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Preface

This volurie contains the proceedings of RTA-93, the Fifth International Con-
fercnce on Rewriting ‘Fechniques and Applications held June 16-18, 1993, in
Montreal, Canada.

There were 91 submissions to RTA-93 authored by researchers from coun-
tries including Canada, France, Germany, Italy, India, Japan, the Netherlands,
the People’s Republic of China, Russia, Spain, Umied Kingdom, and the United
States of America. Papers covered many topics: tern rewriting; termisation;
graph rewriting; constraint solving; semantic unification, disunification and com-
bination; higher-order logics and theorem proving, with several papers on dis-
tributed theorem proving, theorem proving with constraints, and completion.

Each submigsion was reviewed hy at lcast three program committee mera-
bers or their outside referees. All the members of the program committee met
on February 1993 in Nancy and selected 29 papers and 6 system descriptions
demonstrated during the conference and documented in this volume.

As for the proceedings of the previous conference, 1 welcomed the idea of
presenting in the proceedings a list of cpen problems in the field and an update
of the previous list of such open problems, showing altogether the strong activity
of the term rewriting community in the large,

Three invited speakers gave a talk on their recent works related to the topics
of RTA. Sergel Adian presented his work on algorithmic problems for groups and
semigroups, Leo Bachmair the impact of rewriting techniques on theorem proving
and Jean Gallier a general method for proving propertics of typed lambda terms.

I amn very grateful to the program commmittec for their efforts and cooperation
in deciding the program and other related matters to RTA-93; to Mitsuhiro
Okada for taking great care of the local arrangements for the conference; to the
invited spcakers Sergel Adian, Leo Bachmair and Jean Gallier, and lastly to
Marian Vitiek for doing everything that necded 1o-be done to facilitate my task
in organizing the program committee.

RTA-93 was sponsored by INRIA (France), the Centre de Recherche en In-
formatique de Nancy (France), Concordia University (Canada), the Center for
Patticrn Recognition and Machine Intelligence, Montreal {Canada), the Natural
Science and Engineering Research Council (Canada), le Fonds pour la Forma-
tion de Chercheurs et ’Ajde & la Recherche ((Quebec) and the National Science
Foundation (USA), and was held under the auspices of the European Associa-
tion for Theoretical Compuler Science.

Nancy, April 1993

Claude Kirchner
Chair, RTA-93
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Rewrite Techniques in Theorem Proving

Leo Bachmair
Department of Computer Science
University at Stony Brook
Stony Brook, New York, U.S.A.

The replacement of equals by equals is a common formn of equational rea-
soning, of which rewriling is a refinement. Rewrite systems are sels ol di-
recled equations, called rewrite rules, thal are used for replacements in the
indicated direction only. A given expression is rewritlen until a sinplest
possible form, a normal form, is obtained. Thus, the theory of rewriting is
in essence a theory of normal forms. If a rewrite system is convergent, Lhen
all possible sequences of rewrites of equal terms result in ihe same normal
form. In theories represenied as convergent rewrite systems equality can
therefore be decided rather efficiently.

Many aspects ol the theory of rewriting can also be applied to resolution-
style theorem provers. For instance, convergence requires that all sequences
of rewrites terminate, a property that can be characterized by certain weil-
founded orderings called simplification orderings. If a total stmplification
ordering is imposed on a Herbrand base, Lhen ground instances of a clause
can be interpreted as conditional rewrite rules and refutational theorem
proving may be viewed as a rewrite process: the negation of a theorem (lhe
“goal”) is rewritten until a contradiction is obtained. This method is only
(refutationally) complete, though, if the set of rewrite rules extracted from
the given clavses is convergent, and in general additional clauses may have
to be deduced.

In this talk, I will discuss the fuudamental techuiques on which this rewrite
approach to theoremn proving is based. T'wo concepls are of parlicular in-
terest: conslraints and redundancy. Consiraints provide a convenienl way
of describing the connection between the ground leve] (which embodies
the interpretalion of theorem proving as a rewrite process) and ihe general
inferences Lhal are actually applied by a prover to given clauses. Tn this cou-
lext they have maiuly been used Lo describe unification prolleins, ordering
restrictions, and also certaln normal-form properties of Lerins. Hedundancy,
on the other hand, allows one to optimize Llie proof seardl:, as redundant
formulas can be deleted and redundant inferences be ignored by a thicorem
prover.
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Redundancy Criteria for
Constrained Completion

Christopher Lynch  Wayne Snyder®
April 2, 1993

Abstrace

We study ihe problem of compleiion in the case of equations with con-
siraints consisting of fizst-order formulae over equations, disequations,
and an irreducibility predicaie. We present several inlerence sysiems
which show in a very precise way bow ic Lake advanlage of redundancy
notions in the confext of consirained equational reasoning. A nolable
feature of these systems is the variety of tradeoffs they present for re-
moving redundani instances of the equations invelved in an inference.
This combincs in one consistent framework almost all praclical eriti-
cal pair criteria, including the notion of Basic Completion. In addition
strict improvements of currently koown criteria are developed.

1 Imntroduction

This paper presents a framework for exploiting redundancy notions in the
context of a completion procedure {or constrained equations, The constraint
language consists of firsi-order formulae over atomic constraints consisting
of eguations, dizequations, and an irreducibility predicate. An inference
system is presented whick shows precisely the tradeofls involved in modify-
ing consiraints in order to delete unnecessary instances of the equations in-
valved. The notion of redundancy we use is due to Bachmair and Ganzinger
i1}, and amounis to 2 semantic version of the weli-known subconnectedness
criterion {sce [3]}. Building on recent work on Basic Completion {4, 10}, on
constrained completion [8];, and on various critical pair criteria {16, 13, 9]
{see [3] for a survey}, we show how a wide variety of techniques for removing
redundant equations can be combined and refloed in a consistent framework,

*Computer Science Department, Boston University, 111 Cummington St., Bosten, MA
92215, U.8.A., 1lyuch,snyderdcs bu. edu.
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Special cases of this inference system show how to impiement a strict im-
provement of the technique of Basic Completion, and a stronger, hereditary
version of the criterion based on subsumed critical pairs. In addition, we
analyze the effect of initial constraints on the computation of critical pairs,
It is hoped that this research centributes to the further development of the
theory of consirained equational reasoning and to the practical improvement
of existing completion procedures.

2 Preliminaries

We assume the reader is familiar with the standard definitions of terms
constructed from a given set of symbols {augmented with an infinite set
of Skolem constants). A multiset is an unordered collection with possi-
ble duplicate elements. An eguation is a binary mulliset {s,}, conven-
tionally represented s =s i, where s and t are first-order terms over the
given signature. A subsiitulion is a mapping from variables to terms,
e.g., {z1 — l1,22 — 13,...}, the domain of a substitution o as the set
Dom(a) = { 2|z # z0 }. The application of a substitution o lo a term # is
denoted {o; if 7 and p are substitutions, then z7p = (z7)p, for all variables
z.

We assuwme that a reduction ordering > (i.e., a well-founded ordering
closed under substitution and context application) total or ground terms is
given. Such an ordering can be extended to a well-founded ordering ..
on finite multisets of terms in the usual way. The ordering > on cquations
is simply ™ restricted to binary multisets. The mazimum of a set §
of equations, denoted maz(5), is defined as the smallest S C § such that
VB € 5,38 € §', B < B’. We denote an equation s =~ { where s > t by an
expression 8 — ¢ and call it a rewrite rule; note in this case that we must
have Var(l) C Var(s).

The constraint language we slhall use is a modification vl the one pre-
sented in [8] to account for irreducibility constraints. For additional infor-
mation on constrainls, sce [8] and relerences presented there.

Definition 1 The sei of constraints ¢ is defined induclively as the smallest
set of ezpressions containing the alomic constraints T, 1, 8 = 1, und Irr(s)
(for every pair of ierms s, 1), and such that whenever ¢y and g are in C,

then so are (1 V w2), (91 A w2), ~(¢1), (Jz.401), and (Vz. ).
A constraini (s = 1) is valled a disequation.

The set of free variables in a constraint ¢, denoted Var(yp), is defined in
the usual way. These are ilie variables that the constraint in fact constrains,
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and solutions ara substituiions over these variables, We typically use ¢ and
1 to denote constraints,

Definition 2 lel B be g ground rewrile sysiem, We define Yie scluiions
Solp() of a constraint ¢ relative to R inductively as follows. Fivsi,
3olr(L) = G. Then, for any ground substitution o,

(i) o € Solp(T);

fii} o € Solp(s = t) iff so = to;

i) o € Solp(Irr(s)) iff so ie R-irreducible;

{iv} o € Solg{p1 A w2} iff 0 € Solp(p1) N Solp(w);

{u} o € Solp(e: V ¢2) iff ¢ € Solp(p1) U Solr(ip2);

{vi) o € Solg(~) iff ¢ & Solp(p);

{vii) o € Solp{3z.) iff there exists some ground lerm i such that {z
i}o € Sol(p); and

(viii} o € Solp(Ve.p) iff for every ground term 1, {2 — t}o & Soi{p).

Thus, each constraint and each ground rewriting system define z set of
ground substitutions; a non-ground substitution o is said $o be a solution if
every ground substitution or is a solution. A constraint iz sulisfiable relative
to R if there exists some solution; if no solution exists, it is unsstisfieble,
and equivalent to 1. We say that  is stronger than or a a sirengthening
of ¢ if for any R, Solp(¢) C Selp(v); alternately, 1 is weaker than or a
weakening of .

Note that this is net a set of solutions wrt a theory K, as in [8]; the
rewrite system R is only used for the irreducibility constraints. An irre-
ducibility constraint Irr{s) can be used to forbid inferences into particular
subterms of an equation which are known to be irreducible, for example
if they are produced by application of a substitution; this is a particular
kind of redundancy check, calied the Dasic Strategy in {4}, which here is de-
veloped further in the context of equational and disequalional conatraints,
In addition, we shall propagale irreducibility consirainis through inferences.
Irreducibility constraints in completion are used in the context of zn evolving
rewrite system which successively approximates the limit canonical system
{this imit system is represented by R in the preceeding definition); thus in
practice we can only state that a conséraint Irr(a} in the contexi of a cur-
rent rewrite system J¥ is [alse whea = is reducible by £'; in geveral we could
never say that such a constraint is true until the limit systein is reached.
However, this will be suflicient to develop an exiension {o the Dasic Strategy
in our setting.

In the sequel an idempoiert substitution could be considered to be a
conjunction of equations; we shall make free use of this below, for example
forming a new constraint by adding a substitution, s.g., w A o,



BIBLIOTHEQUE DU CERIST

A constrained equalion is simply an equation between two terms plus a
constraint, e.g., s = t [¢]. (Later we shall extend this notation to append
other constraints to the equation.) The corstraint determines which ground
instances of the equation are available., Since an equation A without a
constraint can be considered to be a constrained equation A[T], in the
sequel we use the word equation in general to denote a constrained equation.
The symbols A, B, etc. will be used to denote either an equation with its
constraint or simply the equation part, depending on the coutext. The
erasure of an equation A[y] is defined as A[7] and similazly for sets of
equations. By ¢o we denote the replacement of each free occurrence of
z € Dom(o) in ¢ by zo. We assume the normal conventions for avoiding
free variable capture. Any free variable in ¢ which does not occur in A is
assumed in A[¢] to be existentially quantified at the innermost possible
level.

For any ground rewriling system &, the set of ground instances of an
equation Afg] relative to R is defined as

Grr(Alel) = { Ac]o ground, Var(A) C Dom(c), and o € Soig(p)}.

The set of ground instances of a set F is then defined

Grr(E) = U GrRr(A).
AcE

Rermark In order to preserve completeness, we only allow a constraint of
the form s ~ t[...frr{u).. ] if either u < s or u < ¢. If this restriction does
not hold, then [...Irr(u)...] is weakened to the form [...L..] il Irr{u)
occurs negatively (i.e., in the scope of an odd number of negations). If the
restriction does not hold and Irr{u) occurs posilively, for u is a constant
or a variable, then [...Irr(u}...] is weakened Lo the form [...T...]; but il
%= f(ui,...,%n), We can weaken the constraint into the form [...Irr(u;) A
<. AIrr(uy) .. ; this decomposition of the term must be iterated just until
the restricted form is attained. We shall assume in the sequel that all
equations have this restricted form.

3 Redundancy and Constraints

In this paper we presenl a strong inference system for constrained comple-
tion. We show the various tradecofls which can be employed when applying
redundancy notions [I] to eliminate cerlain instances of constrained equa-
tions involved in the inferences. Intuitively, a redundant equalion is an
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4 3)

equation which is implied by smaller equations. Such equations are unnec-
essary in completing a set of equations. Qur current formulation owes much
to the paper {4].

Definition 3 Lei B be a ground rewriting systesn and F a set of equations.
A ground instance A € Grg(E)} is R-redundant in ¥ if there exist equations
{Ajy..., A} C Grp(E) such that A; < A for 1 < i< n, and such that if
each A; is true in R, then A is true in R. If A is a non-ground equalion,
ihen A is R-redundant in E if every A’ € Grg(A) is. If it is R-redundant,
for any R, then it is simply catled redundant.

Now let M = {B1,..., B} be a sel of equations. We say that A is
R-redundant in E upto M if for each ground insiance Ao € Grg(A), there
ezist equations {A1,...,An} C Grr(E) and for each B; € M there exists
a ground instance B} € Grr(B;a) such that A; < maz(By,...,B}) for
1< i < n, and such that if each A; is irue in R, then A is true in R.1

¥or instance, equations with only identity instances are trivially redun-
dant. In this paper we present a framework for representing redundancy
information explicitly in an equation, by adding constraints to the equa-
tion which give more informalion about which instances are redundant;
this information can then be propagated during inferences under certain
conditions. Qur notation uses an equation and 2 triple represented as
Afer, @2, M ], where A is an equation, M is a set of equations, and ¢
and 3 are constraints. We can think of this as an extension of the original
notation Af], so that the first consiraint ¢y still represents the avail-
able instances of the equation, i.e., Grr(Alp,, w2, M]) = Gre(Ale1])
The other constraint and the set M record redundancy information in the
foflowing way.

Definition 4 A consirained eguation Alpr, ¢, M) € E is correct for E
{or simply correct if E is obvious) if for all rewrite sysiems R
()Gra(ALp]) € Gra(Ale:)), (2)If B € Gra(A[g])\ Gra(Ae1])
then B is R-redundant in E, and (8) If B € Grr{A)\ Grp{A[©2)) then B
is R-redundani in I up to M,

For example, an unconstrained equation has the form A[T, T, {4}].
We will hereafter assurne that all equations are in correct form, but may
eliminale a suffix of the parameters if desired, W M is missing we assume
it is {A} and a missing ¢y is assumed equal to ¢, and a missing ¢ is
assumed $o be T. The last twoe components are used to store informalion
about the history of an equation. Essentially, redundancy is used in the

YThe point of ikis rather complex definilion will be made dear in a3 moment.
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completeness proof to show when equations become true. In passing such
information around the inference system, it becomes useful to separate the
ordering requirements in the definition of redundancy (e.g., “A; < A”} from
the logical requirements (e.g., “if each A; is true in R ...”). We thus wish
to know when A is implied by equations smaller than B, and the set M
preserves information abouf the smallest such B. It records which axioms
S (original equations} were used o construct a given equation A. Cleasly,
S implies A, and thus {roughly) we let M = maz(S) in A. This parameter
does not change for any particular equation.

We will use this redundancy information to delete ingstances of equa-
tions. For example, it is well known that overlaps at variable positions are
not necessary. This is because instances with reducible substitutions are
redundanct. In our framework we make this explicit, representing the irre-
ducibility condition in the constraint. An unconstrained equation fz = gz
would be represented in correct form here as fz = gz{Irr(z), T). It is
sufficient to to consider cases where the constraint is false to simulate the
“no overlaps at variable posilions” condition and also the Basic strategy.

4 Constrained Critical Pair Generation

In this section we give a generalization of the critical pair rule [rom [8]
and show how a variety of tradeoffs may be obtained in dcleting various
instances of tlie equalions involved in an inference.

The general form of our constrained critical pair rule is

C-Deduce

8 — t[ﬂals P2, M] U[S’] - ‘U[Tl)], 1»[’2! N]
ult]o = va[d;, Az, mac(MoUNo)]

where (1) ¢ = mgu(s, '), (2) A, is a weakening of @10 A Y10 A Irr(so),
(3) &y is a strengthening of Irr(z) A ... A Irr(z,), where {z;,...,2,} =
Ver(ultje = va), (4) the conclusion is a correct equation, and (5) aller
constucting the conclusion we may polentially modily some of the premise
constraints as long as these are still correct equations.

In general in the inference rules we present, equations will have the form
AlIrr(si) A .. . ATrr(sa) A @), w2, M), where any variable in A occurs in
soine 3;. Nofe that we have not explicilly stated the condilion “where s’
is not a variable,” but in fact this will be a consequence of the irreducibil-
ity constraints built up during the inference process. Inferences involving
variable overlaps can be shown to be redundant and hence unnecessary.

The correctness criteria here basically assert that if instances of Lhese
equations are deleted by the inference, then these instances are redundant.
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The general idea of the variour instances of this schema we preseni is that
certain instances of the right premise are redundant by virtue of cerfain
instances of the left premise and the conclusion; the tradeofls occur in con-
sidering whether we want to strengthen the right premise by deleting as
many instances of the right premise as possible, in which czse we need per-
haps to weaken the other equations by making wmore instances available, or
whether we wish {c strengthen the conclusion ag much as possible, in which
case we can not delete as many instances of the right premise. Essentially
these rules can be thought of as combinations of simplification and over-
lap rules. In addition, it is possible to define situations under which the
inference itself is redundant 2nd hence need not be performed.

Definition 5 For any R and E, a {-Deduce inference as given above is B-
redundant in B if (i} the o-inslance of either premise is R-redundant in E,
or (11} ultle = valpro Ao ATTT{30), Az, maz(MoUN©o}] is R-redundant
in B, If it is R-redundant, for any R, then it is simply celied redundant.

To present these inference rules we need to say what the values of the
constraints in the conclusion are, and how the constraints in the premises
are {potentially) modified. For each case, we would need to show that
the conditions of C-Deduce are saiislied; we omit these proofs from this
abstract. First we present two general constraint modification rules that
may be applied to strengthen the right premise after an inference has been
performed.

Let CM1 be the right premise constraint modification rule: 95 => ¥ A
{0 A Az Apy), and let CM2 be the rule: 3y = ¥ A =(0 A A2).

It can be shown that if s0 — f¢ < uls’le — vo then CM1 applied to
the right premise yields a new correct equation.? If in addition we have
Mo <y {uls'le — vo} then CM2 applied to the right premise yields a
correct equation,

The first inference systam presented is called CCP (Constrained Critical
Pairs). In this case the conclusion is as strong as possible, the leflt premise
is not weakened, and some instances of the right premise are deieted.,

Definition 8 Let JCP be the instance of C-Deduce where &) = A =
w1 AP o ATrr{sa), and where CM1 is performed if so — o < uls’]e — vo.

In the CCF inference A is as strong as it can be in an inference. Given
ibe value of Ay we could try to make Lz as weak as possible so we can delete
more of the inslances of the right premise. For example, If the conclusion

?Note thai if this condilion is violated thien ile conclusion is eitheor unocricatalle or an
idenlity.
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is fr = gzlirr(z), Irr(z)], then we could change Ay to T, because all
reducible instances are redundant. In general, if Ay = Irr(z} A ¢ and ¢
does not further constrain z, then A; can be set equal to ¢’ (this process
can be iterated). Call the result of this iteration NelrrVar(A;). Although
we shall have occasion to refer to this notion in a later section, for simplicity
in this abstract, we have presented a simpler version where A; = Aj.

Qur second instance of C-Deduce emphasizes strengthening the right
premise as much as possible, essentially by simplifying as many instances of
the right premise as possible by instances of the left premise. In this case
we may have to weaken the left premise and construct a weaker conclusion
than in the previous rule.

Definition 7 C-Simplify is the instance of C-Deduce such that A; = Ag =
1o, and where in addilion if so — to < y[s'le — vo we change 3y in the
right premise 1o ¥y A -a; finally, unless Mo < {u[s']le — vo)} holds we
must further modify the premise constraints so that iy = v V(oA A-pg)
and w3 = @2 V(¢ A ¢q).

These two rules illustrate the range of tradeoffs available, In CCP we do
not weaken the conclusion or the left premise, so that we can only eliminate
some instances of the right premise. In C-Simplify we mnst weaken the
constraints on the conclusion and the left premise in general but we can
then delete all possible instances of the right premise. 1t is possible to
define inference rules between these two exiremes. In the next definition we
present two rules which weaken the conclusion but not the left premise of
the inference.

Definition 8 Suppose so — to < u[s'|c — vo. Then we define the rule
CCPI as the instance of C-Deduce where Ay = Az = @20 A 1o A Irr(so)
and with the strengthening ¥y = 1 A (0 A @z A Irr(se)). If in addition,
we have Mo <Xpu {u{s’]le — va}, then we may define the instance CCP2 of
C-Deduce where Ay = Ay = P10 ATrr(sa) and such that ¥ = P A =(o A
Irr(so)).

In a similar manner it is possible to define other inference rules that
partially weaken the conclusion and the left premise so some instances of
the right premise are deleted. For instance we can weaken the constraints
on the conclusion so thal just the irreducibility constraints remain, or we
can weaken the constrainis so that just the equalional and disequational
constraints remain.? Thus it is possible to define a spectrum of possible
critical pair rules in our framework,

3To be precise we would also need to keep Lhe irreducibility constraints on Lhe variables
of the conclusion to aveid superposing into variables,
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Now we consider some examples of the above Inference ruics. Consider
{he infereace

fa—b  fz— gaflrr(z), T}

b~ galIrr{a), Irr{a), fa — ga]
on axioms. If we use the CCP rule then we may apply CM1 to the conséraing
of the right premise: Jre(2) = Irr(z) Az # a V ~JIrr{a)). ¥ we use C-
Simplify then the conclusion becomes b & ga [ T ] and the right premise is
modified by Trr(z} = Irr(z) A 2 # a. We can now show how these two
inferences would provide additional information usable in later inferences.
Assume we followed the C-Simnplify inference just given with

fzr— gz[Irr{z)Az #a, T} gfa— ¢
ggemcfl, L, ¢fa—c]

The first thing to note is that this inference is redundant because the con-
straint on the conclusion is unsatisfiable. Therefore the inference does not
need to be performed. However, we may be interested in simplifying the
right premise, so we still perform the inference. Using C-Simplify we get
gga = ¢{ 7] for the conclusion. The first constraint on the right premise
becomes L which means that none of the instances of the equation are nec-
essary. However, tlie second consirainl is slill T which means that all the
instances are redundant. Therefore we may use it to simplify an equation if
we like, without weakening the constraint, but we are never required to use
it in an inference. This illustrates the benelit of the second constraint. If
we had not saved the second constraint we would have had 1o weaken the
first constraint on the left premise.

To illustrate the benefit of the third component of the constraint triple
we consider following the CCP infercace in the first example with

ga — bfIrr(a), Irr(a), fa - ga]  fga—ge
b = galive(a), Irr(a), fga — ge}

If we wani this to be a C-Simplify inference the conclusion can be weakened
to fb ~ galV, T, fga — ga)]. Then we can use CM2 to set the first
constraint of the right premise to 1 as in the previous example, since all
instances of left premise are true by equations smaller than the right premise.

We give vne more example to illustrate a use of the irreducibility con-
siraints. Consider the inference

fae—b fo—ga
b~ gallrr(a), frr{a), fa — ga}
We ceuld consider this to be a C-Simplify inference, weaken the constraint in
thie conclusion and change the coniraint of (he right premise to 1. If we used
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CCP instead the first constraint on the right premise becomes —[rr(a) using
CM1. Any inference using this equation as left premise is now redundant
becanse ¢ must be irreducible in an inference. That is, when fa — gais used
as a left premise, fa can be restricied to be in normal form (cf. the prime
superposition criterion discussed below), which violates the constraint.

Naturally, other rules for simplifying rhs’s of rules, orienting, etc. are
necessary for a practical system, but for brevity we have presented only
our critical pair rule. These are relatively straightforward adaptations of
the ideas above, except for the blocking rules, and are presented in full in
the long version. Irreducibility constraints give us blocking rules based on
the reducibility of terms in constraints Irr(s). For example, suppose we
have equations A[...Jrr(u[s])...] and s — {[ ], where sp = s'. Then the
first equation can be changed to A[...(frr{u{s]} A =(¢p))...]. Clearly if all
instances of 5 — ¢ are available, i.e., ¢ = T, then this corresponds to solving
the consiraint Irr(u) by replacing it with L.

In the remainder of this seclion we show how we can set the parameters
of the C-Deduce rule to give other critical pair criteria as special cases of
ours. To start with we consider standard completion,

The standard critical peir rule can be represented in our system by
letting Ay = Irr(z) A .. Alrr(z,), where {21,...,2,} = Var(u[t]o = vo),
Ay = T, and P be anything that yields a correct equation (since it will
never be used). This is only necessary to disallow superposilion into variable
positions. The simplificaiion rule can be represenled by the same conclusion,
with the right premise modified using CML. Since simplification is only
performed when o is a malcher, the first consiraint oa Lhe righl preuise
becomes L so the equalion may be deleted.

Prime superposilion {7] is a critical pair criterion which states that an
inference is ununecessary if the s of the lelt premise is reducible. This
{ollows directly from our redundancy criteria. An inference is redundant il
I'rr{so) is unsatisfiable. In fact our results provide for a Liereditary version
of this criterion.

General superposition [16] and the critical pair criteria discussed in
[9, 13, 14] are all examples of a more general principle of subsumed crit-
ical pairs [3]. Once an overlap on an equation A is produced, involving an
mgu o, then it is no longer necessary to consider overlaps on A invaolving
mgus less general or equal to . We simulate these critical pair criteria with
disequational constraints. The constraints on the conclusion would be the
saine as the constraints in the standard crilical pair rule. The difference
ijs that CM1 is then performed. The first constraint of the right premise
then becomes 4 A -~o. This disallows further superposilions into the right
premise where the mgu is less general than or equal to @, since these in-
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stamces are no longer present., Again, our resulls provide for 3 hereditary
version of this criterion. In other words, if a right premise has heen over-
!apped with mgu o, then the conclusion also never needs to be overlapped
with an mygu less general or equal fo o.

In addition to naturally simulating subsumed critical pair criteria with
our inference system we also naturally simulate basic completion [4, 10]. In
this strategy, overlaps are disallowed on terms introduced by subsiitution.
Thie is simulated with irreducibility constraints. In the conclusion of an
inference we let Ay = 10 Ao and Az = NolrrVar{A;). Essentially, all
constraints would be conjunctions of irreducibility constrainrts; constraints
on the variables of the premises are instantiated by the mgu which restricts
us from superposing into those positions. In fact, we can obtain a stronger
version, because constraints can be kept on terms not occurring in the equa-
tion. The special form of simplification required in basic completion can be
simulated by our techniques for weakening the left premise,

The completion system in [8] is desigred for a set of equations with ini-
iial constraints. The authors are not concerned with cfficiency constraints
and redendancy. As we have shown in the beginning of this section, com-
pletion is not complete with initially constrained equations unless we allow
superposing into variables. In order to insure completeness [8] considered
some additional inference rules which basically bad the purpose of turning
constrained equations into unconstrained equations. In our {ull paper in
preparation we show how completeness can be preserved with initial con-
siraints by allowing a limited form of variable ovelap. Our completeness
proof is the first one we are aware of for equation and disequation constrainis
without any additional rules. We studied the combination of irreducibility
constraints (to embed Basic Completion) with a subset of the constraints
considered in [8]. For example we do not consider ordering constraints (see
also {12} and {10]), although it seems they could be added to our system
without major alterations of the framework.

We now consider the completeness of the rules presented in the previous
section. For lack of space we can present no formal preofs, referring the
reader to the full paper. We emphasize that we are considering only the
critical pair rules here, and not the full complement of completion inference
rules. It is sufficient for completeness however te consider only the critical
pair rules.

Following the paradigm developed at lengih in the book [3], we define 2
derivation to model the process of completion.

Definition 8 A sequence < Sg, 51,... > of sels of equalions is a derivation
from 5 if 8o = § and for eack i > 0, for any R, Gre{Si1) = (Gru(S;) U
B\ E; where By and E; ere sets of equations such that Grp{5:) |= Ey and
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each equation in E; is R-redundant in Grp(S5;)U Ey. Let Soo = |J; nkzi Sk.
We call 5o, the limit of the derivation. Any equation A € S 18 called
persisting.

Definition 10 Let I be some instance of C-Deduce. A derivation is an I-
derivation if each 5;y, is obtained from S§; by application of the rule I. A sel
S is I-saturated if every I-inference from S is redundant. An I-dertvation
is fair if the limit is I-saturcted.

An inference rule can be viewed as a method for adding consequences to
the set and deleting redundant instances., The next result shows that this
is correct in the limit.

Lemma 1 Lel R be a ground rewriling system and suppose for lwo sets of
equations E and E', Grg(F) C Grr(£'). (1) Any closure (or inference)
which is R-redundant in E is also R-redundant in E'. (2) If all ground
instances in Grr(E')\ Grp(E) are R-redundant in E', then any equation
{or inference) which is IL-redundant in E' is also R-redundani in E.

This shows that the inference systems presented are sufficient to saturate
a set of equations. We now show that saturated sets are ground canonical.
In our framework, this will allow us to argue that our constrained completion
systems (which are not defined as unfailing) will produce canonical sets in
the limit. Qur prool foliows very much in the lines of the proof in the
Jjournal version of [4], with the addition of the constraint formalism. In
addition, there are some delicate features of the prool which relate to the
use of the irreducibility constraints defined relative to a rewrite systein which
is constructed from the set of constrained equations itsell. First we give a
method for constructing a canonical set of ground rewrite rules from a given
sel of equations.

Definition 11 Let E be a sel of equations and £Q denote the sel of all
ground eguations. We define the ground rewriling systesn Rg using in-
duction on (£Q,>) by associaling with each A € £Q a rcwrile sysiem
R,4. Assume for a ground eguation A thal Ry has been defined for each
ground equation D with B < A, and lct li 4 be definedas | Jg 4 Rp. Then
= {A} if A is a member of Grr_,(E) in the forin s — I and where s
irreducible by R a; otherwise Ry = §. Finally define Rg as ) ceq Ra.

Notice that the rewrite system g is constructed out of instances from
substitutions reduced relative {o smaller rewrite rules already in Rg.

Let us say that a ground instance Ag of an equation from E is reduced
relalive lo R, or an R-reduced inslance of E, il zo is irreducible by R for
every z € Dom{o). The properties of the prccedmg definition we shall need
are as follows.
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Lemma 2 For Rg as jusi defined, (i} Every equaiion in Hg <8 an Rg-
reduced instonce of E; (ii) Rg and By for any A € £Q are canonical; (iii)
No equation A € B is true in R, 4; and (v An equation A € Grp, (E) is
irue in Rp iff it {5 frue in R4 U Ra. '

Theorem 1 Let I be some tnslance of the C-Deduce rule, Rg be ag above,
and F; be an I- saturated set of equaiions such that for each Afwy, vz, M1 €
E, wpy is stronger than Irr(z) A ... A lrr(z,) for {z1,...,2.} = Var(A).
Then Bg makes true every member of Gra (E).

We now sfate the main completeness result of the paper.

Theorem 2 Let E be a set of unconstrained equalions and § be the sei
of equalions Al{rv{z) A ... Adrr{z,), T), for A € E and {z1,...,2,} =
Var(A). Let < §,... > be an I-fair derivation from § for some instance
I of C-Deduce. If S, contains no unorientable equations then it iz ground
canonical and equivaleni to E. In addition the erasure of S, i a cancnical
rewriling system equivaleni to E.

The proof that the erasure is a canonical {and not just a ground canon-
ical) rewrite system involves a Skolemization siep, and is from {4]. This
shows that our infercnce system (which was not presented as an unfailing
completion procedure) produces a canonical rewriting sysiem in the limit.
H a derivation is finite, then of course the final system is canonical. In
this case it could be considered to be a constrained rewriting system, or its
erasure could be produced. The adaptation of these results to the case of
unfailing completion is straightforward and left to the full paper.

5 Cenclusion

We have presented several inference systems which show in a very pre-
cise way how to take advantage of redundancy noticns in the context of
constrained equational reasoning. These systems illustrate the tradeofls in-
volved in this framework in » very precise way. We hcpe that this research
contributes to the further development of the theory of consirained equa-
tional reasoning and to the practical improvement of existing completion
procedures,

The method of proof used in this paper was adapted from our previcus
paper with Bachmair and Ganzirger on Dasic Paramodulation [4] {sce also
[10]), whick in turn adapted the resulis of {1 {cf. {11] and {17]). However,
the inference systems are developments of the rules fromn the seminal paper
{8} to show how irreducibility constraints can be used to express the idea of
Basic Completion it combination with other kinds of equational coustrainis.
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To apply the procedures given in this paper, one needs to have a con-
straint solving algorithm. Comon and Lescanne [5] have analyzed the prob-
lem of solving constraints of equations and disequations. In our framework
we also consider irreducibility constraints, however, which complicates the
situation. For an arbitrary canonical system R, reducibility and irreducibil-
ity tests can be made using inductive reducibility and narrowing tests, how-
ever in our setting these tests must be made with respect to an evolving
rewrite system and in the presence of constrained rewrite rules. Thus only
certain tests can be made. Some of these have been explained in our block-
ing rules, In general, for an incompletely specified rewrite system, we can
only know that if a term # is reducible at some stage, it will be reducible
in the limit as well; we can never state in the positive that ¢ is irreducible
before the completion process terminates.

We do not expect that this framework in its enlirety would be necessarily
be an eflicient and useable forin of completion procedure. We instead view
it as a theoretical model for constrained completion, some of whose special
cases may turn out to be practically useful. Qur current reseatch focusses
cn simple and efficient subcases of the general framework which promise to
eliminate as many redundant inferences and equations as possible without
excess amounts of overhead, A particular focus is on subclasses for which
efficient constraint solving techniques exist. The implementation ol this
system, and the Basic Completion system discussed in [4], is currently being
investigated at BU as part of the Maslers Thesis [G).
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