BIBLIOTHEQUE DU CERIST

Peter E. Lauer (Ed.)

Functional Programming,
Concurrency, Simulation
and Automated Reasoning

International Lecture Series 1991-1992
McMaster University, Hamilton, Ontario, Canada

C’cai’ C%

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Heng Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

‘Series Editors

Gerhard Goos Juris Hartmanis

Universitét Karlsuhe Cornell University

Postfach 6% 80 Department of Computter Science
Vincenz-Priessnitz-Strabe ! 4134 Upson Hall

D-76131 Karlsruhe, FRG Ithaca, NY 14853, USA

Volume Editor

Peter B, Lauer
Department of Computer Science and Systems. McMasier University
1280 Main Street West, Hamilton, Ontario L8S 4K 1, Canada

R Subject Classelication (1991): D.1-3, F3

18BN 3-540-56883-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56883-2 Springer-Verlag New York Berlin Heidelberg

4o,

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concemed, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, repreduction on microfilms orin eny other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be ohtained from
Springer-Verlag. Viclations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1593
Printed in Germany
Typesetting: Camera ready by author

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

"This eollection of papers arcse from a series of lectures, given in the Department of
Computer Science and Systems, McMaster University, Hamillon, Ontario, Canada,
dnring 1991-92, at the invitation of Peter Lauer. The series was co-ordinated by
Peter Lauer, Jeffery Zucker and Ryszard Janicki. The lectures were intended to fa-
miliarize workers in Computet Science and other disciplines with some of the most
exciting advanced computer based systems for the conceptualization, design, imple-
mentation, simulation, and logical analysis of applications 1n these disciplines. The
papers are mostly the work of individuals who were among the originators of the
systermns presented.

We hope that this volume will make it easier for colleagnes at other universities
and research establishments to evaluate the utilily of these systems for their appli-
cation areas. We also hope that this volume will be of paramount utility to graduate
students in the varicus disciplines.

The collection of papers presents somne sirong motivational poinis for the use of
theory based systems in the areas of functional programming, concurrency, simula-
tion, and antomated reasoning, highlighting some of their advantages and disadvan-
tages relative to conventional systems.

At the editors invitation, the authors kindly agreed to furnish newly writien
papers on iheory based systems which provide a guide into some of the major op-
erational systems and which might form & useful basis for assessing knowledge and
skills Tequired for their informed use. _

The four topic areas were selected for various related reasons.

Functional programming rather than procedural programming was chosen
becanse it provides a good level of absiraction from the standpoints of the user,
the tractability of full formalization of semantics, and providing good practical im-
plementations, allowing for computer supported experimentation with concepts ex-
pressed in this basically declarative style.

Concurrency rather than sequentiality was chosen as basic because we feel
that this is closer to real-world systems and human thought processes, and avoids
the artificial introduction of sequentiality constraints due to onc’s sequential model
and not due to the nature of the system modelled.

Simulation is used here as a synonym for modelling or prototyping and was
chosen since it is a means to enhance understanding of complex situations and dy-
namically changing systems, and a basis for experimental study of such systems.
Furthermore, simulation may be used to validate whether a computer implemen-
tation of some real-world situation is adequate for the purpose for which it was
desighned.

Automated reasoning, which we take to include not only fully automated
thcozem provers but especially interactive definition debuggers and proof checkers,
was chosen because it relieves the user {rom tedious, time consuming and error prone
activities invelved in checking whether chains of inferences and logical conclusions
about the system are justified. We feel that a similar advantage to that obtained
by the presence of syntax checking in compilers, for developing error free programs,
can be obtained by the presence of proof checkers for developing error free system
models, and ultimately trustworthy computer systems implementing them.

BIBLIOTHEQUE DU CERIST

vl

The issue is how to make existing theory based systems more accessible to users
of various kinds and at differeni levels.

Theory based systems have the advaniages of precision, trusiworthiness, and
generality. They car be used effectively to enhance learning. However, they have the
disadvantage of relative inefficiency in operation, and a greater learning gap lo be
closed by the user.

Conventional systems have the advantages of efficiency and & reputedly smaller
lezrping gap, and they can also be used effectively to enhance learning, are more
familiar to users, and have extensive application development.

However, familiariiy with conventional computer systems may not be zs much
of an advantage ss might appear at fizst sight. There is 2 more basic kind of fa-
miliarity which users have with theory based systems which is often overlcoked and
which, if exploited, has a much greater payoff than the expleitation of familiarity
with conventional computer concepts. For ezample, familiarity with high school al-
gebra, which can be relatively safely presupposed in all adults who have graduated
from high school, makes for an easy road to computer systems based on the algebraie
approach and iis corcomitant equational style of reasoning. The simple realisation
that the objects of the algebra need not just be numbers, but can eesentially come
from any indunetive domain, allows users to transfer the same algebreic understanding
from the domain of numbers to domains such as programs, data, machines, and even
systems as a whole. The same style of eguational reasoning remains valid through-
out. This permits frequent transfer of knowledge from one domain to another by a
mathematical equivalent of analogical thinking.

Furthermore, conventional computer oriented concepts are rather far removed
from human ways of thinking about real world systems, except in the case of the
object oriented paradigm, whereas the algebraic approach has many aspecis in com-
mon with the object oriented approach and hence can make similar claims to real
world closeness. On the whole, theory based systems could be comsidered closer to
real world situations, since they are descripiive and try 1o introduce the least amount
of model specific formalism possible, whereas conventionsl systems force upon the
user all the details of computer oriented models, including particularly the need to
cxpress concepts algorithmically and usually sequentially.

So it seems far from obvious that conventional systems are closer to real world
situations, and hence 1o the non-computer specialist user, than theory based systems.

Even if the gaps for hoth were the same, there would still be the greater payoff
from investing time in learning to undesstand and use theory based systems, since
one obtains zbility for very general knowledge transfer from domain to dermain. One
only needs to compare the general applicability of the results of one year’s study
of C4, which is the least amount of time required to become proficient in that
complex language, with the general applicability of the results of one year’s study
of genersl algebsaic topics.

Mind-set for this Series of Lectures and Papers.

At the outset of the lecture series, I formulated some genera} thoughts abont the
current intellectual environment of advanced sysiem theory as i relates to computer
science. Authors of papers were aware of this mind-set and have taken it into account
in orienting their papers for inclusion in this vclume. Since this original mind-set
may be of interest to the genersl readership it is included here.

BIBLIOTHEQUE DU CERIST

Wil

1. Convergence of theoretical computer science and mathematics. For-

mal and theoretical systems developed in computer science and mathematics
are increasingly converging, as are the interests of researchers in both areas.
This is witnessed by the regnlar occurrence of such conferences as the Annual
IEEE Sympostum on Logic in Computer Science, the International Workshops
on Mathematical Foundations of Programming Semantics, and the speeial sec-
tion on Logic, Mathematics and Computer Science of the International Congress
of Logic, Methedology and Philosophy of Science. Tn addition four new journals
have appeared in the past year, Mathematical Structures in Compuler Science
{Cambridge University Press), the Journal of Logic and Computing (Oxford
University Press), the International Journel of Foundations of Computer Sci-
ence {108 Press), and Category Theory for Computer Science (Prentice Hall).

. Theory based environments are transforming system development.

Practical computer based realizations of such theory based sysiems are rapidly
appearing, and promise radically to transform the entire process of software de-
velopment, from conceptualization t¢ implementation, permitting rigorous for-
mulation and verification of most aspects of the process {see the paper by Peter
Lauer in this volume}.

. Environments must be efficient and semantically sound. A practical envi-

ronment for the rigorous development of software must be based on an efficiently
executable programming notation which enjoys as clear and sound a semantijcs
as the more absiract, and usually more mathematical and often non-executahle
notations used $o express requirements, specifications, designs, etc.

. Functional languages best achieve efficiency and semantic clarity. To

date, functional programming langunages (see the papers by David MacQueen on
SML, and by R. Frost and S. Karamatos, in this volume) are the most successful
in achieving efficiency comparable to the most efficient procedural langunages such
as (3, while at the same time permitiing the formulation of a clear mathematical
semantics, which sometimes, for example, in the case of OBI3 {see the paper by
Tim Winkler in this volume)}, coincides with the actual operational {run timc)
semantics of the language, which is based on the notion of rewriting (see the
paper by Nachum Dershowitz, in this volume).

. Domains of interest conceived analogously in mathematics and com-

puting. Mathematicians and logicianrs tend to characterize domains of interest
by giving a structure consisting of some domains, and 2 number of operations oz
functions, and possibly relations, on these domains. The meanings of the func-
tions and relations are then stated axiomatically, for instance as equations or
inequalities.

Increasingly, computer scientists tend to characterize executable representations
by defining conerete or abstract data types, which essentially correspond to the
mathematician’s notion of (algebraic) structure, except that the meanings of the
functions and relations are defined operationally in {erms of language primitives
which directly translate to executable machine code. ’

This similarity of characterization of domains of interest inspired the proponents
of the algebraic specification methods to work towards a new style of software
development which would be pervaded by sound mathematical principles and
supported by powerful mathematical tools (see the papers by Tim Winkler on

6
— T
D
'
LLI
O
-
()]
LLI
8 5
LLI
1
|_
O
-1
0
oM g

Wil

OBJI3, and by Stephen Gazland, Joha Guttag and James Homing on LARCH
in this volume).

. Type theory fits the general needs of domain independent sysiems.

Adequate support for reasoning about arbitrary formsl systems (including ex-
ecutable notation} requires more than the ability to express domezin specific
information. It requires powerful logical systems in which to formulate, develop,
analyze and compare different domain specific formalisms. Modern type theory
has proved to be extremely fruitful when applied for this purpose. It fact, solu-
tions of problems in computer science using type theoretical notions have greatly
stimulated resesrch into the lambda calculus and type theory by mathematicians
and logicians, and have even contributed new developments in these areas. {See
the papers by Douglas Howe on Nuptl, by K. van Hee, P. Rambags and P. Vezk-
ouler on ExSpect, and by Sentot Kromodimoeljo, Bill Pase, Mark Saaltiak, Dan
Craigen and Irwin Meisels on EVES, in this volume.)

. Dther disciplines have need of advanced theory based systems. There

exist a number of very interesting prototypical computer hased systems which
support rigorons and systematic development of executable software from gpec-
Hications (e.g., OBI3, LARCH, ExSpect, EVES, and IDEF/CPN, which are all
presented in papers in this volume). Graduate students in computer gcience and
other disciplines such as engineering, business, linguistics, philesophy, ete., need
to gain experience with such systems so that they can usefully employ them
in the process of producing dependable (verified) application oriented software,
But this presupposes, especially in the case of non-mathematicians, that much
of the theoretical underpinning of the system is hidden from the user, and that
the remaining theory is teught in an appropriate manner and at the right time.

. BML iz widely used to tmplement such advanced systems, Standard ML

and its extensions are proving o be the functional programming languages of
preference {or implementing many of the most advanced systems of the kind we
have been discussing {see the papers by David MacQueen and Johu Ophel on
SML, in this volume}. This is in part due to the fact that they can be made
to produce quite efficient code, while at the same time having a very well de-
fined mathermatical semantics. In fact, most of the systems covered during the
series of talks are implemented in SML or in LISP, or use SML as part of their
programming interface.

. Concurrency gives efficiency and conciseness. Concurrency is of impor-

tance for efficlency reasons, but also due to the fact that decomposition into
relatively independent concurrent suhsystems often leads to much shorter code
and increased clarity. Standard ML has been extended to support concurrency
in & number of ways, which ensure that the advantages of functional program-
ming are preserved (see the paper on Concurrent ML by John Reppy, and the
general paper by David MacQueen on SML in this volume}. On the other hand,
concurrency introdnces additional complexity into the problem »f correctly con-
ceptualizing the possible hehavicurs of the system ard proving the correctness
of the algorithms involved. To mansage this complexity, the need for rigour and
formality in proving properiies of the system is even greater than in the case
of sequential and certralized systems. Systems such as the Concurrency Work-
bench (see the paper by Rance Cleaveland, and the preparatory papers by Jeffery

BIBLIOTHEQUE DU CERIST

18,

11.

12.

X

Zucker in this volume), the IDEF/CPN system from Metasoft Corporation (see
the paper by Jawshar Malhotra and Robert Shapiro, as well as the paper by
Robert Shapire, Valerio Pinci and Roberto Mameli in this volume}, give much
support to this endeavor. The effective implementation of concurrent systems is
also difficult, as is the effective exploitation of parallel architectures by program-
mers, Mathematically well founded mechanical schemes for synthesising concur-
rent programs from programs that do not specify concurrency or communication
also promise to reduce the complexity inherent in developing concurrent sysiems
(see the paper by Michael Barnett and Christian Lenganer in this volume).
Graphical representation of knowledge is important. Graphical repre-
sentation of knowledge is increasingly recognized as an important technique for
visualizing complex relationships. Thus, in mathematics, category theory gener-
alizes the conventional arrow representation of functional relationshkips, to obtain
powerful and general ways of conceptualizing complex {functional} domains, and
replacing specific combinatorial arguments by graph manipulation (arrow chas-
ing).
Level of performance of students rises when courses stress theory
based approach and use of theory based systems. Limited experiments
with students indicales that usc of rigorous specification techniques, particulariy
following the algebraic approach, enhances the student’s ability for independent,
verified | and complete program development, and allows for the ready transferral
of knowledge from high school elementary algebra to the business of specifying
and designing sofware. Using the algebraic approach also reinforces their knowl-
edge of the algebraic techniques they learned in high school.

This scems o indicate that this approach may well be the best for requirement

specification, because it is to be assumed that any potential customer requesting

a software system will have completed high school algebra.

Theory based systems which are based on logic require more training and so-

phistication than can be expected from high school graduates. But as more

programming takes place in languages like Prolog even at the high school level,
this may change soon.

Theory based systems should be human and problem oriented.

{a} In computer science, graphical representations have extended applieation in

software engineering environments and particularly in the represeatation of
concurrent systems. The IDEF /CPN system from MetaSoftware Corporation
{sec the paper by Robert Shapire, Valerio Pinci and Roberto Mamelt in this
valume}, is one of the most developed, iniegrated , and theoretically sound
systems elegantly supporting graphical interaction.
In IDEF/CPN it is possible to input an (inseribed) graph from which the
system automatically generates a correct program. The ExSpect system is
a similar system which at present has more system analysis support than
IDEF/CPN {see the paper by K.van Hee, P. Rambags and P. Verkoulen in
this volume).

(b) Tn Nuprl (see the paper by Douglas Howe in this volume) it is possible
to input a proof {a reusoned logical specification) from which the system
automatically exiracts a correct program,

{¢) Pattern matching is a natural human activity and the use of pattern match-

BIBLIOTHEQUE DU CERIST

ing in explaining the application of Minctions to their arguments in SML,
OBJ, and W/AGE enhances readability greatly (see the papers by David
MacQueen and John Ophel on SML, by Tim Winkler on OBJ3, and by R.
Frost and S. Karamatos on W/AGE, in this volume).

{d) The dictum that system code be as high-level as possible and the same
throughout, which is one of the aspects of parametric programming &s in-
troduced by I, Goguen, leads to ease of comprehension of the whole system
in the case of all of the systems described in this volume.

Intended readers of this volume

This volume is meant as a modest contribution to narrowing the learning gap
facing conventional computer users when they wish to use advanced theory based
systems, The papers in thiz volume are meant for a wide andicnce and should not
require great mathematical sophistication for their comprehension, in fact a high
school knowledge of algebra, and perhaps a little set theory and forma!l logic should
suffice. The papers contain numerous references for those wishing to pursue any
of these topics to greater depth. These references may reguire more mathematical
accumen from the reader, hut the appropriate utilizaiion of the available computer
implementations of the mathematical theories, during the learning stages, should en-
hance the process of self-instruction requited to acquire the necessary mathematical
knowledge and skills for an informed use of these gystems.

The eollection of papers conld also be used in advanced courses by students and
reseaichers as an intzoduction and guide ta advanced theory based systems, all of
which are operational at McMaster and are readily available to other educational
and research institutions.

Acknowledgernents

Financial support for the series was given by the Department of Computer Sci-
ence and Systcms at McMaster University, supplemented with some supporl from
Dr. H. 4. Elmaraghy at the Flexible Manufacturing Research and Development
Centre and the Department of Mechanical Engineering at McMaster, and Dr. W,
Elmaraghy at the Design Automation and Manufacturing Research Laboratory and
the Faculty of Bnginecring at the University of Western Ontario.

It is due to Ryszard Janicki's prompting that Peter Lacer undertook to produce
this volume of papers which gives these leciures 2 more permanent form of use to a
much wider audience.

Thanks are due to Alfred Hofimann and Hans Wassner, both of Springer-Ver-
'ag, for their continuing support and excellent advice during the produetion of this
volume,

Last, but most important, we would like to thank the authors of the papers for
taking the time in their busy schedules to produce such excellent papers in such a
short time.

March 1993
Peter E. Lauer {Editor)
MciMaster University

BIBLIOTHEQUE DU CERIST

Contents

On the Use of Theory Based Systems to Traverse
Educational Gaps in Computer Related Activities, 1
Peter E. Lauer

Reflections on Standard ML o . e 32
David B, MacQueen

An Introduction to the High-Level Language Standard ML 47
John Ophel

Generating an Algorithm for Executing Graphical Models Ti

Jowehar Malhotra and Robert M. Shapiro

Modeling a NORAD Command Post Using SADT and Colored Petri Nets 84
Robert M. Shapiro, Valerio 0. Pinei and Roberio Mameli

Propositional Temporal Logics and Their Use in Model Checking 108
Jeffery Zucker

'The Propositional y-Calculus and Its Use in Model Checking 117
Jeffery Zucker

Analyzing Concurrent Systems Using the Concurrency Workbench 129
Rance Cleaveland

Reasoning About Functional Programs in Nuptl PRPIPEN 145
Douglas J. Howe

Concurrent ML: Design, Application and Semantics 165
John H. Reppy

A Taste of Rewrite Systems i i 199
Nachum Dershowits

Programming in OBJand Maude i i e 229
Tim Winkler

Supporting the Attribute Grammar Programming Paradigm
in a Lagy Functional Programming Language 278
R.A. Frost and 5. Karamaios

Specification and Simulation with ExSpect o o L. 296
K.M. van Hee, P.M.P. Rambags and P.A.C. Verkoulen

AnOverviewof Larch L 329
Stephen J. Garland, John V. Guitag and James J. Horning

The EVES SBystem o i it ittt et e it 349

Senioi Kromodimoeljo, Bill Pase, Mark Sacliink, Dan Craigen and Irwin Meisels

A Systolizing Compilation Scheme for Nested Loops with Linear Bounds 374
Michael Barneit and Christian Lengauver

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

On the use of Theory Based Systems toTraverse
Educational Gaps in Computer System Related
Activities.

Peter E. Lauer

Departinent of Comnpuler Science and Systerms
McMaster University
Hamilton, Ontario L85 4K1
CANADA

Abstract. Within ihe general setting of engineering trustworthy computer
implementations of real-world systems, the paper delineates some of the gaps
between theory and practice, and belween sysiem developers and users at
varions levels, and suggests how «xisling theory based systems could be used
to help bridge these paps more effectively than is the case at present.

Focus is on the gaps between conveniional computer systems and theory
based systems, and the gaps between knowledge and skill required for vari-
ons levels of usage of the iwo types of system. Furthermore, identification of
opportunities and tools supporting the transformation of systerns and knowl-
edge required to use them from the conventienal to the theory based side will
be of paramount interest.

Conventional Systems are considered to be hased on doctrine, a rigorous
body of knowledge and metheds, for hmplementing real-world systems by
computer systems.

Theery Based Systems are considered fo be entirely based on theory, a formal
body of kmowledge and methodologies {calcnli), for implementing real-world
systems by trustworthy computer systems. Trustworthiness requires that zll
computer systern components are theory based and have been verified relative
the theory.

The distinction between method and methodology is made to indicate that a
method is a collection of rules for achieving some goal, whereas a methodology
is a systematized collection of formal rules for achieving some goal supporied
by sound theory. :
Hence, to summarize, the paper is concerned with the controlled and sys-
tempatic evolution from doctrine based system development to theory based
systemn development, and the evolution of users from a doctrinal view of sys-
tems to a theory based view of systems. It tries to identify some concepts
and computer bagzed tools from both types of system which promote such
evolulion.

1 Iniroduction

The aim of this paper is not to add to the existing controversy about some of the
issues discussed but to suggest a systematic approach to clarifying the issues, and
to encourage others with similar concerns to help resolve some of the issnes in the
future.

BIBLIOTHEQUE DU CERIST

The main intent of the paper is to Initizte an atfempl to systemalically close
existing “geps” between theory and practice which have hampered the mutual ap-
preciation of and benefiting from important coniributions in these separate areas
by theoreticians and practitioners. We want to provide “hooks” in some organized
scheme from which theoreticians and praciitioners can “attach” the poinis they
want to make and which will make it possible to systematically ansalyze and resolve
recognized problems., We feel that sysiems which include the right components to
permit orderly and well-reasoned evolufion of systems as well as similar evolution
of knowledge about the system and evolution of users fiom one degree of usage
to the mext, can only be achieved through careful incorporation of the ideas and
experience of the many researchers in the area of computer related activities, and
over an extended period of time. What is reguired are systems which allow various
groups of researchers to collaboraie to formulaie, study and experiment with new
ideas and tools, and to co-operatively control the evolution of the systems towards
the envisaged goals. This should be possible by extending existing systems rather
than constructing new systems from scratch whenever possible, and it should be
possible to “upgrade” existing conventional systems by providing entry points in the
evolutionary process for arbirazy existing (conventional or theory based) software
components from which they could evolve by the same means as components gener-
ated within the evoluiicnary syvstem to start with. In other words, our evolutionary
systems should not be closed wozlds, but allow for introduction and apgrading of
independently existing components into the evolutionary systems.

In the genersl area of computer system develoment there is a perceivable gap be-
tween developers of conventional systems (so called “real programmers”™} and devel-
opers of theory based systems (so called “programmers of toys”). The former group
insists that too much siress on theory and irusiworthiness of resulting systemns, and
the fact that formalization is always in the wake of real practice and tends to make
simplifying assumptions for the sake of theozetical tractability rendering the resuli-
ing theory unrealistic, make most of the formal theory based approaches to system
development irrelevant to real practice.

This general gap is very reminiscent of the gap traditionally existing between
conventional mzathematicians and foundational workers in mathematics who are en-
gaged in formelly axiomatising the basis of mathematical knowledge and reasoning.
The conventional mathematician is also convinced that real new mathematical dis-
coveries are based on informal but rigorous mathematical methods, indeed they
might claim that even new resuls in foundationz! studies are based on informal
but rigorons reaconing carried ont in the meta-theory which is itself not formalized.
Hence it is ofien stated that foundational studies are of a more philosophical nature
and lergely irrelevani to the progress of real methematics. It is probably true that
most mathematicians would be very formal in their definition and use of syntax
{formulas} but conventional mathematicians would be less concerned io formalize
their definitions of semantics and methodology.

Admitiedly, both conventional mathematiclans and computer system developers
are corzect in recogmizing that practice will always precede theoretical comprehen-
sion, but trustworthy practice reguires that it be based on theory as far as practical
and methodologieally fruitful, and practice car only mske significant new advances
when its theoretical basis, such as it is, makes significani advances as well.

BIBLIOTHEQUE DU CERIST

There is a similar gap between comventional mathematicians and proponents of
constructive mathematics and logic. Again the conventional mathematician feels that
the consiraint of constructiveness is too confining for many of the traditional areas
of mathematics and most of the new areas emerging in ever greater proliferation.

Although one might accept this as a valid position for a mathematician to take
one can still insist that constructive mathematics is eminently important and rel-
evant for the development of computer systems, since feasible implementation of
mathematical and logical concepts presupposcs at least constructiveness, but ad-
ditionally requires that they be implementable within reasonable time and space
requirements.

Trustworthy engineering practices are certainly based onr sound theoretical foun-
dations but effective engineering practices must go beyond areas which are com-
pletely understood theoretically.

Unfortiunately, conventional engineering is concerned with engineering non-linguistic
physical structures for which required bodies of knowledge, or theories, have been
developed and are used with great success. Computer system engineering is largely
concerned with engineering linguisiic structures and aigorithms, both of which are
non-physical, and for which less theory is established, and the theory which has been
developed is little known to engineers developing conventional computer systems by
convertional means.

Experienced conventional computer system engineers do have an accepted body
of loosely related theory as cam be seen from looking at the table of contents of
recent books on Foundatiens of Computer Science [1], or Handbooks of Theoretical
Computer Science [2].

The theoretical components most valued by conventional computer system engi-
neers are those concerned with the syntactic aspects of linguistic structures. Hence,
formal language theory and antomata theory are valned for their support in the
comstruction of parsers and type checkers for programming languages, development
of pattern matching features of operating system shell languages, report generators
(e.8- grep, egrep, Awk, Perl in UNIX}, and editor generators.

The thecretical components most undervalued by conventional computer system
enginects ate those concerned with semantic aspects of liguistic structinres. Hence,
formal semantical theories and models are little known, appreciated and used.

On the pragmatic side conventional computer system engineers are also less ap-
preciative of areas such as analysis of algorithms, and complexity and feasibility
theories. They still keep writing reasonably efficient programs for problems which
are considered infeasible in a complexity theoretic sense, but which will work well
enough in most practical cases.

Theory based systems have the advantage of precision, trustwerthiness and gen-
erality (e.g. can be used to transfer knowledge of semantic aspects of one program-
ming language to ancther more easily}. They can be used effectively to enhance
learning {e.g. to close the gap between usage of conventional and usage of theory
based systems). They have the disadvantages of relative inefficiency in operation,
and a greater learning gap to be closed by the user.

Conventional systems have the advantage of efficiency, reputedly smaller learning
gap, can also be used effectively to enhance learning, are more familiar to users, and
have extensive application development.

BIBLIOTHEQUE DU CERIST

However, familiazity with conveniional computer systems may not be as much
of ap advantage as might appear at firet sight. There is & more basic kind of fa-
milisrity which users have with theory based sysiems which is often overlocked and
which if exploited has a much greater payoff than the expoitation of familiarity with
cornventional compruter concepts. For example, familisrity with high school algebra,
which can be relatlively safely presupposed in all adults whe have graduated from
high school, makes for an easy road fc computer systems based on the algebraic
approach and its concomitant equationzl style of reasoning. The sinple realisation
that the objects of the algebra need not just be numbers, but can essentially come
from any inductive domain, allows users to transfer the same algebraic understanding
from the domain of numbers to domains such as programs, data, machines, and even
systems as a whole. The same style of equational reasoning remains valid through-
out. This permits frequent transfer of knowledge from one domain to anciher by a
mathematical equivalent of anzlogical or lateral thinking.

Furthermore, conventionel eomputer oriented concepis are rather far removed
from human ways of thinking about real world systems, except in the case of the ob-
Jject oriented paraedigm, whereas the algebraic approach has miany espects in common
with the object oriented approach and hence can make similar claims to real world
closeness. On the whole, theory based systems could be comsidered closer to real
world sifuations, since they are descriptive and try to introduce the least amount
of model specific formalism as possible, whereas conventional systems force upon
the user all the details of compuier oriented models, including pariicularly the need
to express concepts algorithmically and usually sequentially, We feel the ability to
model concurrency will result in specifications and systems which are closer to real-
world systems and human thonght processes, and avoids the artificial introduciion of
sequentiality due to the sequenlial nature of one’s model, and not due to the nature
of the system modelled.

So it seems far from obvious whether theory based systems or conventional sys-
tems are closer to real world situations and hence to the non-computer specialist
user.

Even if the gaps for both were the same there would still be the greater payoff
from investing time in learning to understand and use theory based systems since
one obtains ability for very general knowledge transfer from domain to domain. One
only needs to compare the gereral applicebility of the resulis of one year of study
of C++, which is the least amount of time required to become proficient in that
eomplex language, with the general applicability of the 1esulis of one year study of
general algebraic topics.

2 Context for Engineering Trustworthy Computer
Impiementations of Real-world Systems

The general context for the developmeni of compuier sysiems consists of three major
gomponents, first, the real-world system or situation {RWS)} to be implemented,
which is expressed by requiremenis {Req); second, the specification {Spee) of an
appropriate abstraction of the real-world system which will be used to develop the
computer model and relative to which the model will be verified; and third, the

