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Preface 

PARLE is an international, European based conference which focuses on the 
parallel processing subdomain of informatics and information technology. Paral
lei processing is today recognized as an area of strategie significance throughout 
the world. As a result, many national, pan-European and world-wide initiatives 
are being planned or already exist to further research and development in this 
area. 

Ever increasing demands are being made on computer technology to provide 
the processing power necessary to help understand and master the complexityof 
natural phenomena and engineering structures. Within human organizations ever 
more processing power is needed to master the increasing information flow. Many 
so-called "Grand Challenges" have been identified as being orders of magnitude 
beyond even the most powerful computers available today. 

Although the microelectronics industry has made vast, impressive strides 
both in improving the processing power available from individual components 
and in dramatically reducing the cost of basic processing power, it is not in itself 
enough to satisfy even today's requirements. 

Parallel processing technology offers a solution to this problem. By taking 
several basic processing devices and connecting them together the potential ex
ists of achieving a performance of many times that of an individual device. 
However, it is still an important topic of research to discover how to do this 
optimally and then to be able to effectively exploit the potential power through 
real applications solving real-world problems. Sorne progress has been made, 
particularly in isolated applications, but building parallel application programs 
is today recognized as a highly complex activity requiring specialist skills and 
in-depth knowledge of both the application domain and the particular parallel 
computer to be used. 

Many international conferences in the area of parallel processing focus on 
the now well-established technical areas broadly described as number-crunching. 
Although this area is also within PARLE's scope, it has tended to put more 
emphasis in its technical program on other areas, such as novel architectures, 
symbolic processing, parallel database technology,and functional and logic tech
nology. These represent sorne of the most difficult challenges in making general 
purpose parallel computing a reality. 

The PARLE Conference came into existence in 1987. It started its life as an 
initiative coming from the ESPRIT 1 programme and was financially supported 
by the Commission of the European Communities through that programme. 
Between 1987 and 1991 the conference was held biannually around Eindhoven 
in the Netherlands with Philips taking the responsibility for its organization. 

ln 1991 Philips decided that they no longer wished to continue organizing 
PARLE and so the future of the conference was reviewed. The conference Steer
ing Committee members felt that PARLE had an important role to fulfil and so 
decided to continue, but with a revised format. PARLE is now focused on be-
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VI 

coming the European (:Onference with an international reputation in the domain 
of parallel architectures and languages. 

Anew conference organizational format has been adopted to emphasize this 
new commitment in a number of ways: 

the conference will be held annually, 
PARLE will be held exclusively within Europe, 
the conference venue. will change country each year, 
the Steering Committee will represent various European countries, 
the Steering Commit tee should contain sorne of the most eminent European 
workers, 
the Programme Committee will represent most European countries, 
the Programme Committee will contain sorne important non-European ex
perts, 
the Programme Committee will include specialists from industry as weil as 
academia. 

This Îormat was first used for the 1992 conference held in June in a suhurb 
of Paris and organized through the French Informatics Society, AFCET. It was 
judged to be a success in terms of the number of paper submissions received, 
the increased levei of attendance, and the improved technical quality. 

PARLE intends te become the European forum for interchange between ex
perts in the paraUeJ processing domain. It is intended to attract both industrial 
and academic participants with a technical programme designed to provide a bal
ance between theory and practice. This role is an important function of PARLE 
and a consequence of its history. 

The ESPRIT programme was partly conceived as an umbreJJa for collab
orations involving industrial and academic participants. By working together 
and exchanging ideas, an important synergy can occur which profits both com
munities and can lead to extremely fast exploitation of innovative solutions in 
the market place. This promotes mutual understanding of important issues and 
prevents technology transfer barriers. 

PARLE refiects this by promoting exchange between industry and academia, 
between practitioners and theoreticians, especially within the European context 
but also within the rest of the international community involved in the field of 
parallel processing systems. These different roles represent a key component of 
the strength and importance of PARLE. 

Within Europe, the ESPRIT programme represents a significant research ef
fort involving industrial and academic workers in, amongst other topics, the 
design and Implementation of new computer architectures, theoretical work, 
parallel language design and development, tools to support parallel application 
construction, and, of course, the construction of prototype paraUd applications. 
Considering the history and roles of PARLE, it is natural that the conference 
is supported by the Commission of the European Communities through the 
ESPRIT Programme and through representation at the level of the Steering 
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VII 

Committee. The European nature has also been emphasised through the sup
port of CEPIS, the Council of European Informatics Societies, which represents 
over 200 000 Information Technology professionals in Europe. 

PARLE'93 was organized in Munich by the European Computer-Industry 
Research Centre, ECRC, in cooperation with the Technical University of Munich 
and SIEMENS Central Research Laboratories. The conference was sponsored 
by the ESPRIT Programme of the Commission of the European Communities, 
ECRC, the Dresdner Bank, the city of Munich, AFCET, CEPIS, GI and ITG. 

More than 200 papers were submitted and the best 52 were accepted as 
full papers. Additionally, the proceedings include short summaries of the papers 
accepted for presentation at the poster session and brief overviews of sorne of 
the CEC ESPRIT projects that provided support for PARLE'93. 

An industrial exhibition was organized as part of the PARLE'93 conference. 
This provided an excellent opportunity for all attendees to gain first-hand ex
perience of the newest products available. Considering this was the first time 
such an event has been held as part of a PARLE conference, it is gratifying that 
so many major international companies chose to participate. PARLE'93 also 
featured tutorials covering advanced parallel processing techniques. These two 
things have undoubtedly added an important new dimension to PARLE and we 
hope that next year's organizers will continue with them. 

The programme chairmen are grateful to the authors, the members of the 
programme and steering committees, the referees, the supporting societies, and 
the organizing committee for their help in preparing PARLE'93 and the pro
ceedings. We would also like to thank the following for their efforts in ensuring 
the smooth running of the conference: Uli Fuetterer, Christiane and Susanne 
Hollmayer, Isabelle Syre, and Ulrich Koschkar and family. 

April 1993 Arndt Bode, Mike Reeve, Gottfried Wolf 
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Simulation-based Comparison of Hash 
Functions for Emulated Shared Memory* 
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1 Universitiit des Saarlandes, Computer Science Department 
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Postbus 4079, 1009 AB Amsterdam, The Netherlands 

Abstract. The influence of several hash functions on the distribution of 
a shared address space onto p distributed memory modules is compared 
by simulations. Both synthetic workloads and address traces of appli
cations are investigated. It turns out that on ail workloads linear hash 
functions, although proven to be asymptotically worse, perform better 
than theoretically optimal polynomials of degree O(logp). The latter are 
also worse than hash functions that use boolean matrices. The perfor
mance measurements are done by an expected worst case analysis. Thus 
linear hash functions provide an efficient and easy to implement way to 
emulate shared memory. 

1 Introduction 

Users of parallel machines more and more tend to program with the view of 
a global shared memory. Commercial machines (with more than 16 processors) 
however usually have distributed memory modules. Therefore the address space 
has to be mapped onto memory modules, memory access is simulated by packet 
routing on a network connecting processors and memory modules. This has to be 
done in a way that for (almost) all access patterns the requests are distributed 
almost evenly among the memory modules. The reason to demand this is obvious: 
if cases happen where the number of requests per module (the so called module 
congestion) is too high, then performance gets very poor. 

Several kinds of hash functions have been proposed. But their theoretically 
provable properties are asymptotical results. As currently available machines 
are quite small (the number p of processors and memory modules usually is less 
than 1000) the actual behaviour of the chosen hash function can differ quite a 
lot from these theoretical properties. The lack of experimental data makes the 
selection of a particular hashing scheme difficult in practice. We are not aware 
of comparisons of hash functions based on simulated behaviour. 

* This work was supported by the German Science Foundation (DFG) in SFB 124, TP 
D4, and by the Dutch Science Foundation (NWO) through NFl Project ALADDIN 
under Contract number NF 62-376. Part of this work was done while the second 
author was working at Universitat des Saarlandes, Computer Science Department, 
Saarbrücken, Germany. 
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The goal of this investigation is to provide these data by comparing four 
kinds of hash functions by simulations. In Sect. 2 the most common !Gnds of 
hash functions are introduced. Section 3 describes the types of synthetic and real 
a.ccess patterns that were used as workloads. Section 4 sketches the experiments 
made and Sect. 5 presents and discusses the results. 

2 Hash Functions 

As already mentioned, a hash function serves to map a global address space 
onto distributed memory modules. More formally, for an address space M of 
size m = 2V and a set N of p = 2" memory modules, the mapping is a function 
h : M -+ M that maps addresses ta memory cells. The function mod : M -+ 

N, mod(x) = x div mlp specifies the module of a memory ceIl x, the function 
loc: M -+ M',loc(:I:) = x mod m/p specifies the local address of ceIl:l:. 

An optimal mapping function h should guarantee low module congestion for 
almost ail possible access patterns (if ail addresses of one pattern are distinct). 
This is a.chieved by using classes of fun ct ions in which each function has low 
module congestion for almost al! patterns. A particular function iB randomly 
chosen. This guarantees with very high probability that the CUITent application 
does not exhibit the patterns on which the chosen function pro duces hot spots. 

An additional problem consista in patterns with several processors concur
rently accessing one cell. This problem cannot be solved by hashing. However 
there exist routing algorithms that perform combining. Requests that access the 
same cell are merged during routing, answers are duplicated. Ranade's emulation 
algorithm [10] is a good example. Therefore, concurrent access does not increase 
module congestion. 

A class that restricts module congestion to O(logp) is 

'Ii = { p(x) = (t ai . Xi) .. mod P mod m : 0 S ai < p} 
, .=0 ) 

P is a prime larger than m, ~ = O(logp). A function of 'Ii is obtained by 
randomly choosing the values for ai. This class was used in several theoretical 
investigations [6, 8, 10] to emulate shared memory on a processor network. The 
module congestion of O(logp) is sufficient because access from processors to 
memory modules across a constant--degree interconnection network needs time 
n(log p) anyway. 

However the functions in 'Ii are not bijective. This means that several ad
dresses of the shared memory could be mapped onto the same cell. This requires 
secondary. hashing on. eac.\ memory module. Ranade [10] describes a method 
that performs secondary hashing in constant time and increases the size of the 
memory module only by a constant factor. 

In practice however one should avoid secondary hashing and waste of memory 
because a constant factor of performance loss can destroy an asymptotically good 
result. Furtherrnore, the time to evaluate the hash function should be short. The 
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functions in 7t require ~ = O(log p) multiplications and additions and a modulo 
division by a prime which needs a lengthy computation. 

Therefore sorne alternatives were proposed: 

1. For ~ = 1 one obtains a linear function. This reduces evaluation time to one 
multiplication, one addition and one modulo division. The function is still 
not bijective. 

2. Furthermore if the modulo division by a prime is skipped and the coefficient 
ao is set to zero, the evaluation time is reduced to one multiplication. The 
operation modulo m is not counted because m is a power of two. If only odd 
values are chosen for al the function also is bijective. 

3. If the binary representation of an address is seen as a boolean vector, the 
hash function consists of multiplying this vector with an invertible boolean 
matrix. The time to evaluate this function is shorter than one multiplication. 

Dietzfelbinger et. al. prove that the first alternative is asymptotically equiv
aient to the second [5]. Furthermore he proves that linear functions can result 
in a module congestion of 8(.../P) for patterns with addresses of the form b + s . i 
where i = 0, ... , n - 1 [4]. The constants b and s are called base and stride. This 
means that linear functions modulo a power of two are asymptotically worse 
than polynomials. 

The third alternative was used in the design of the IBM RP3. Norton and 
Melton [9] introduce a class of boolean matrices where all matrices are invertible 
(whicl1 means bijectivity). Optimal distribution can be guaranteed for patterns 
with strides where s is a power of two and where in the binary representation of 
base b bits s to s + log n - 1 are zero. For other bases the module congestion is at 
most 2. No theoretical results are given for other patterns, but their simulations 
hint that distribution is acceptable for other patterns, too. One particular matrix 
is obtained by randomly choosing several bits of the matrix and then computing 
all the other bits with respect to the above properties. 

3 Workloads 

The workloads are chosen to compare the hash functions with respect to known 
differences, especially behaviour on access patterns with strides, and with respect 
to patterns taken from applications. Therefore both synthetically generated pat
terns and application traces were taken. 

The synthetic traces consist of randomly chosen patterns as a reference and 
strides with s = 1,13,32. The strides were chosen to compare matrix hashing 
and the other hash functions and to check whether linear functions get worse on 
these patterns. For s = 32 and s = 1 matrix hashing is optimal [9]. Theoretical 
results about the performance on the others are not known. 

The traces were taken from three application programs: list ranking, matrix 
multiplication and connected components. The reasons for taking traces from 
applications are the variety of produced patterns and the structure of. single 
patterns that often is more complex and less regular than in synthetical traces. 
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The three applications are chosen to represent a large yariety of algorithms. 
Matrix multiplication is an example of a class of algorithms where the access 
patterns are regular and do not depend on the particular input values. Many 
other numerical algorithms behave that way, especially as many of them are 
originally designed to work on a processor network with a fixed interconnection 
structure (see e.g. [3]). 

List ranking represents combinatorial algorithms where access patterns de
pend on "the actual data. An example technique is pointer doubling. Processor i 
loads or stores F[F[i]], where F is an array in the shared memory. Part of the 
accesses to shared memory still are regular. If processor i loads or stores F[i), 
the access pattern is a stride with s = 1. Many PRAM c.lgorithms working on 
lists and graphs are of this type (see e.g. [7]). 

The connected cûmponents' algorithm represents algorithms where access pat
terns depend on the actual data, but not ail processors may participate in the 
access. This together with concurrent accesses to sorne cells, which get~combined, 
makes module congestion smaller. Thus, connected components and similar al
gorithms are remarkable exceptions compared to list ranking type algorithms. 

The list ra.nking algorithm is taken from a survey [7J. For a given linked 
list of n elements, the distance (or mnk) ta the end of the list is computed for 
each element. Thealgorithm needs n processors and O(logn) time. The list is 
represented as an array F, where F[iJ means successor of i in the list. For the 
last el~ment of the list, F[iJ = i. The rank is contained in array R. The PARDO 
code is shown in Fig. l(a).The access patterns of this algorithm partly depend 
on the structure of the list and. partly are strides vlrith s = 1. 

In the matrix multiplication algorithm C = A . B, each processor computes 
one element of the destination matrix C. In order to avoid concurrent accesses, 
all processors start at different rows and columns of the matrices A and B. 
The PARDO code is shown in Fig. l(b).Matrices A and C consist of n = w22z 

elements and have dimension 2Z x w2z , matrix B has dimension w2 Z xw2 z . The 
algorithm needs n processors and takes tirne O(n1/ 2 ). The access patterns of this 
algorithrn only depend on the dimensions of the matrices. 

The connected components algorithrn was adapted from Shiloach and Vishkin 
[11J. For a. given undirected gra.ph G = (V,E), the connected cornponents are 
computed. The algorithm needs n = max(jV\' 21EI) processors and takes time 
O(logn). The graph is represented by two arrays HEAD and TAIL. For a given 
edge e, HEAD[e] and TAIL[e] contain the nodes to which e is adjacent. The 
components are represented by an array F. Two nodes u, v are in the same 
cornponent if and only if Flu] = F[v] after running the program. The PARDO 
code is shown in Fig. 1 ( c). The access patterns partly depend on the structure of 
the input graph and partly are .trides with s = 1. Not all processors participate 
in every- access. 
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(* luit rank R *) 
for i := 1 to n pardo 

if F[i] = i then R[i] := 0 else R[i] := 1 
od; 
(* Compute rank R *) 
for t:= 1 to flognl do 

for i := 1 to n pardo 
R[i] := R[i] + R[F[i]] ; 
F[i] := F[F[i]] (* Pointer doubling *) 

od 
od; 

( a) list ranking 

(* n = w22z *) 
k := 2z; m := w2 Z

j l := w2 Z
j 

for (i,j):= (1,1) to (k,m) pardo 
Cri, j] := 0 (* lnit C *) 

od; 
for r := 1 to 1 do 

for (i,j):= (1,1) to (k,m) pardo 
t := (i + j + r) mod 1 ; 
Cri, j] := Cri, j] + A[i, t] . B[t, i] 

od 
od; 

(b) matrix multiplication 

Fig. 1. Code of applications 

4 Experiments 

5 

for u E V pardo F[u] := u od; 
for t:= 1 to 210g IVI do 

for u E V pardo change[u] := 0 od; 
starcheck; 
for all (u,w) with {u,w} E E pardo 

if star[u] and F[w] < F[u] then 
F[F[u]] := F[w]; 

fi 

change[F[u]] := 1; 
change[F[w]] := 1 

od; 
starcheck; 
for all (u,w) with {u,w} E E pardo 

if star[u] and not change[F[u]] 
and F[w] f. F[u] then 

F[F[u]] := F[w] 
fi; 
F[u] := F[F[u]] 

od 
od. 

proe starcheck ; 
begin 

for i E V pardo 
star[i] := true; 
if F[F[i]] f. F[i] then 

star[F[F[i]]] := false 
fi; 
star[i] := star[F[F[i]]] 

od 
end; 

(c) connected components 

To obtain the input data for the experiments, al! applications are simulated by 
sequential programs, only the address traces are extracted. This frees us from 
considering a particular microprocessor instruction set and compiler. The address 
traces of the synthetic workloads are generated by a program, that simulates 4 
steps of the machine. In the workloads with strides, the base b is inereased each 
step by ns. 

We are only interested in the resulting module congestion and not in the time 
to route the requesting packets from processors to memory modules. Therefore 
we can negleet the structure of the interconnection network. We only model it 
by a latency term because the processors perform latency hiding (see below). 
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An experiments are carried out for m = 222 , the prime P is chosen closest 
to m. We simulate machines ","Ïth p = 2", u = 5, ... , 10 processors. We mn 
multiple processes per processor to hide the network latency from processors. 
The processes are executed in a round-robin manner, one instruction per turn. 
The exact number c of necessary processes per processor is depending on p, e.g. 
O(logp) in a butterfty network. We choose a fixed c to obtain comparableresults 
and take c = 5 as an average from a machine Bize of p = 128 [2]. Therefore in each 
step 5p requests are made. Step in this context means synchronous execution of 
one instruction on each of the 5p processes. 

As polynomials we used functions of degree ç = 2, 10, 20. Each of the experi
ments was done 5 times with randomly chosen hash functions. More exactly, for 
each class five functions were randomly chosen and then used for aH workloads 
and machine sizes. 

As input for liat ranking a Hst of length n = 10p was randomly chosen. As 
input for connected components, a graph with n ; 10p nodes and 5p edges 
was randomly chosen. The problem size n is twice as large as the number of 
pro cesses in these applications. Each process simulates two program processors 
step by step. A problem size larger than 5p is needed to obtain access patterns 
depending on the list or graph. 

In matrix multiplication, the dimensions of the matrices are as follows: if 
p = 22z then w = c = 5, if p = 22z+1 then w = 2c = 10. 

In each experiment we measured for each step of the trace the maximum 
module congestion Cma.x and then computed the expected value of al! Cm." av
eraged over al! stepa. The analysis is a kind of (expected) worst case analysis. 
Each expected value was checked for significance by looking at the variance. The 
five values obtained by using five functions of one class for each experiment were 
checked against significant differences. In case there were none, the average was 
taken. In case there were sorne, ten ~dditional hash functions were chosen and 
the average was taken from these 15 values. Significant differences appeared only 
for stride s = 13, p = 27 , •.. ,29 in both linear functions and for st ride s = 32, 
p = 29 ,210 in the !inear function modulo power of two. 

Because of mapping 5p requests per step onto p memory modules, E(cma.x) ;::: 
5. The only exception is connected components, because not necessarily al! pro
cessors make accesses in IF statements (see Sect. 3). 

5 Results 

The results of the experiments are presented in two ways. First we show the per
formance of the hash functions sorted by benchmarks. In Fig. 2 the performance 
on random patterns is given as a reference. The legend of the hash function8 i8 
shown in Fig. 3, which shows al! other benchmarks. Second we show the perfor
mance sorled by hash functions in Fig. 4. 

AIl figures are built as foHows: the x-axis shows log p in range 5 ... 10, the 
y-axis shows the expected value of the maximum module congestions in range 
4 ... 14. 
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Fig. 2. Performance on random patterns 

The performance on random patterns (see Fig. 2) is similar for all hash func
tions. Thus none of the hash functions is bad in an obvious way. The maximum 
module congestion rises from 10 for p = 32 to 12 for p = 1024. This will serve 
as a reference to analyse the performance on the other benchmarks. 

5.1 Analysis of Benchmarks 

The curves of Fig. 3 show similar shapes for all benchmarks: the polynomials of 
different degrees behave in a similar way and so do the three other hash functions. 
The behaviour of the polynomials furthermore is on all workloads worse than 
the behaviour of the simpler hash functions. Among the linear functions, the 
one modulo a prime always behaves a little bit worse than the linear function 
modulo a power of two. Thus the most interesting part is the comparison of our 
simple linear function with the boolean matrix hashing. 

For strides that are a power of two, the boolean matrix hashes values op
timally (see (a) and (c)) and reaches a module congestion of 6. The module 
congestion reached by the linear function lies between 6.5 and 7.5, so it is not 
far away. 

A similar behaviour of linear function and boolean matrix can be seen in (d) 
and (f). This results from the fact that part of the accesses in these workloads 
are strides 1, when processors load or store values in arrays in the manner that 
processor i reads or writes P[i]. 

However, as soon as we obtain other patterns, the boolean matrix hashing 
gets worse than the linear function (see (b) and (e)). Even for the m~trix mul
tiplication workload, where accesses always consist of 5 . pl/2 strides with s = 1 
and pl/2 processors involved in each stride, the linear function is better. 

5.2 Analysis of Hash Functions 

Figure 4 shows the performance of the different hash functions. Because the 
connected components benchmark is not comparable to the others as explained 
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in Sect. 3, it is Dot ShOWD here. The first observation is, that aIl hash functions 
behave on all workloads not worse than on random patterns. The second obser
vation is that thepolynomials show roughly the Baffie behaviour on all workloads 
as they do on random patterns (see (d) to (f)). We conclude that their perfor
mance is independent of the application. That is what we expected. But this 
performance is bad in comparison to what is reached by the other functions that 
behavebetter than on random patterns on all workloads. 

The linear function (see (a)) shows almost uniform behaviour on al! work
ioads, too, but it varies between 6.5 and 8, which is significantly better than the 
behaviour on random patterns. 

The behaviour of the linear function modulo a prime is not uniform and 
varies between 6.3 and 10. 

The behaviour of the boolean matrix hashing function can be divided in an 
expected optimal behaviour for strides with s a power of two and a significantly 
higher module· congestion for other patterns, which is however still below the 
ODe produced by random patterns. 

6 Conclusions 

The above experiments show surprisingly that linear functions modulo a power 
of two and boolean matrix functions show best performance for practical use. 
Both have the additional properties of bijectivity and short evaluation time. The 
choice between these two depends on the expected user profile (if such exists) 
and the surrounding machine architecture. For machines that aIready contain 
a hardware multiplier this could be used to perforrn hashing in the case of the 
linear fun ct ions. Moreover, the use of matrix hashing is restricted by the fact 
that an imp1ementation needs (log m)2 bit register hardware to store the boolean 
matrix. Therefore, if no user profile is known and chip area is restricted (or a 
multiplier already available), the use of the linear function is preferable. 

The observations presented here lead to the use of linear hash functions 
in the prototype design of the SB-PRAM [1, 2] which emulates a synchronous 
shared memory machine with p = 128 physical processors and provides hardware 
support for hashing and packet routing including combining. 

Unfortunately, some open questions remain. First, there is no theoretical 
framework to explain why simple hash functions work better than complex ones. 
Also, the exact relationship between linear functions with and without "modulo 
prime" is still unknown. 
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