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Preface 

Neural computation arises from the capacity of nervous tissue to process information 
and accumulate knowledge in an intelligent manner. Perception, learning, associative 
memory, self-organization, fault tolerance and self-repair, planning, reasoning and 
creativity are basic properties of biological systems computed by the neural tissue. B y 
way of contrast, computational machines with von Neumann architecture and 
conventional external programming, including knowledge based systems, have 
encountered enormous difficulties in duplicating these functionalities. . 

In an effort to escape this impasse, the scientific community has turned its attention to 
the anatomy and physiology of neural networks and the structural and organizational 
princip1es at the root of living systems. This has given rise to the development of the 
field of Artificial Neural Networks (ANN), where computation is distributed over a 
great number of local processing elements with a high degree of connectivity and in 
which extemal programming is replaced with supervised and non-supervised learning. 

The papers presented here are carefully reviewed versions of the taIks delivered at the 
International Workshop on Artificial Neural Networks (IW ANN '93) organized by 
Universities of Catalufia (politécnica, Autonoma and of Barcelona) and the Spanish 
Open University at Madrid (UNED) and held in Sitges (Barcelona), Spain, from 9 to 11 
June, 1993. More than 160 papers were submitted, of which III were accepted for oral 
presentation and are included in these proceedings. Extended papers originated [rom 
invited talks related to the main topics considered are also included as introd uctions to 
the corresponding sections. 

This workshop has been organized in cooperation with the Spanish RIG of the IEEE 
Neural Networks Society, and the IFIP WG 10.6, and has been sponsored by the 
Spanish CICYT, the Catalan CIRIT, and the organizing universities. 

Collaboration of the Spanish chapter of the IEEE Computer Society, the UR&RI 
Communication chapter of IEEE, and the AEIA (Spanish Association for Computing 
and Automation) has been obtained. 

We would like to thank ail the authors as weil as all the members of the International 
Program Committee for their labour in the production, evaluation and refinement of the 
papers. Furthermore, the editors would like to thank Springer-Verlag, in particular 
Alfred Hofmann, for excellent cooperation. 

The papers published in this volume present the CUITent state in neural computation and 
are organized in seven sections: 

- Biological perspectives, 
Mathematical models, 
Learning, 

- Self-organizing networks, 
Neural softw?re., 
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- Hardware implementation, 
Applications: 

\/1 

Signal processing and pattern recognition, 
- Communications, 
- Artificial vision, 
- Control and tobotics, 
- Other applications). 

We begin with biological perspectives, including studies of the anatomical and 
physiological roots of neural computation. The biopl1ysicallevel is enhanced and sorne 
daims on more realistic models of natural computation are included. 

Thus far wc have exarnined biology. Now we turn our attention to the wor!d of 
mathematical models and organizational principles. A strong theoretical perspective i5 
needed to seek organizational knowledge that will enable us to reproduce through 
synthcsis some of the properties observable in living beings. Self-organization, 
continuons leaming, and genetic algorithms arc the topics more frequently addressed. 

Leaming is the key to neural computation. If we say that leaming (self-programming) 
should substitute external programming, we must develop algorithms and methods of 
local leaming comparable in clarity, completeness, and efficiency to those in 
conventional computation. It is truC tllat local training requires more complex 
connections and redundant computations, but it simplifies the global design, includes 
intrinsic parallelism, and goes clQserto biology. As long as the leaming algorithms are 
executed in a general purpose computer scparatcd from the nctwork we arc far from 
biology. 

The next step in the proceedings is related to the development of neural software 
(languages, tools, simulations and benchmarks) and hardware Implementations. 
Programming environments are usually classified as application-oriented, algorithm­
oriented, and general programming systems. The simulation of neural nelworks in 
conventional computcrs canonly he considered as a first step in the training and 
evaluation of rnodels, architectures, and algorithms on the pathway towards intrinsically 
parallel hardware Implementations. 

The Implementation of neural networks depends directly on which neural model and 
lcaming algorithm we seek to implement. In other words, itis necess3..ry ID distinguish 
hetween (a) what wc want to implemcntand (b) how we do il Once we have agreed on 
which computational mode! and what degree of auiOnomywe want ta implement, the 
next stcp is how to do il. In al! the cases the implementatioil can he analog, digital, or 
hybrid and is within a conctcte technology (electronicor optical). There are two 
options, whieh we could cal! the simple mode! and the complex mode!. 

In the first case, it Îs accepted that there is little autonom y. If the second option 
(complex model) is selected, wc are forced to think in tenns of neurocomputers, 
specificaHy designed for the implementation of neural nctworks with local 
computation, structural and functiOlial paramc!ers ad justm en t, and several modes of 
ü'lctionin, (initialization, trainingllearning and use). Between this level (nothing in 
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VII 

the host, all in the ·network) and the software simulations in conventional computers 
previously mentioned (nothing in the network, aIl in the host) there should be an ample 
range of intermediate situations (specific and general purpose neurocomputers) so that 
the closer we come 10 "all in the network", the closer we will be 10 the biological 
computation [rom which we drew inspiration. 

111e last part in the proceedings is related 10 applications. The basic question here is: 
what type of applications possess the computational requirements for the solution of 
which it would be advisable 10 use neural networks? Not all functions are capable of 
bdng distributed. 

The majority of application tasks in neural computation can be formulated as 
multilayer classification functions in which a set of input configurations X = ( Xm ) 
associates itself 10 a set of classes Y = ( y n) after supervised or unsupervised learning. 
Signal and image processing and pattern recognition are the known examples in this 
line. Artificial vision, adaptive control, systems identification, and sensory-motor 
controlloops are also adequate tasks to be solved using neural nets. 

The most serious computational problem in the field of artificial neural nets (ANN) is 
the lack of theory, with direct and inverse constructive theorems. Given a specific 
computational family, which would be the map of individual functions and learning 
algorithms such that - when they operate linked by the data - they synthesize the 
global function)? Conversely, given a net of thousand of individual processors with 
loc:aI learning, which would be the global computation that emerges as a results of the 
cooperative integration of these local computations? It is clear that an enormous 
amount of work still remains 10 be done in neural computation, and this is a challenge 
for all of us. 

Madrid, April 1993 J. Mira 
J. Cabestany 

A. Prieto B
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BIOPHYSICS OF NEURAL COMPUTATION 

K N. Leibovic 

State University of New York at Buffalo 

Department of Biophyslcal Sciences 

and 

Center for Cognitive Science 

120 Cary Hall 

Buffalo, NY 14214-3005 

Abstract: 

This paper discusses neural computation in vision. Optimal design links structure-function relationships. This is 
avident at the cellular leveJ with rod photoreceptor structure subserving detection in the presence of noise; and il 
is evident ln the architecture of neural networks in which parallel computation is carried out in converging and 
diverging fines between different levels of the nervous system. 5uch an architecture makes possible sorne interesting 
schemes for information processing, including the computation of explicit parameters. resoJuUon and reliability. 

Keywords: 

Biophysics, optimality, cells and networks, parallel processing, convergence-divergence. 
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In,roduction: 

Knowledge 15 an interconnected web, and sa biophysÎcal models of the brain serve as patterns for computationai 
lmplementations wh~e_ advances in communlcation_s and computers lead to theories, by analogy, of mental 
processes. In this paper l shall discuss sorne characteristics of neural computation in relaiion to vision. 1 have 
chosen vision because il is our primarf sensoi)' modality and it provides us with a richness of mental images 
expressed in memory and language. We know from our own experience that mamort is largely visual R sorne people 
are said ta h~ve a photographie memory e and our language is full of visual metonyms for intelligent operations such 
as "expressing a view", "1 §llll whal you mean' and many athers (Leibovic 1990). 

A princlple whichseems to guide biological evolution Is the optimlzatlon 01 structure and funclion. There/ore 1 shall 
take optimality as a theme of this presentation. 1 shall consider photoreceptor cells as an example of the biological 
components and 1 shan consider the archi~ecture of fi9:Jral netHorks for information processing. We can see at the 
.cellular leve1 how the components are designed for optimal detection in the presence of noise, whHe in neural 
netWorks we find a design thal is particular1y well.adapted for multivariable, paralle! compU!:atlons. 

The Optimal Design of Pholareceptcrs: 

The rods and cones of the ratina absorb Ilght and convert the photon energy inta a neura! response. These cetls 
are more or less cylindrical and they present their~circular cross sections to the pattern of light incident on the retina. 

Design Cpnsiderations Ior Rod and Cone D;amaters: 

Figure 1 iIIustrates the arrangement of photoreceptors in the retina. It is clear that there are requirements for photon 
Gapture and image -resolution, both of whlch are related to the aperture and cross section of the cells. A large 
aperture is desirable in dim lIIumination, but this would compromise resolution in daylight. In our case evolutiOl'l has 
solved the probiem without-compromise by devoting the cones, especially in the fove? to dayHght vision, and the 
rods to vision in dim iUumlnation. The diameter and spacing of our loveal cones are al the Hmit of opticaJ diffraction, 
whfle eur rcds are capable of counting sinle photons. 

in sorne regions of our retina (e.g., at i8°_ from the fovea) the rads are as slender and tightly packed as the canes 
in the fovea, while farther fram the fovea cones_aïe quite fat and tapered towards the tip. These variations in shape 
reflect d!fferent requirements subserving a foveal design, such as movement sensitivity in the periphery versus forrn 
perception ln the center. Different species, in dlfferent ecÇllogical niches a1so show different designs. This Is 
illustrate<! lor rads in Figure 2: rods, like Gones, can be lat or thin, long or short. 

While hlgh resolution requires a small cell diameter a large ,ad dia'TIeler ean be advantageous nat only ln dim 
illumination, and in movement detection, but aiso in a noisy photic environment where the absorption of more than 
one photon is needed to reduce fa.!se alarms. 

Considerations such as tnese determine pp.otoreceptor diameter. There 15 an extensive lite rature devoted to this 
tapie (see reviews by Snyder 1978, Pugh 1988). Or. the other hand, photoreeepto; length has hardly besn 
considered. j shall therefore devote the rest of this section to photoreceptor length, focussing especially on rods. 

Signifieanee of Length iD ful.d FunetiQn: 

Responding wlth great sensiHvity to one or a few photons, noise Is an Important factor in rod funcHan. The photon 
energy 15 amplifled by as much as 10" times ln producing the neural response. This is mediated bya biochemical 
cycle and the longer the rod for a given di_ameter, the more thermal no!se is produced. ThIs argues for a short 
length. On the other hand, the efficiency of absorb!ng a photon depends on the number of absorbing layers, and 
this argues for a long rad. Noise and absorption efficiency are the primary variables in )"Od function. How can one 
achieve a compromise between them and optimize the design? 

! have developed anoptimization criterian to acldress this question (Lelbovic 1990, Leibovic and Moreno-Diaz 1992). 
Il Is given by: 

R = [l-exp(-as)l[l-(DfT)(sfL)JA-N(s/L) 0) 
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