ac B)
and (A A B) are interderivable. Thus, in the presence of the structural rules P, C, and
M one could do without t and intensional conjunction o, and one could replace the two
directional implications /, \ resp. negations —, = by the more usual implication sign D
resp. —.' Note that T (and hence t) is definable in 7PL as {p/p), for some propositional
variable p. In the sequel we shall sometimes use D instead of /, \ and - instead of —* =,
and forget about o, t, and T, if, like in IPL, P, C, and M are assumed to be available.
Note also that since P, C, and the struciural inference rule

expansion (E): XAY — B+ XAAY - B

as a special case of M are present, the sequences on the lhs of — may be conceived of
as finite sets.

EXAMPLE As an example of a derivation in TPL we prove the distribution of A over V,
ie. ANBVCY = (AABYV(AAC), using M and C:

AB—~ A AB - B AC— A AC-C
AB — AAB AC o AnC

A S (AABV(AAD) AC S (AAB)V(AAC)
ABVC S (AABIVIAAC)
(AA(BYC)(BVC) — (AAB)V(AAC)
(AABVCN(AA(BVC)) = (AAB)VI{AAL)
(ANBVC) > (AABIVIAACY

1.2 Kripke’s interpretation of /PL

We shall briefly deseribe Kripke's semantics for TPL and reproduce its interpretation
in terms of information states as suggested by Kripke.

Definition 1.5 A Kripke frame is a structure F =< I,C>, where [ is a nop-empty
set and C is a pre-order {or quasi-order) on I, L.e. C is a reflexive and transitive binary
relation on J.

'This is justified on the strength of a replacement theorem that will be proved in Chapter 3.
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Definition 1.8 A minimal Kripke mode] based on a Kripke frame F is a structure
M = < F,us >, where v is a basic valuation function from PROP U {L} into 2¢ such
that for every p € PROP U {1} and every a, b€ I

if e C b, then a € vy{p) implies b € vp(p).

Definition 1.7 An intuitionistic Kripke model based on a Kripke frame F is a minimal
Kripke modet M =< F,vg >, where vo(1} = 0.

Definition 1.8 Given a Kripke model (minimal or intuitionistic) M =< I, G, v >, vp
is inductively extended to a valuation functicn v from the set of all L-formulas into 27
as follows:

v(p) = w(p), pe PROPU {1}

v(AA B} = v(deB) = ofAJNe(B),

v(AV E) = v(4)Uu(H),

wA\B) = u(B/A) = Jael}{vbev(Ad)) aC b implies b v(B)},

v(T) = oft) = [

By induction on the complexity of 4 it can easily be shown that for every Kripke
model M =< I, L vy >, every L-formula A, and every a, be I

(Heredity) i aC b, then a € ¥{A4) implies b € v(A4).

Definition 1.9 (semantic consequence) Let M =< I, vy > be a Kripke model. A
sequent 3= A;... A, —+ A holds (oris valid)ata e [

i a€v(djo... 04,) implies a€v{d} if n>0
a € n(d) otherwise.

The sequent s holds (or is valid} in M iff s holds at every a € . If — A holds at a € M
resp. is valid in M, then also A is said to hold at @ € M resp. to be valid in M. The
sequent s heolds {or is valid) in JPL iff 5 holds in every intuitionistic Kripke model. If
—+ A is valid in fPL, then also A is said to be valid in IPL,

If Ay...A, — A is valid in TPL, then for every intuitionistic Kripke model M =
< ILE,ug>, v(d0...0A4,) € v(4). This notion of validity may be contrasted with
the weaker requirement that if 4,, ..., A, are valid in TPL, then A is valid in IPL.

The elements of I can, according to Kripke, be thought of as “points in time (or
‘evidential situations’), at which we may have various pieces of information” [1965, p.
98]. We may also identify a state a € J with the pieces of information available at a. A
propositional variable p is verfied at a € I, i.e. a € v(p}, iff there is enough information
at a to prove p. Thus, a & vy(p} does not mean that p is falsified at a, it merely says p is
not verifed at a. The verification of complex L-formulas at ¢ € [ is determined by the
definition of v, given a basic valuation v. Since =" A resp, ~'A4 is defined as 1 /A resp.
A\ 1, for intuitionistic Kripke models we have:
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(" AJ

v(=-14)
{ag I {(¥beuw(A)) if ¢ T b, then be B}
{ecf|(Mbel)if aC b, then b v(A)}.

As we are dealing with evidential situations in pre-ordered time, these situations or
information states may develop differently depending on the basic information aquired
in the course of time. Thus, ¢ C b says that information state ¢ may develop into
informaiion state b, and transitivity of C becomes rather obvious, intuitively. Moreover,
it is assumed that every & € I may develop into itself, since the information available at
b “may be all the knowledge we have for an arbitrarily long time” {Kripke 1965, p. 99].
Eventually, because of (Heredity), information is never lost during the journey through
time, Thus, ‘possible development’ is to be understood as ‘possible expansion’.

Theorem 1.10 IPL is characterized by the class of all intuitionistic Kripke models,
e brpp Ay . A, —+ AT A .. A, — A isvalidin TPL.

Soundness, i.e. the ‘only if” direction, can be proved by induction on the length of proofs
in IPL. {Note that the rule M is validity-preserving because o, which is used to define
the evaluation of sequents in Kripke models, is evaluated in exactly the same way as
A.) Using semantic tableaux, Kripke [1965] shows that every theorem of IPL is valid in
every intunitionistic Kripke model. We shall sketch a proof of the completeness part of
the above theorem (i.e. the ‘if” direction} by defining a cancnical intuitionistic Kripke
model Mpr, =< I, C, vy >, i.e. a model which itself characterizes IPL (cf. e.g, [Tennant
1978, p. 106 ff.], [Dogen 1989, p. 42 £]). Let T be a sef of L-formulas; I is deductively
closed under IPLf T =T U{A |Fpr 4;... 4, = 4 and A, €T (1 £7 <)}
T’ is said to be I PL-consistent iff for no sequence 4,... 4,, A, €T, 4,.. . A, - L is
provable in TPL. T' is called prime iff for all L-formulas A, B: (AVB) € T implies A € T
or B £ T'. The canonical model M ;p;, is defined as follows:

o J = {a|ais & prime, and IPL—consistent _
set of L—formulas deductively closed under JPL},

s C is the subset relation C,

¢ wip) = {acl|peca},

o u{l) = B

Obviously, M;py, is in fact an intuitionistic Kripke model. It ¢an now be shown that
€ Hipr Ar... 4. — A, then A, ..., A, belong to a prime, IPL-consistent set deduc-
tively closed under I PL which does not contain A. Using this fact, one can prove that
for Mjpr, =< I,C, v > the following holds for every L-formula A and every a € I:

(Canon) ecv(A)iff A €ea

By means of {Canon), completeness can easily be derived. If 4;... 4, — A is valid
in every intuitionistic Kripke model, in particular it is valid in M;py,. Thus in Mjp,,
v(dyo...0A4,) Cuv(A),if n >0, and v{A) = I, otherwise. By (Canon). F;p;, 4, 0...0
A, — Aand thus bjpp A ... A — A, by (— o) and (cut).
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=1

In contrast to the situation in intuiticnistic Kripke models, & may hold at infor-
mation pieces in minimal Kripke models. As a result of this interpretation of L, a
sequent X 1Y — A is not valid in every miniinal Kripke model, The logic characterized
by the class of all minimal Kripke models is Johansson’s [1937] intuitionistic minimal
propositional logic MPL.?

Definition 1,11 The rules of M PL are those of IPL without {L —).

In M PL nothing particular is assumed about 1. The falsum constant | can therefore
be viewed just as a designated propositional variable used tec define intuitionistic minimal
negations =", ='. The notione of derivation and proof in M PL arc defined in the same
way as for TPL.

Theorem 1.12 typp Ay.. A, — AT Ay .. 4, — A is valid In every minimal Kripke
model.

This cap be proved in strict analogy to the above proof for fPL. In the canonical
model My pp for M PL, however, the pieces of information are prime sets of L-formulas
deductively closed under M PL which need not be M P L-consistent, and the requirement
that vg{L) = # is dropped.

In the construction of the canonical models M ;pp and Mysp; the defined relation
E is not only a quasi-order but even a partial order on the set of information pieces,
l.c. it is also anti-symmetric. Therefore TPL resp. M PL is also characterized by the
class of all intuitionistic resp. minimal Kripke models based ou a partially ordered set
(poset). Moreover, there is a standard validity-preserving operation on Kripke models
(see e.g. [Kripke 1965]) which applied to an intuitionistic resp. minimal Kripke model
based on a poset produces an mtuitionistic resp. minimal Rripke model < I,5,1, 09 >
with 1 € T and where < f,C,1 > is a tree (i.e, < I,C> 15 a poset such that (i} 1 is
an initial node: there is no @ € [ such that @ # 1 and a C 1, {ii) for every a.b,c € [,
faCcand 8 C ¢, then @« C b or & CC a, and (jii)} for cach a € I. 1 ., a, where C,
is inductively defined as follows: for every a,c € [,a Cocifo =g e C, ciffa C b
aC.;;biff thereisac € I such that a £, b and b C ¢). Thus, TPL resp. M PL is also
characterized by the class of all intunitionistic resp. minimal Kripke models based on a
trec.? Kripke's interpretation can immediately be extended to Kripke models based on a
tree: the initial node 1 is to be interpreted as the initial piece of information. In Kripke
models based on a tree, hy (Heredity}. the evaluation clause for T can equivalently be
formnulated as:

v(T)={a|1Ea},

and a sequent A, ... 4, — A can equivalently be said to be valid in a Kripke model
< I'J I;, 1 VB >

2The implication, negation fragment of M PL was first axiomatized by Kolmegorov {1925].

*There is also a standard validity preserving operation canverting any Kripke tnodel based on a gquasi-
ordered sel into a Kripke model based on a posed (see [Kripke 1965]). Moreover, using a technique which
is usually called ‘unraveling’, any Kripke model based on a tree can be converted inte a Kripke model
based on a finile tree validating exactly the same L-formulas (see ‘selective filtration’ in [Gabbay 1981,
p. 69 £]).
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o lew{Aro...0A,} implies L g u(A4) if n>0
1ewld) otherwise.

Thus, a sequent — A is provable in IPL resp. MPL iff T — A is provhle in
IPL resp. M PL iff in every intuitionistic Kripke model resp. munimal Kripke maode]
< I,E,1,u >, A holds at 1.

The fuet that TPL resp. MPL is characterized by the class of all intuitionistic resp,
minimal Kripke models based on & tree can be used to show that TPL and M PL enjoy
the following form of the disjunction property:

¢ FX—-AvB if WX >Aork X - B)

(see [van Dalen 1983, p. 186 f.]). We shall now give another proof of (strong) complete-
ness of M P L wrt the class of all minimal Kripke models. For this purpose we will define
the canonical model M}y, for MPL.

Definition 1.13 The canonical model M}, p; =< I, 5.y > is defined as follows:

e I={a|3X =4, .. Ain>20) and a={Ajrupr X — A}l}:
e C=C;
e wp)={acl'pecal,forevery pin PROPU{L}.

It can readily be verified that Miyp; is in fact a minimal Kripke model. By induction
on the complexity of A it can be shown that (Canon) holds for MY, .y, (We use the fact
that M PL satisfies $.)

Theorem 1.14 Fyp;, A .. A, — AIF A .. A, — Aisvalid in every minimal Kripke
model.

In order to prove completeness, assume that A; ... A, -+ A is valid in every minimal
Kripke model. Then A; ... A, — A is valid in M;p; . Thus, by (Canon), for every a € I,
Ajo...0od, €a,implies A € a,ifn >0, and A € a, otherwisc. By the definition of I,
this implics that for every sequence of L-formmiulas X, if X — A, 0...¢ A, is provable
in MPL, then X — A4 is provable in M PL. In particular 4, 0...c A4, -+ 4 is provable
in MPL,

Note that in My, every piece of information is finitely represented.

1.3 Grzegorczyk’s interpretation of IPL

A less well-known semantics for JPL in terms of information pieces has been devel
oped by Grzegorczyk. According to Grzegorkzyk (1964, p. 596] “intuitionistic logic can
he understood as the logic of scientific research”™, where a “scientific research {c.g. an
experimental investigarion) consists of the successive enrichment of the set of data by
new established facts obtained by means of our method of inquiry™. In the retrospective,
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Grzegorczyk's approach to intuitionistic logic constitutes a concrete version of the char-
acterization of JPL by intuitionistic Kripke models based on a tree. Grzegorczyk's
approach is eencrefe in the sense that (1) it gives a concrete interpretation to the possi-
ble worlds or infarmation pieces instead of taking them as primitive, (i) for a particular
set of information picces it specifies a particular binary relation on them, and (i1} it
specifies a basic valuation function vg : PROP U {1} — 2. In Grzegorczyk's case we
have:

o every finite set of propositional variables is a pessible world interpreted as a plece
of information;

¢ let I be a nonempty set of information pieces. and let P be a mapping from [ in
nonempty subsets of { such that

(+) if e = {p1.....pn} € I, then cither P(a) == {a} or for every b € P(a} there
exist Patty. o2 Paskts (K > 0) such that b= {pr, ..., Pn.Prris- s Prdlanti )

P is interpreted as “the function of possible prolongations of the informations” in
1. A binary relation C on [ {“extension of information™} is defined in terms of P
as follows: for every a, b€ I,

aC®hiffa=b
o ™ b iff there exists a ¢ € T such that e C" ¢ and b € P{ch

a L b iff there exists an n € w such that « C" &,

Thus, if a C &, then a is a subset of b, A research is defined by Grzegorezyk as a
structure R =< I, P,1 >.* where I is a set of information pieces (i.c. a set of finite
sets of propositional variables), P is a mapping from [ into 27 - {@] satisfying (), and
every information piece is an extension of the inifiel information plece 1 € I'if o € 1,
then 1 T a {where C is defined as above), Ideally, 1 = @. It can readily be seen that
< I,C,1 > is a tree. Next. for a given research R =< . P.1 >. Grzegorczyk defines a
basic valuation function v, : PROP U {_} — 24

vo(p) ={ael|p€a) vo(l)=0.

The basic valuation function vy is inductively extended to a valuation function v from the
set of all L-formulas into 27 in exactly the same way as for Kripke models. Thus, every
research < I, P,1 > can be regarded as an intuitionistic Kripke model < I.Cp,1,vq >
based on & tree. Validity of a sequent 5 = 4;... 4, — 4 in a research R =< I, P.1 >
is defined as the validity of ¢ in < 7,Cp, 1,14 >. Grzegorezyk proves the following
characterization theorem:

Theorem 1.15 A is a theorem of JPL ff 4 is valid in every research.

1Grzegorcyz uses ‘07 instead of ‘1.
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Completeness is proved by Grzegorczyk in an indirect way. He shows that every finite
tree T induces a research R isomorphic to T such that for every L-formula A, A is valid
on T according to the topological interpretation of intuitionistic propositional logie® iff
A is valid in R. Thus, if 4 is valid in every research R, then it is valid on every finite
tree according to the topological interpretation of IPL, and thus it is a theorem of FPL.

Grzegorezyk does not define a canonical research for /P L, and it can easily be shown
that such a research doesn’t exist. Suppose that R is a canonical research for TP L with
the set of information pieces I. Note that the set T = [J{e | a € I} is finite. Now, take
any ¢ € PROP such that ¢ € . Then ¢\ p is valid in R for arbitrary p, although
Hipr - g\ p.f Thus R fails to be canonical.

1.4 The BHK interpretation of IPL

Let us conclude the review of [P by presenting an interpretation in terms of preofs,
viz. the so-called Brouwer-Heyting-Kolmogorov interpretation (BHK interpretation) of
the intuitionistic connectives A, V, 3 and the falsum constant 1.7 To begin with we
adopt Girard’s {Girard, Lafont & Taylor 1989, p. 5] point of view that “by a prenf we
understand not the syntactic formal transcript, but, the inherent object of which the
written form gives only a shadowy reflection. We take the view that what we write as a
proof is merely a description of something which is alreedy a process in itself”. From a
foundational perspective, the explanatory power of the BHEK interpretation depends, of
course, ¢n the explanatory power of the notions it makes use of, such as “construction”,
“transform”, etc.® In this connection Troelstra and van Dalen [1988, p. 9] point out that
“on a very ‘classical’ interpretation of construction and mapping ... ‘the interpretation
justifies] the principles of two-valued (classical) logic®. With these remarks in mind let
us consider one recent formulation of the BHK interpretation of [PL.

ﬁoelstra & van Dalen 1988, p. 9]—‘

(H1) A proof of A A B is given by presenting a proof of A and a proof of B.

{H2} A proof of AV B is given by presenting either a proof of A or a proof of B (plus
the stipulation that we want to regard the proof presented as evidence for AV B).

(H3) A proof of A D BY is a construction which permits us to transform any proof of
A into a proof of B.

(H4) Absurdity L (contradiction) has no proof; a proof of —A is a construction which
transforms any hypothetical proof of A into a proof of a contradiction.

5A presentation of the topological semantics for I PL can c.g. be found in [van Dalen 1986}

5Graegorczyk uses ‘D7 instead of *f" and Y,

"The question of what can be regarded as a proof of a primitive sentence represented by a propositional
variable “depends on the particular discipline that is being considered” [Lopez-Escobar 1972, p. 383}

®An very eloguent version of the BHK interpretation can be [ound in [Dragalin 1988, p. 2ff.].

"Troelstra and van Dalen use ‘— instead of "2
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Generally, the BHK interpretation is regarded as a “natural semantics” [Troelsira &
van Dalen 1988, p. 24] for JPL. According to Girard [1989, p. 71] “Heyting's semantics
af proafs” even is “[o]ne of the greatest ideas in logie”.

1.5 Appendix: Derivations in sequent calculi

Sequent calculi are ‘meta-calculi’, A single conclusion sequent caleulus acts on sequents
X — A, ie. it manipulates expressions saying that a formula A is a syntactic con-
sequence of a finite sequence of formula occurrences X. At this meta-level we have a
syntactic consequence relation F hetween finite sequences § of sequent occurrences and
single sequents. If £ is a logic presented as a sequent calculus, then D (I, X — 4,53,
“TI is a derivation in £ of X — A from 5" is defined in a way induced by the rules of
£. As an example we here give the complete definition for TPL:

] DIPL(A — A,A — A,{))A

] If D}PL(HI, Y - A, Sl} and 'D“JL(HQ,XAZ e B,Sg),
then Dypy (% XY Z — B,5,5;).

o Dipt(XLY — A,X1Y — A, <>).

¢ Dipy(X 8, X — ¢, <),

o Drpp{ =T, = T,<>).

o I Dypr (T, XY — A,5), then Dypy(zrieg, XTY - 4,5).
o If Dype(ll, XA — B, §), then Dipi{x—(azzy X — (B/A).S)

o If DIPL(H‘h Y — A Sl) and D;PL(HQ,XBZ i C S;)}-,
_then DJPL[:WZZ__—F,.X(BK‘A}YZ - C S'[ng

o fDp (N, AX — B, S), then Dm(m,x — (A\ B),S).

o HDp (I, Y — A, 5) and Dype(Il2, XBZ — C, 53),
then DIFL(T[E{%)ZH’XY(A \ B]Z —_ C, S‘]S‘z).

o If Dipr(Ih. X — A4, 5) and Dypp(ll, ¥ — B, 5,),

then 'DIPL()—('?—:I'(—:;B—),XY — (A ] B), 5152)‘

o HDpp {1, XABY — C,S), then DJPL(W, [(Ao BYY — C,5).

o If 'D”:L{HhX — A, S5)and Dypp (D, X — B, 5,),

then DIPL(Y:%IALET X — (A Fal B}, 5152)‘

o I Dipi(I, X AY — C,5). then Dipr{spmyms X(A A BYY — C,5).
If Dyp{ll, XBY — C,5), then DIPL(Y[AJ\_E')E‘X(A ABY — C, S}
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If Dipi{Ill.X — 4,5}, then Dm,[ﬁ,x — (AvV B), 5.

If Dypy (1. X —+ B,5), then Dyppl X—_Hgv—s},x — (AV B),S).

I Drpeflly, XAY — €, 5)) and Dyp {ll;, XBY — C, 53],
then DJ’PL(?‘[‘HIDIJBJ_;%/_._Q-.X(A W B)Y — C, 5'1.5’2).

If Dre(Il, X ABY — C, S), then Drpi{ ypiy—p. X BAY — C, 5).
If D;pL(H,XA.A}" - B, 5}, then DIF’L( A!!’]—-oE’X“iY —r B,S]
I Dipr{ll, XY — B, 5), then Dyprl i, X AY — B, 5).





