
Peter E. Lauer (Ed.)

Functional Programming,
Concurrency, Simulation
and Automated Reasoning

International Lecture Series 1991-1992
McMaster University, Hamilton, Ontario, Canada

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitat Karlsruhe
Postfach 6980
Vincenz-Priessnitz-StraBe l
D-76131 Karlsruhe, FRG

Volume Editor

Peter E. Lauer

Juris Hartmanis
Comell University
Department of Computer Science
4130 Upson Hall
Jthaca, NY 14853, USA

Department of Computer Science and Systems, McMaster University
1280 Main Street West, Hamilton, Ontario L8S 4Kl, Canàda

CR Subject Classification (1991): D.1-3, F.3

ISBN 3-540-56883-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56883-2 Springer-Verlag New York Berlin Heidelberg

This work 1S subject to copyright. Ail rights are reserved, whether the whole or part
of the material is concemed, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its CUITent version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author
Printing and binding: Druckbaus Beltz, HemsbachlBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

This collection of papers arose from a series of lectures, given in the Department of
Computer Science and Systems, McMaster University, Hamilton, Ontario, Canada,
during 1991-92, at the invitation of Peter Lauer. The series was co-ordinated by
Peter Lauer, Jeffery Zucker and Ryszard Janicki. The lectures were intended to fa
miliarize workers in Computer Science and other disciplines with sorne of the most
exciting advanced computer based systems for the conceptualization, design, imple
mentation, simulation, and logical analysis of applications in these disciplines. The
papers are mostly the work of individuals who were among the originators of the
systems presented.

We hope that this volume will make it easier for colleagues at other universities
and research establishments to evaluate the utility of these systems for their appli
cation areas. We also hope that this volume will be of paramount utility to graduate
students in the various disciplines.

The collection of papers presents sorne strong motivational points for the use of
theory based systems in the areas of functional programming, concurrency, simula
tion, and automated reasoning, highlighting sorne oftheir advantages and disadvan
tages relative to conventional systems.

At the editors invitation, the authors kindly agreed to furnish newly written
papers on theory based systems which provide a guide into sorne of the major op
erational systems and which might form a useful basis for assessing knowledge and
skills required for their informed use.

The four topic areas were selected for various re!ated reasons.
Functional programming rather than procedural programming was chosen

because it provides a good level of abstraction from the standpoints of the user,
the tractability of full formalization of semantics, and providing good practical im
plementations, allowing for computer supported experimentation with concepts ex
pressed in this basically declarative style.

Concurrency rather than sequentiality was chosen as basic because we fee!
that this is closer to real-world systems and human thought processes, and avoids
the artificial introduction of sequentiality constraints due to one's sequential mode!
and not due to the nature of the system modelled.

Simulation is used here as a synonym for modelling or prototyping and was
chosen since it is a means to enhance understanding of complex situations and dy
namically changing systems, and a basis for experimental study of such systems.
Furthermore, simulation may be used to validate whether a computer implemen
tation of sorne real-world situation is adequate for the purpose for which it was
designed.

Automated reasoning, which we take to include not only fully automated
theorem proyers but especially interactive definition debuggers and proof checkers,
was chosen because it relieves the user from tedious, time consuming and error prone
activities involved in checking whether chains of inferences and logical conclusions
about the system are justified. We feel that a similar advantage to that obtained
by the presence of syntax checking in compilers, for developing error free programs,
can be obtained by the presence of proof checkers for developing error free system
models, and ultimately trustworthy computer systems implementing them.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

The issue is how to malœ existing theory based systems more accessible ta users
of various kinds and at different levels.

Theory based systems have the advantages of precision, trustworthiness, and
generality. They can be used effective!y to enhance learning. However, they have the
disadvantage of relative inefficiency in operation, and a greater learning gap to be
c10sed by the user.

Conventional systems have the advantages of efficiency and a reputedly smaller
learning gap, and they can also be used effectively to enhance learning, are more
familiar to users, and have extensive application development.

However, familiarity with conventional computer systems may not be as much
of an advantage as might appear at first sight. There is a more basic kind of fa
miliarity which users have with theory based systems which is often overlooked and
which, if exploited, has a much greater payoff than the exploitation of familiarity
with conventional computer concepts. For example, familiarity with high school al
gebra, which can be re!atively safely presupposed in aIl adults who have graduated
from high sChool, makes for an easy road to computer systems based on the algebraic
approach and its concomitant equational style of reasoning. The simple realisation
that the objects of the algebra need not just be numbers, but can essentially come
from any inductive domain, allows users to transfer the same algebraic understanding
from the domain of numbers to domains such as programs, data, machines, and even
systems as a whole. The same style of equational reasoning remains valid through
out. This permits frequent transfer of knowledge from one domain to another by a
mathematical equivalent of analogical thinking.

Furthermore, conventional computer oriented concepts are rathe! far removed
from human ways of thinking about real world systems, except in the case of the
object oriented paradigm, whereas the algebraic approach has many aspects in com
mon with the object oriented approach and henc'; can make similar daims to Ieal
world doseness. On the whole, theory based systems could be considered closer to
real world situations, sinee they are descriptive and try to introduce the least amount
of modeJ specifie formalism possible, whereas conventional systems force upon the
user all the details of computer oriented models, including particularly the need to
express concepts algorithmically and usually sequentially.

So it seems far from obvious that conventional systems are closer to real world
situations, and henee to the non-computer specialist user, than theory based systems.

Even if the gaps for both were the same, there would still be the greater payoff
from investing time in learning to understand and use theory based systems, since
one obtains ability for very general knowledge transfer from domain to domain. One
only needs to compare the general applicability of the results of one year's study
of C++, which is the least amount of time required to become proficient in that
comple;c language, with the general applicability of the results of one year's study
of general algebraic topies.
Mind-set for this Series of Lectures and Papers.

At the outset of the lecture series, l formulated some general thoughts abont the
current intelledual environment of advanced system theory as it relates to computer
science. Authors ofpapers were aware ofthis mind-set and have taken it into account
in orienting their paper. for inclusion in this volume. Since this original mind-set
may be of interest to the general readership it is included here.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

1. Convergence of theoretical computer science and mathematics. For
mai and theoretical systems developed in computer science and mathematics
are increasingly converging, as are the interests of researchers in both areas.
This is witnessed by the regular occurrence of such conferences as the Annual
IEEE Symposium on Logic in Computer Science, the International Workshops
on Mathematical Foundations of Programming Semantics, and the special sec
tion on Logic, Mathematics and Computer Science of the International Congress
of Logic, Methodology and Philosophy of Science. In addition four new journals
have appeared in the past year, Mathematical Structures in Computer Science
(Cambridge University Press), the Journal of Logic and Computing (Oxford
University Press), the International Journal of Foundations of Computer Sci
ence (lOS Press), and Category Theory for Computer Science (Prentice Hall).

2. Theory based environments are transforming system development.
Practical computer based realizations of such theory based systems are rapidly
appearing, and promise radically to transform the entire process of software de
velopment, from conceptualization to implementation, permitting rigorous for
mulation and verification of most aspects of the process (see the paper by Peter
Lauer in this volume).

3. Environments must be efficient and semantically sound. A practical envi
ronment for the rigorous development of software must be based on an efficiently
executable programming notation which enjoys as clear and sound a semantics
as the more abstract, and usually more mathematical and often non-executable
notations used to express requirements, specifications, designs, etc.

4. Functional languages best achieve efficiency and semantic clarity. To
date, functional programming languages (see the papers by David MacQueen on
SML, and by R. Frost and S. Karamatos, in this volume) are the most successful
in achieving efficiency comparable to the most efficient procedurallanguages such
as C, while at the same time permitting the formulation of a clear mathematical
semantics, which sometimes, for example, in the case of OBJ3 (see the paper by
Tim Winkler in this volume), coincides with the actual operational (run time)
semantics of the language, which is based on the notion of rewriting (see the
paper by Nachum Dershowitz, in this volume).

5. Domains of interest conceived analogously in mathematics and com
puting. Mathematicians and logicians tend to characterize domains of interest
by giving a structure consisting of sorne domains, and a number of operations or
functions, and possibly relations, on these domains. The meanings of the func
tions and relations are then stated axiomatically, for instance as equations or
inequalities.
Increasingly, computer scientists tend to characterize executable representations
by defining concrete or abstract data types, which essentially correspond to the
mathematician's notion of (algebraic) structure, except that the meanings of the
functions and relations are defined operationally in terms oflanguage primitives
which directly translate to executable machine code. .
This similarity of characterization of domains of interest inspired the proponents
of the algebraic specification methods to work towards a new style of software
development which would be pervaded by sound mathematical principles and
supported by powerful mathematical tools (see the papers by Tim Winkler on

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

OBJ3, and by Stephen Garland, John Guttag and James Homing on LARCH
in this volume).

6. Type theory fits the general needs of domain independent systems.
Adequate support for reasoning about arbitrary formaI systems (including ex
ecutable notation) requires more than the ability to express domain specifie
information. It requi!es powerfullogical systems in which to formulate, develop,
analyze and compa.re different domain specifie formalisms. Modern type theory
has proved to be extremely fruitful when a.pplied for this purpose. In fact, solu
tions of problems in computer science using type theoretical notions have greatly
stimulated research into the lambda calculus and type theory by mathematicians
and logicians, and have even contributed new developments in these areas. (See
the paper. by Douglas Howe on Nuprl, by K. van Hee, P. Rambags and P. Verk
oulen on ExSpect, and by Sentot Kromodimoeljo, Bill Pase, Mark .Saaltink, Dan
Craigen and Irwin Meisels on EVES, in this volume.)

7. Other disciplines have need of advanced theory based systems. There
exist a number of very interesting prototypical computer based systems which
support rigorous and systematic development of executable software from spec
ifications (e.g., OBJ3, LARCH, ExSpect, EVES, and IDEF JCPN, which are al!
presented in papers in this volume). Graduate students in computer science and
other disciplines such as engineering, business, linguistics, philosophy, etc., need
to gain experience with such systems so that they can usefully employ them
in the process of producing dependable (verified) application oriented software.
But this presupposes, especially in the case of non-mathematicians, that much
of the theoretical underpinning of the system is hidden from the user, and that
the remaiuing theory is taught in an appropriate manner and at the Iight time.

8. SML is widely used to implement such advanced systems. Standard ML
and its extensions are proving to be the functional programming languages of
preference for implementing many of the most advanced systems of the kind we
have been discussing (see the papers by David MacQueen and John Ophel on
SML, in this volume). This is in part due to the ract that they can be made
to produce quite efficient code, white at the same time having a very weil de
fined mathematical semantics. In fact, most of the systems covered during the
series of talks are implemented in SML or in LISP, or use SML as part of their
programming interface.

9. Concurrency gives efficiency and conciseness. Concurrency is of impor
tance for efficiency reasons, but also due to the fact that decomposition into
relatively independent concurrent subsystems often leads to much shorter code
and increased clarity. Standard ML has been extended to support concurrency
in a number of ways, which ensure that the advantages of functional program
ming are preserved (see the paper on Concurrent ML by John Reppy, and the
general paper by David MacQueen on SML in this volume). On the other hand,
concurrency introduces additional complexity into the problem of correctly con
ceptualizing the possible behaviours of the system and proving the correctness
of the algorithms involved. To manage this complexity, the need for rigou! and
formaIity in proving properties of the system is even greater than in the case
of sequential and centralized systems. Systems such as the Concurrency Work
bench (see the paper by Rance Cleaveland, and the preparatory papers by J effery

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IX

Zucker in this volume), the IDEF /CPN system from Metasoft Corporation (see
the paper by J awahar Malhotra and Robert Shapiro, as weIl as the paper by
Robert Shapiro, Valerio Pinci and Roberto Mameli in this volume), give much
support to this endeavor. The effective implementation of concurrent systems is
also difficult, as is the effective exploitation ofparallel architectures by program
mers. Mathematically weIl founded mechanical schemes for synthesising concur
rent programs from programs that do not specify concurrency or communication
also promise to reduce the complexity inherent in developing concurrent systems
(see the paper by Michael Barnett and Christian Lengauer in this volume).

10. Graphical representation of knowledge is important. Graphical repre
sentation of knowledge is increasingly recognized as an important technique for
visualizing complex relationships. Thus, in mathematics, category theory gener
alizes the conventional arrow representation offunctional relationships, to obtain
powerful and general ways of conceptualizing complex (functional) domains, and
replacing specifie combinatorial arguments by graph manipulation (arrow chas
ing).

Il. Level of performance of students rises when courses stress theory
based approach and use of theory based systems. Limited experiments
with students indicates that use ofrigorous specification techniques, particularly
following the. algebraic approach, enhances the student's ability for independent,
verified , and complete program development, and allows for the ready transferral
of knowledge from high school elementary algebra to the business of specifying
and designing sofware. U sing the algebraic approach also reinforces their knowl
edge of the algebraic techniques they learned in high schoo!.
This seems to indicate that this approach may weIl be the best for requirement
specification, because it is to be assumed that any potential customer requesting
a software system will have completed high school algebra.
Theory based systems which are based on logic require more training and so
phistication than can be expected from high school graduates. But as more
programming takes place in languages like Prolog even at the high schoollevel,
this may change soon.

12. Theory based systems should be human and problem oriented.
(a) In computer science, graphical representations have extended application in

software engineering environments and particularly in the representation of
concurrent systems. The IDEF /CPN system from MetaSoftware Corporation
(see the paper by Robert Shapiro, Valerio Pinci and Roberto Mameli in this
volume), is one of the most developed, integrated , and theoretically sound
systems elegantly supporting graphical interaction.
In IDEF /CPN it is possible to input an (inscribed) graph from which the
system automatically generates a correct program. The ExSpect system is
a similar system which at present has more system analysis support than
IDEF/CPN (see the paper by K.van Hee, P. Rambags and P. Verkoulen in
this volume).

(b) In Nuprl (see the paper by Douglas Howe in this volume) it is possible
to input a proof (a reasoned logical specification) from which the system
automatically extracts a correct program.

(c) Pattern matching is a natural human activity and the use of pattern match-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

ing in explaining the application of functions to their arguments in SML,
OBJ, and W / AGE enhances readability grcatly (see the papers by David
MacQueen and John Ophe! on SML, by Tim Winkler on OBJ3, and by R.
Frost and S. Kararnatos on W 1 AGE, in this volume).

(d) The dictum that system code be as high-Ievel as possible and the same
throughout, which is one of the aspects of parametric programming as in
troduced by J. Goguen, leads to ease of comprehension of the whole system
in the case of all of the systems described in this volume.

Intended readers of this volume
This volume is meant as a modest contribution to narrowing the leaming gap

facing conventional computer users when they wish ta use advanced theory based
systems. The papers in this volume are meant for a wide audience and should not
require great mathematical sophistication for their comprehension, in fact a high
school knowledge of algebra, and perhaps a little set theory and formallogic should
suffice. The papers contain numerous references for those wishing to pursue any
of these topies to greater depth. These references may require more mathematical
accumen from the reader, but the appropriate utilization of the available computer
implementations of the mathematical theories, during the learning stages, should en
hance the process of self-instruction required to acquire the necessary mathematical
knowledge and skills for an informed use of these systems.

The collection of papers could also be nsed in advanced courses by students and
researchers as an introduction and guide to advanced theory based systems, all of
which are operational at MeMaster and are readily available to other educational
and research institutions.
Acknowledgements

Financial support for the series was given by the Department of Computer Sci
ence and Systems at McMaster University, supplemented with some support from
Dr. H. A. Elmaraghy at the Flexible Manufacturing Research and Development
Centre and the Department of Mechanical Engineering at McMaster, and Dr. W.
Elmaraghy at the Design Automation and Manufacturing Research Laboratory and
the Faculty of Engineering at the University of Western Ontario.

Tt is due to Ryszard J anicki's prompting that Peter Lauer undertook to pro duce
this volume of papers which gives these ledures a more permanent form of use to a
much wider audience.

Thanks are due to Alfred Hofmann and Hans Wossner, both of Springer-Ver
lag, for their continuing support and excellent advice during the production of this
volume.

Last, but most important, we would like to thank the authors of the papers for
taking the time in their busy schedules to produce such excellent papers in such a
short time.

March 1993
Peter E. Lauer (Editor)
!v1cMaster University

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

On the Use of Theory Based Systems to Traverse
Educational Gaps in Computer Related Activities 1
Peter E. Lauer

Reflections on Standard ML 32
David B. MacQueen

An Introduction to the High-Level Language Standard ML 47
John Ophel

Generating an Algorithm for Executing Graphical Models 71
Jawahar Malhotra and Robert M. Shapiro

Modeling a NORAD Command Post Using SADT and Colored Petri Nets 84
Robert M. Shapiro, Valerio O. Pinci and Roberto Mameli

Propositional Temporal Logics and Their Use in Model Checking 108
J effery Zucker

The Propositional JL-Calculus and Its Use in Model Checking 117
Jeffery Zucker

Analyzing Concurrent Systems Using the Concurrency Workbench 129
Rance Cleaveland

Reasoning About Functional Programs in Nuprl " 145
Douglas J. Howe

Concurrent ML: Design, Application and Semantics 165
John H. Reppy

A Taste of Rewrite Systems 199
Nachum Dershowitz

Programming in OBJ and Maude 229
Tim Winkler

Supporting the Attribute Grammar Programming Paradigm
in a Lazy Functional Programming Language " 278
R.A. Frost and S. Karamatos

Specification and Simulation with ExSpect 296
K.M. van Hee, P.M.P. Rambags and P.A.C. Verkoulen

An Overview of Larch ... 329
Stephen J. Garland, John V. Guttag and James J. Horning

The EVES System ... 349
Sentot Kromodimoeljo, Bill Pase, Mark Saaltink, Dan Craigen and Irwin Meise/s

A Systolizing Compilation Scheme for Nested Loops with Linear Bounds 374
Michael Barnett and Christian Lengauer

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

On the use of Theory Based Systems to Traverse
Educational Gaps in Computer System Related

Activities.

Peter E. Lauer

Department of Computer Science and SysteIIlS
McMaster University

Hamilton, Ontario L8S 4KI
CANADA

Abstract. Within the general setting of engineering trustworthy computer
implementations of real-world systems, the paper del:ineates sorne of the gaps
between theory and practice, and between system developers and users at
various levels, and suggests how existing theory based systems could be used
to help bridge these gaps more effectively than is the case at present.
Focus Îs on the gaps between conventional computer systems and theory
based systems, and the gaps between knowledge and skil! required for vari
ous levels of usage of the two types of system. Furtherrnore, identification of
opportunities and tools supporting the transformation of systems and knowl
edge required to use them from the conventional to the theory based side will
be of paramount interest.
Conventional Systems are considered to be based on doctrine, a rigorous
body of knowledge and methods, for irnplementing real-world systems by
computer systems.
Theory Baud System. are considered to be entirely based on theory, a formai
body of knowledge and methodologies (calculi), for irnplementing real-world
systems by trustworthy computer systems. Trustworthiness requires that al!
computer system components are theory based and have been verified relative
the theory.
The distinction between method and methodology is made to indicate that a
method is a collection of rules for achieving sorne goal, whereas a methodology
is a systematized collection of formal rules for achieving some goal supported
by sound theory.
Hence, to summarize, the paper is concerned with the controlled and Sy8-
tematie evolution from doctrine based system development to theory based
system development, and the evolution of users from a doctrinal view of sys
tems to a theory based view of systems. It tries to identify sorne concepts
and computer based tools from both types of system which promote such
evolution.

1 Introduction

The aim of this paper is not ta add ta the existing controversy about sorne of the
issues discussed but ta suggest a systematic approach ta clarifying the issues, and
ta encourage others with similar concerns ta help resolve sorne of the issues in the
future.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

The main intent of the paper is to initiate an attempt to systematically dose
existing "gaps" between theory and practice which have hampered the mutua! ap
predation of and benefiting from important contributions in these separate aIeas
by theoreticians and practitioners. We want to provide "hooks" in some organized
scheme from which theoreticians and practitioners can "attach" the points they
want to make and which will make it possible to systematically analyze and resolve
recognized problems. We feel that systems which include the right components to
permit orderly and well-reasoned evolution of systems as weIl as similar evolution
of knowledge about the system and evolution of userS from one degree of usage
to the next, can only be achieved through careful incorporation of the ideas and
experience of the many researchers in the area· of computer related activities, and
over an extended period of time. What is required are systems which allow various
groups of researchers to collaborate to formulate, study and experiment with new
ideas and tOO!8, and to co-operatively control the evolntion of the systems towards
the envisaged goals. This should be possible by extending existing systems rather
than constructing new systems from scratch whenever possible, and it should be
possible to "upgrade" existing convention a! systems by providing entry points in the
evolutionary process for arbirary existing (conventiona! or theory based) software
components from which they could evolve by the same means as components gener
ated within the evolutionary system to start with. In other words, our evolutionary
systems should not be closed worlds, but allow for introduction and upgrading of
independently existing components into the evolutionary systems.

In the genera! arca of computer system develoment there is a perceivable gap be
tween developers of conventiona! systems (50 called "Iea! programmer.") and devel
opers of theory based systems (so ca!led "programmers of toys"). The former group
insists that too much stress on theory and trustworthiness of resulting systems, and
the fad that formalization is a!ways in the wake of real practiee and tends to make
simplifying assumptions for the sake of theoretica! tractability rendering the result
ing theory unrealistic, make most of the forma! theory based approaches to system
development irrelevant to rea! praetice.

This genera! gap is very reminiscent of the gap traditionally existing between
conventiona! mathematicians and foundational workers in mathematic5 who are en
gaged in formally axiomatizing the basis of mathematica! knowledge and reasoning.
The conventiona! mathematieian is al80 convinced that Iea! new mathematica! dis
coverie. are based on informa! but rigolous mathematica! methods, indeed they
might daim that even new resuHs in foundationa! studies ale based on informa!
but rigolOus reasoning carried out in the meta-theory which is itself not forma!ized.
Renee it is often stated that foundational studies are of a more philosophica! nature
and largely inelevant to the progress of Iea! mathematics. It is probably true that
most mathematicians would be very forma! in thei! definition and use of syntax
(formulas) but conventiona! mathematicians would be less concerned to formalize
their definitions of semanties and methodology.

Admittedly, both conventiona! mathematieians and computer system developers
are correct in recognizing that practiee will a!ways precede theoretica! comprehen
sion, but trustworthy practice requires that it be based on theory as far as practical
and methodologically fruitful, and practice can only make signifieant new advances
when its theoretiea! basis, such as it is, makes signifieant advances as weil.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

There is a similar gap between conventional mathematicians and proponents of
constructive mathematics and logic. Again the conventional mathematician feels that
the constraint of constructiveness is too confining for many of the traditional areas
of mathematics and most of the new are as emerging in ever greater proliferation.

Although one might accept this as a valid position for a mathematician to take
one can still insist that constructive mathematics is eminently important and rel
evant for the development of computer systems, since feasible implementation of
mathematical and logical concepts presupposes at least constructiveness, but ad
ditionally requires that they be implementable within reasonable time and space
requirements.

Trustworthy engineering practices are certainly based on sound theoretical foun
dations but effective engineering practices must go beyond areas which are com
pletely understood theoretically.

Unfortunately, convention al engineering is concerned with engineering non-linguistic
physical structures for which required bodies of knowledge, or theqries, have been
developed and are used with great success. Computer system enginèering is largely
concerned with engineering linguistic structures and algorithms, both of which are
non-physical, and for which less theory is established, and the theory which has been
developed is little known to engineers developing conventional computer systems by
conventional means.

Experienced conventional computer system engineers do have an accepted body
of loosely related theory as can be seen from looking at the table of contents of
recent books on Foundations of Computer Science [1], or Handbooks of Theoretical
Computer Science [2].

The theoretical components most valued by conventional computer system engi
neers are those concerned with the syntactic aspects oflinguistic structures. Hence,
formal language theory and automata theory are valued for their support in the
construction of parsers and type checkers for programming languages, development
of pattern matching features of operating system shellianguages, report generators
(e.g. grep, egrep, Awk, Perl in UNIX), and editor generators.

The theoretical components most undervalued by conventional computer system
engineers are those concerned with semantic aspects of liguistic structures. Hence,
formal semantical theories and models are little known, appreciated and used.

On the pragmatic side conventional computer system engineers are also less ap
preciative of areas such as analysis of algorithms, and complexity and feasibility
theories. They still keep writing reasonably efficient programs for problems which
are considered infeasible in a complexity theoretic sense, but which will work weIl
enough in most practical cases.

Theory based systems have the advantage of precision, trustworthiness and gen
erality (e.g. can be used to transfer knowledge of semantic aspects of one program
ming language to another more easily). They can be used effectively to enhance
learning (e.g. to close the gap between usage of conventional and usage of theory
based systems). They have the disadvantages of relative inefficiency in operation,
and a greater learning gap to be closed by the user.

Conventional systems have the advantage of efficiency, reputedly smaller learning
gap, can also be used effectively to enhance learning, are more familiar to users, and
have extensive application development.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

However, familiarity with conventional computer systems may Ilot be as much
of ail advantage as might appear at first sight. There is a more basic kind of fa
miliarity which users have with theory based systems which is often overlooked and
which if exploited has a much greater payolf than the expoitatioll of familiarity with
conventional computer concepts. For example, familiarity with high school algebra,
which can be relatively safe!y presupposed in aIl aduIts who have gradnated from
high school, makesfor an easy road to computer systems based on the algebraic
approach and its concomitant equational style of reasoning. The simple realisation
that the objects of the algebra need not just be numbers, but can essentially come
from any inductive domain, allows users to transfer the same algebraic understanding
from the domain ofnumbers to domains snch as programs, data, machines, and even
systems as a whole. The same style of eqnational reasoning remains valid through
out. This permits frequent transfer of knowledge from one domain to another by a
mathematical equivalent of analogieal or lateral thinking.

Furthermore, conventional computer oriented concepts are rather far removed
from human ways of thinking about real world systems, except in the case of the ob
ject oriented paradigm, whereas the algebraic approach has many aspects in common
with the object oriented approach and henee can make similar daims to real world
closeness. On the whole, theory based systems eould be considered closer to real
world situations, sinee they are descriptive and try to introduee the least amount
of mode! specifie formalism as possible, whereas conventional systems force upon
the user all the details of computer oriented models, including particularly the need
to express concepts algorithmically and usually sequentially. We reel the ability to
model concurrency will result in specifications and systems which are closer to real
world systems and human thought processes, and avoids the artificial introduction of
sequentiality due to the sequential nature of one's model, and not due to the nature
of the system modelled.

80 it seems far from obvious whether theory based systems or conventional sys
tems are closer to real world situations and hence to the non-computer specialist
user.

Even if the gaps for both were the same there would still be the greater payoff
from investing time in learning to nnderstand and use theory based systems since
one obtains ability for very general knowledge transfer from domain to domain. One
only needs to compare the general applicability of the results of one yea! of study
of C++, which is the least amount of time required to become proficient in that
complex language, with the general applicability of the results of one yea.:r study of
general algebraic topics.

2 Context for Engineering Trustworthy Computer
Implementations of Real-world Systems

The general context for the development of computer systems con.ists ofthree major
components, first, the real-world system or situation (RWS) to be implemented,
which is expressed by requÎrements (Req); second, the specification (Spec) of an
appropriate abstraction of the real-world system which will be used to develop the
computer model and relative to which the mode! will be verified; and third, the

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

