BIBLIOTHEQUE DU CERIST

Arndt Bode Mike Reeve Gottfried Wolf (Eds)

T
19%

coc; |
Parallel Architectures
and Languages Europe

5th International PARLE Conference
Munich, Germany, June 14-17, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg WewYork
London Paris Tokyo

Hong Kong Barcclona
Budapcst

BIBLIOTHEQUE DU CERIST

Sertes Bditors

Gerhard Goos Juris Harimanis

Unjversitit Rarlsrune Cornell University

Post{ach 69 80 Department of Computer Science
Vincenz-Priessnitz-Strafie ! 4130 Upson Hall

D-7613]1 Kwlsruhe, FRG Trthaca, NY 14853, USA

Volamz Editors

Amdt Bode
Institut fiir Informatik, TV Miinchen
Arcisstr. 21, D-80333 Miinchen, Germiany

Iike Resve
Buropean Computer-Indusiry Research Centre (ECRC)
Arabeliastrafe 17, D-81925 Minchen, Germany

Gottfried Woif
Deutschie Forschungsanstalt fiir Luft- und Raumfahrt (DFLR)
Rudower Chaussee 5, D-12489 Berlin Adlershof, Germany

CR Subject Ciassification (1991): C.1-4, D.{, D.3-4, F.1.3 ey
Subject Classification {) 34, F -.’Qijﬁ.}"/

ISBN 3-540-56891-3 Springer-Verlag Berlin Heidelberg New Yoric
ISBN 0-387-56891-3 Springer-Verlag Mew York Berlin Heidelbery

This work is subject tc copyright. Allrights are reserved, whether the whoie or parnt
of the matcrial is concemed, specifically the rights of transiation, peprinting, re-use
of illustrations, recitation, breadcasting, reproduction on microfilins or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
perrattted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be ebtained from
Springer-Verlag. Viclations are fiabie for prosecufion under the German Copyright
Law,

& Springer-Verlag Berlin Heidelzerg 1993

Printed in Germany

Typeseiting: Camera ready by acthor
Printing and binding: Druckbaus Beltz, Hemsbach/Bergstr.
45/3140-5432 10 - Printed on acid-frec paper

BT AR et bt Ve M. Ceaghh R Ry ape s -

BIBLIOTHEQUE DU CERIST

Preface

PARLE is an international, European based conference which focuses on the
parallel processing subdomain of informatics and information technology. Paral-
lel processing is today recognized as an area of strategic significance throughout
the world. As a result, many national, pan-European and world-wide initiatives
are being planned or already exist to further research and development in this
area.

Ever increasing demands are being made on computer technology to provide
the processing power necessary to help understand and master the complexity of
natural phenomena and engineering structures. Within human organizations ever
more processing power is needed to master the increasing information flow. Many
so~called “Grand Challenges” have been identified as being orders of magnitude
beyond even the most powerful computers available today.

Although the microelectronics industry has made vast, impressive strides
both in improving the processing power available from individual compeonents
and in dramatically reducing the cost of basic processing power, it is not in itself
enough to satisfy even today’s requirements.

Paralle] processing technology offers a solution to this problem. By taking
several basic processing devices and connecting them together the potential ex-
ists of achieving a performance of many times that of an individual device.
However, it is still an important topic of research o discover how to do this
optimally and then to be able to effectively exploit the potential power through
real applications solving real-world problems, Some progress has been made,
particularly in isclated applications, but building parallel application programs
is today recognized as a highly complex activity requiring specialist skills and
in-depth knowledge of both the application domain and the particular parallel
computer to be used.

Many international conferences in the area of parallel processing focus on
the now well-established technical areas broadly described as number-crunching.
Although this area is also within PARLE’s scope, it has tended to put more
emphasis in its technical program on other areas, such as novel architectures,
symbolic processing, parallel database technology,and functicnal and logic tech-
nology. These represent some of the most difficult challenges in making general
purpose parallel computing a reality.

The PARLE Conference came into existence in 1987. It started its life as an
initiative coming from the ESPRIT I programme and was financially supported
by the Commission of the European Communities through that programme.
Between 1987 and 1991 the conference was held biannually around Eindhoven
in the Netherlands with Philips taking the responsibility for its crganization.

In 1991 Philips decided that they no longer wished to continue organizing
PARLE and so the future of the conference was reviewed. The conference Steer-
ing Committee members felt that PARLE had an important role to fulfil and so
decided to continue, but with a revised format. PARLE is now focused on be-

BIBLIOTHEQUE DU CERIST

vl

coming the Buropean conferance with an internacional reputation in the domain
of parallel architectures and languages.

A new conference organizational formaf has been adopied to emiphasize this
new commitment in a number of ways:

— the conference will be held annually,

— PARLE will be held exclusively within Europe,

— the conference venue will change country cach year,

—~ the Steering Committee wil! represent various European couniries,

— the Steering Committee should contain soine of the most eminent Eurapean
workers,

— the Programme Committee will represent most European countries,

— the Programme Comumnittee will contain some important noo-European ex-
perts,

— the Programme Comimittee will include specialists from industry as well as
academia.

This format was first used for the 1992 conference held in June in a suburh
of Pazis and organized through the French Informatics Society, AFCET. Ti was
judged to be a success in terms of the number of paper submissions received,
the increased level of attendance, and the improved technical quality.

PARLE intends to becommne the Buropean forum for interchange between ex-
perts in the parallel processing domain. It is intended to attraci both industrial
and academic participants with a technical programme designed to provide a bal-
ance between theory and practice. This role is an important function of PARLE
and a consequence of its history,

The ESPRIT progranume was partly conceived as an umbrella for collah-
orations involving indusirial and academic participants. By working together
and exchanging ideas, an important synergy can cccur which profits both com-
munities and can lead to exiremely fast exploitation of innovative solutions in
the market place. This promotes mutual understanding of imaportant issues and
prevents technology transfer barriers.

PARLE reflects this by promoting exchange between industry and academia,
between practitionsrs and theoreticians, especially within the European context
but also within the rest of the international community invelved in the field of
parallel processing systems. These different roles represent a key component of
the strength and importance of PARLE,

Within Europe, the ESPRIT programme represents a significant research ef-
fort involving industrial and academic workers in, amongst other topics, the
desigh and implementation of new computer architectures, theoretical work,
paralle] language design and development, teols to support parallel application
construction, and, of course, the construction of prototype parallel applications.
Considering the history and roles of PARLE, it is natural that the conference
is supported by the Commission of the European Communities through the
ESPEIT Programme and through representation at the level of the Steering

BIBLIOTHEQUE DU CERIST

Wi

Committee. The European nature has also been emphasised through the sup-
port of CEPIS, the Council of European Informatics Societies, which represents
over 200 000 {oformation Technology professionals in Europe.

PARLE’93 was organized in Munich by the European Computer-Industry
Research Centre, ECRC, in cooperation with the Technical University of Munich
and SIEMENS Central Research Laboratories. The conference was sponsored
by the ESPRIT Programme of the Commission of the European Communities,
ECRC, the Dresdner Bank, the city of Munich, AFCET, CEPIS, GI and ITG.

More than 200 papers were submitted and the best 52 were accepted as
full papers. Additionally, the proceedings include short summaries of the papers
accepted for presentation at the poster session and brief overviews of some of
the CEC ESPRIT projects that provided support for PARLE93.

An industrial exhibition was organized as part of the PARLE03 conference.
This provided an excellent opportunity for all attendees to gain first-hand ex-
perience of the newest producls available. Considering this was the first time
such an event has been held as part of a PARLE conference, it is gratifying that
so many major international companies chose to participate. PARLE’93 also
featured tutorials covering advanced parallel processing techniques. These two
things have undoubtedly added an important new dimension tc PARLE and we
hope that next year’s organizers will continue with them.

The programme chairmen are grateful to the authors, the members of the
programme and steering committees, the referees, the supporting soctettes, and
the organizing cornmittee for their help in preparing PARLE'93 and the pro-
ceedings. We would also like to thank the following for their efforts in ensuring
the smooth running of the conference: Uli Fuetterer, Christiane and Susanne
Hollmayer, Isabelle Syre, and Ulrich Koschkar and family.

April 1993 Arndt Bode, Mike Reeve, Gottfried Wolf

BIBLIOTHEQUE DU CERIST

PARLE 93 Organization

PARLE 93 Steering Commitice

Werner Damm {U. of Oldenburg, D} Jean Claude Syre {Buli 84, F)

Jose Delgado (INESC, P} Jorgen Staunstrup {TU Denmark, DK}
Lucio Grandivetti (U. of Calabria, 1) Mateo Valero {1, of Catalunys, E)
Constantin Halatsis (U. of Athens, GR)Thierry Van dex Pyl {DGXIIL, CEC)
Ron Perrct (U. of Belfast, UK) Pierse Wolper (U. of Liege, B)

Martin Rem (TU Eindhoven, NL)

PARLE 92 Organizing Commitiee

Arndé Bode (T, U. Munich, I} Joint Programme Chair
Werner Damm (U. of Oidenburg, 1) Steering Committee Liaison
Doug DeGroot (Texas Instruments [H. & S. American Co-ordinator
C8C, USA)

Ulrike Jendis (ECRC, D) Treasurer

Peter Kacsuk {KFKI, H)} East Eurcpean Cc-ordinator
Masaru Kitsuregawa (0. of Toltyo, J) Japan & Asian Oo-ordinator
Rudi Kober (Siemens/ZFE, D} Exhibition Chair

Michael Raidifle (ECRC, D) Organizing Coramittes Chair
Mike Reeve (ECRC, D] Joint Programme Chair

Gottifried Wolf {DLR, D) Joint Programme Chair

BIBLIOTHEQUE DU CERIST

PARLE 93 Programme Committee

Emile Aarts (Philips/Research, N)
Gul Agha (U. of fllinois, USA)
Khayri Ali (SICS, S)

Makoto Amamiya (Kyushu U., I)
Francoise Andre (IRISA, F}
Gianfranco Balbo (U. of Torino, I}
Bjorn Bergsten (Bull/RADQO, F)
Maurelio Boari {1J. of Bologna, I)
Kiril Boyanov (Bulgarian A. Sci., BU)
Andrzej Ciepielewski (Carlsteds, S
Michel Cosnard (ENS,)

Felix Costa (INESC, P)

Jose Cunha (U. Nova de Lisboa, P)
Bill Dally (MIT, USA)

Michalis Hatzopoulos (U. of Athens, GR)
Hiromu Hayashi (Fujitsu Labs., J)
Manue] Hermenegildo (U. of Madrid, E)
Tony Hey {U. of Southampton, UK)
Peter Hilbers (Shell/Research, NL)
Ladislav Hluchy (Slovak A. Sci., C8)
Chris Jesshope {U. of Surrey, UK)
Peter Kacsuk (KFKI, H)

Martin Kersten {CWI, NL)

Masaru Kitsuregawa (U. of Tokyo, I}
Rao Kotagiri (U. of Melbourne, AUS)
Simmon Lavington (U. of Fssex, UK)
Bernard Lecussan (U. of Toulouse, F)
Burkhard Monier (U. of Paderborn, D)

John Darlington (Imperial College, UK)Peter Muller-Stoy (Siemens/ZFE, D)

Doug DeGroot (T1/CSC, USA)
Josep Diaz (U. of Catalunya, E}
Daniel Etiemble (U, of Paris-Sud, F)
Geoftrey Fox (Syracuse U., USA)
Ivan Futo {Mulitilogic, H)

Guang Gao (McGili U., CDN)

Jean Luc Gaudiot (USC, USA)
David Gelernter (Yale, USA)

Lee Naish (U. of Melbourne, AUS)
Flemming Nielson (U. of Aarhus, DK)
Wolfgang Paul (U. of Saarbrucken, D)
Emile Restivo {U. of Porto, P)
Leonardo Roncarlo (Elsag, I)

Dirk Roose (K. U. Leuven, B)

Panl Spirakis {U. of Patras, GR)
Kazuo Taki (Kobe U., J)

Woligang Gentzsch {(GENIAS Soft., D) Hiroaki Terada {Osaka U., J)

Pascal Gribomont (1. Montefiore, B}
Jozef Gruska (U. of Hamburg, D}
Anoop Gupta (Stanford, USA)

John Gurd (U. of Manchester, UK)
Chris Hankin (Imperial College, UK)

PARLE 93 Sponsors

Mario Tokoro {Keio U., T}

Roman Trobec {Inst. "). Stefan”, Slovenia)
Ulrich Trottenberg (GMD, DD}

Marek Tudruj (Polish A. Sci., PL)
Emile Zapata (U. of Malaga, E)

ESPRIT Programme, Commission of the European Communities
European Computer-Industry Research Centre {ECRC)

Dresdner Bank
Stadt Munchen
AFCET
CEPIS

Gl

ITG

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

Contents

Paper Sessions

Architectures: Virtual Shared Memory

Simulation-Based Comparison of Hash Functions for Emulated Shared
' 53 10U o, S
C. Engelmann, J. Keller

Task Management, Virtual Shared Memory, and Multithreading in a Dis-
tributed Memory Implementation of Sisal oo
M. Haines, W. Béhm

Simulating the Data Diffusion Machine.............
E. Hagersten, M. Grindal, A. Landin, A. Saulsbury, B. Werner,
S. Herudi

Functional Programming

2DT-FP: An FP Based Programming Language for Efficient Parallel Pro-
gramming of Multiprocessor Networksoooi i iiiiniianin..
Y. Ben—Asher, G. Runger, A. Schuster, E. Withelm

The Data-Parallel Categorial Abstract Machine
G. Hams, C. Foisy

Data Parallel Implementation of Extensible Sparse Functional Arrays...
J.T. O’Donnell

Interconnection Networks: Embeddings

Emlgecldings of Tree-Related Networks in Incomplete Hypercubes.......
S. Ohring, 5. K. Das

Static and Dynamic Performance of the Mébius Cubes.............. ..
P.Cull, 5. M. Larson

Optimal Mappings of m Dimensional FFT Communication to k Dimen-
sional Mesh for Arbhitrary mand k........ L.
Z. G. Mou, X. Wang

i2

24

42

56

68

80

92

BIBLIOTHEQUE DU CERIST .

X

Language Issues
Implicit Parallelism: The United Funciions and Objects Approaca..... :
S. Sargeant

Detection of Recurrences in Sequential Programs with Loops...........
X. Bedomn, P. Fecutrier

Parallel Programming Using Skeleten Funciions.
J. Darlington, A.J. Field, F, G. Harrison, P. H. J. Kelly, D. W. N. Shavp,
2. Wu, B. L. While

Data-Parallel Portable Software Platform: Principles and Implemensation
V. B. Muchnick, A. V. Shafarenko, C. D. Sution

Concurrency: Responsive Systems

A Compositional Approach for Fault-Tolezance Using Specification Trans-
FOTMBEION . . .« ottt e e e
D. Peled, M. Joseph

Concurrent METATEM — A Language for Modelling Reactive Systems |
M. Fisher

Trace-Bzsed Compositional Reasoning About Fault Tolerant Systems..)
H. Schepers, J. Hoomen

& Kahn Principle for Networks of Nonmontonic Real-Time Processes . ..
R. K. Yuies, G. R. Gao

Interconnection Networks: Routing

Ad&ptl\«? Multicast Wormhole Routing in 2D Mesh Multmomputers
X. Lin, P. K. McKinley , A.-H. Esfahanian

The Impact of Packétization in Wormhole-Routed Networks
£ H Kim, A: A. Chien

Grouping Virtual Charme!s for Deadlock-Free Adaplive Wormbhole Rout-
IO . e e DR

Z. Liu, J. Duato, L. -E. Thorelli

Logic Programming

Moenaco: A High-Performance Flat Concurrent Logic Programming Sys-

Exploiting Recursion-Parajlelism in Prologoooiviviiinan. ...
. Bevemyr, T. Lindgrer, H. Millroth

Why and How in the ElipSys OR-Parallel CLP Systemi.............. e
A. Véren, K. Schuermar, M. Reeve, L.-L. Li

120

132

148

228

242

264

266

279

201

BIBLIOTHEQUE DU CERIST

X

Architectures: Caches

Skewed-Associative Caches. i
A. Seznec, F. Bodin

Trace-Splitting for the Parallel Simulation of Cache Memory............
N. Ironmonger

Locality and False Sharing in Coherent-Cache Parallel Graph Reduction
A.J. Bennett, P.H.J. Kelly

SLiD - A Cost—Effective and Scalable Limited-Directory Scheme for
Cache Coherence i e e e
G. Chen

Concurrency: Semantics

Formal Development of Actor Programs Using Structured Algebraic Petri

D. Buchs, N. Guelf

A Parallel Programming Style and Its Algebra of Programs.............
C. Hankin, D. Le Métayer, D. Sands

B(PN)* - A Basic Petri Net Programming Notation...................
FE. Best, R. P. Hopkins

A Calculus of Value Broadcastsoocv i iieniiiieiniicreieeirennns
K. V.5 Prasad

Tools

TRAPPER: A Graphical Programming Environment for Industrial High-
Performance Applications. e
C. Scherdler, L. Schifers, O. Krdmer-Fuhrmann

Control and Data Flow Visualization for Parallel Logic Programs on a
Muliti-Window Debugger HyperDEBUot
J. Taternura, H. Koike , H. Tanaka

Neural Networks

Artificial Neural Networks for the Bipartite and K-Partite Subgraph Prob-
1T S A
J.-8. Lai, Y.-J. Ke , 5.-Y. Kuo

Homogeneous Neuronlike Structures for Optimization Variational Prob-
lern Solving . . . oo e e e
I A. Kalyayev

304

317

329

341

353

367

379

391

403

414

426

BIBLIOTHEQUE DU CERIST

b4

Scheduling

Effectiveness of Heuristics and Simulated Annesling for the Sckeduling of

Concurrent Tasks - An Empirical Comparisoncooveei..., 452
C. Coroyer, Z. Liu
Task Scheduling with Resiricted Preemptionsc.ooisinian,., 464

K. Ecker, R. Hirschhery

Effects of Job Size {rregularity of the Dynamic Resource Scheduling of a
2-D Mesh Multicomputer i, 476
D. Min, M. W. Muika :

Static Allocation of Tasks on Multiprocessor Architectures with lqterpro-
Cessor Commumca.tlonDeld.ys.}..........................,_ 4R8
S. Norre

Specification, Verification

PEL: A Single Unifving Model i Design Parallel Programs............. 300
E. Violard, G.-K. Perrin
Correctness of Automated Distribution of Sequensial Programs........, 817

£, Bareaw, B. Cuillgud, C. Jard, B. Thorava!
Compositionality Issues of Concurrent Object-Oriented Logic Languages
E. Pimentel, J. M. Troya

Using State Variables for the Specification and Verification of TCSP Pro-
- RN 541
L. M. Alonso, R. Peda Mari

o
]
=]

Algorithms

A Paralle] Reduction of Hamilionian Cycle o Hamititoniap Path in Tour-

TLBITIETIES o . v vt et e se e e e s et e et et e e e e e e 5583
E, Bampis, M. Bl Haddad, V. Manoussakis, M. Santha

A Unifying Look at Semigroup Computations on Meshes with Multiple

Broadeasting cv it i e 561
D. Bhagavaths, 8. Olariv, W. Shen, L. Wilson .
A Tast, Simple Algorithm to Balance a Paraliel Multiway Merge. 870

R. Framecis, J. Methieson, L. Pennen

e e emm i bR e K AR —o = o ¢ me e e e el AT T 1 g SF —aan W e e L e W L LT e

BIBLIOTHEQUE DU CERIST

Xy

Architectures: Fine Grain Parallelism

Some Design Aspects for VLIW Architectures Exploiting Fine-Grained
Parallelism i e [
W. Karl

Load Balanced Optimisation of Virtualised Algorithms for Implementa-
tion on Massively Paralle]l SIMD Architecturesc...ots
C. A. Farvell, D. H. RKieronska

Performance Evaluation of WASMIIL: A Data Driven Computer on a Vir-
tual Hardware. o i
X.-P. Ling, H. Amane

Databases

On the Performance of Parallel Join Processing in Shared Nothing
Database Systems it e e
R. Marek, E. Rahm

Processing Trapsactions on GRIP, a Parallel Graph Reducer............
G. Akerholt, K. Hammond, 5. Peyton Jones, P. Trinder

Arithmetic for Paralle] Linear Recursive Query Evaluation in Deductive

Databases e e e
J. Robinson, S. Lin

Poster Session

Regular Posters

Computing the Complete Orthogonal Decomposition Using a SIMD Array
g T
E. J. Kontoghiorghes, M. R. B. Clarke

A Dynamic Load Balancing Strategy for Massively Parallel Computers .
M. Cennatare, Y. D. Sergeyev, G. Spezzano, D. Talia

Issues in Event Abstraction.....ot e iraan
T Kunz

Modelling Replicated Processing i
M. Kouiny, L. V. Mancini, G. Pappalardo

Performance of M3S for the SOR Algorithm............................
C. Rochange, P. Sainrei, D. Lilaize

Multi-Criteria: Degrees of Recoverability in Distributed Databases.
M. Nygard, S. Delad

582

600

810

622

634

648

660

664

668

672

676

BIBLIOTHEQUE DU CERIST

pAY

Deadiock-Free Adaptive Routing Algorithms for the 3D-Torus: Limita-

flons and Solutions ... L. e 384
P. Lopez, J. Duato

Convergence of Asynchronous Merations of Least Fixed Points. ...,, 388
1. Wes

LU-Decoraposition on a Massively Parallel Transputer Svstem ..., §02
5. Lipke

PSEE: Paralle! Systern Evaluation Environment......................., 896

E. Luque, H. Suppi, J. Sorribes

Implementation of a Digital Modular Chip for a Reconfigurable Artificial
Neural Network. o 700
5. Pakzad, P. Plaskenos

Article-Acouisition: A Scenatio for Non-Sertalizability in a Distributed
Databaseo 704
M. Nygdrd, 5. Delad

An Empirical Study of Vision Programs for Data Dependence Analysis. 708
L. A. Barragan, A. Roy

Cyclic Weighted Reference Counting Without Delay.................... 712
2. E. Jones, B. D. Lins

Parallel Optimisation of Join Queries Using an Enhanced Herative Im-

provement Technique 716
M. Spihopouloun, Y. Colronis, M. Haizopoulos

Precis: Distributed Shortest Path Algorithms........................... 720
L L. Traff

A Disabling of Event Structures. ...t 724

N.A. Anistrnov

Barrier Semantics in Very Weak Memory............... ...t oe 728
A. Pears, R. Francise

Using Hammock Graphs to Eliminate Nonstructured Branch Statements 732
F, Zhang, E. H. I’Hollander

Performance Modeling of Microkernel Thread Schedulers for Shared Mem-

ory Multiprocessors.ot e e e e 736
W. Van de Velde, J. Opsommer, E. H. IVHollgrder
From Data Flow Networks to Process Algebras................, 740

O, Beraerdeschi, A. Bondavelli, L. Simoncini

Parallel Complexity of Lattice Basis Reduction and a Floating-Point Par-

allel Algortthm T44
{. Heckler, L. Thiele

Computer Vision Applications Experience with Actors 748
F. Arcelli, M. De Sarnto, M. Iii Sanio, A. Picariello

Grid Massively Parallel Processor...... o il 752

V.P. 'in, Y. I Fet

BIBLIOTHEQUE DU CERIST

ESPRIT Project Overvies
APPLAUSE: Application & Assessment of Paralle] Programming Using

74 756
M. Reeve et al.

EPQOCH - European Parallel Operating System Based on Chorus...... . 760
L. Borrmann el al.

Pythagoras Project Overview (EPT091)................ ..o 764

K-F. Wong et al.

AuthorsIndex.. e 769

1S1430 NAd INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

Simulation—based Comparison of Hash
Functions for Emulated Shared Memory*

Curd Engelmann® and Jorg Keller?

v Universitit des Saarlandes, Computer Science Department
Im Stadtwald, 6600 Saarbriicken, Germany
2 (entrum voor Wigkunde en Informatica
Postbus 4079, 1009 AB Amsterdam, The Netherlands

Abstract. The influence of several hash functions on the distribution of
a shared address space onto p distributed memory modules is compared
by simulations. Both synthetic workloads and address traces of appli-
cations are investigated. It turns out that on all workloads linear hash
functions, although proven to be asymptotically worse, perform better
than theoretically optimal polyromials of degree O(log p). The latter are
also worse than hash functions that use boolean matrices. The perfor-
mance measurements are done by an expected worst case analysis. Thus
linear hash functions provide an efficient and easy to implement way to
emulate shared memory.

1 Introduction

Users of parallel machines more and more tend to program with the view of
a global shared memory. Commercial machines (with more than 16 processors)
however usually have distributed mmemory modules. Therefore the address space
hag to be mapped onte memeory modules, memory access is simulated by packet
routing on a network connecting processors and memory modules. This has to be
done in a way that for (almost) all access patterns the requests are distributed
almost evenly among the memory modules. The reason to demand this is obvious:
if cases happen where the number of requests per module (the sa called meodule
congestion) is toa high, then performance gets very poor.

Several kinds of hash functions have been proposed. Bui their theoretically
provable properties are asymptotical results. As currently available machines
are quite small (the number p of processors and memory modules usually is less
than 1000) the actual behaviour of the chosen hash function can differ quite a
lot from these theoretical properties. The lack of experimental data makes the
selection of a particular hashing scheme difficult in practice. We are not aware
of comparisons of hash functions based on simulated behaviour.

* This work was supported by the German Science Foundation (DFG} in SFB 124, TP
D4, and by the Dutck Science Foundation (NWO) through NFI Project ALADDIN
under Contract number NF 62-376. Part of this work was done while the second
author was working at Universitit des Saarlandes, Computer Science Department,
Saarbriicken, Germany.

BIBLIOTHEQUE DU CERIST

The goal of this investigation is o provide these data by comparing four
kinds of hash functions by simulations, In Sect. 2 the most common kinds of
hash functions are introduced. Section 3 describes the types of synthetic and real
access patterns that were used as workloads. Section 4 sketches the experiments
made and Sect. 5 presents and discusses the results.

2 Hash Functions

As already mentioned, a hash funciion serves to map a global address space
onto distributed memory moduies, More formally, for an zddress space M of
size m = 2" and a set N of p = 2" memory modules, the mapping is a function
h: M — M that maps addresses to memory cells. The function mod : M —
N,mod(z) = z div m/p specifies the module of a memory cell z, the function
loc: M — M’ loc(z) = ¢ mod m/p specifies the local address of cell z.

An optimal mapping function k should guarantee low module congestion for
almost all possible access patterns (if all addresses of one pattern are distinct).
This is achieved by using classes of functions in which each function has low
module congesiion for almost zll patterns. A particular function is randomly
chosen. This guarantees with very high probability that the current applicaticn
does not exhibit the patierns on which the chosen function preduces hot spots.

An additional problem consists in paiterns with several processors concur-
rently accessing one cell, This prohlem cannot be solved by hashing. However
there exist routing algorithms that perform combining. Requests that access the
same cell are merged during routing, answers are duplicated. Ranade's emulation
algorithm {10] is a good example. Therefore, concurrent access does not increase
module congestion.

A class that restricts module congestion to O{logp) iz

£
H:!p(@: (Zai.m") mod Pmoedm : 0 < g, <_P}
Y .

=0 i

P is 2 prime larger thar m, § = Ollegp). A function of H is cbtained by
randomly chocsing the values for ;. This class was used in severa! theoretical
investigations {6, 8, 10} to emulate shared memory on 2 processor network. The
module congestion of Oflogp) is sufficient because access from processors to
memory modules acress & constant-degree intercennection network nseds time
Xlog p) anyway. : _

However the functions in H are not bijective, This means that several ad-
dresses of the shared memory could be mapped onto the same cell. This requires
secondary. hashing on each memory module. Ranade [10] describes a methed
that performs secondary hashing in constant time and increases the size of the
memory module only by a constant facior. '

In practice however one should aveid secondary hashing and waste 6f memory
because a constant factor of performance loss can desiroy an asymptotically geod
result. Furthermore, the time to evaluate the hash function should be short. The

BIBLIOTHEQUE DU CERIST

functions in H require £ = O(log p) multiplications and additions and a modulo
division by a prime which needs a lengthy computation.
Therefore some alternatives were proposed:

1. For £ = 1 one obtains a linear function. This reduces evaluation time to one
multiplication, one addition and one modulo division. The function is still
not bijective,

2. Furthermore if the modulo division by a prime is skipped and the coefficient
ap is set to zero, the evaluation time is reduced to cne multiplication. The
operation modulo m is not counted because m is a power of two. If only odd
values are chosen for a; the function also is bijective.

3. If the binary representation of an address is seen as a boolean vector, the
hash function consists of multiplying this vector with an invertible boolean
matrix. The time to evaluate this function is shorter than one multiplication.

Dietzfelbinger et. al. prove that the first alternative is asymptotically equiv-
alent to the second [5]. Furthermore he proves that linear functions can result
in a module congestion of G(,/p} for patterns with addresses of the form b+s-¢
where i =0,...,n— 1 [4]. The constants b and s are called base and siride. This
means that linear functions module a power of two are asymptotically worse
than polynomials.

The third alternative was used in the design of the IBM RP3. Norton and
Melten [9] introduce a class of boclean matrices where all matrices are invertible
(which means bijectivity). Optimal distribution can be guaranteed for patterns
with strides where s is a power of two and where in the binary representation of
base b bits s to s+logn— 1 are zero. For cther bases the module congestion is at
most 2. No theoretical results are given for other patterns, but their simulations
hint that distribution is acceptable for other patterns, too. One particular matrix
is obtained by randomly choosing several bits of the matrix and then computing
all the other bits with respect to the above properties.

3 ‘Workloads

The workloads are chosen to compare the hash functions with respect to known
differences, especially behaviour on access patterns with strides, and with respect
to patterns taken from applications. Therefore both synthetically generated pat-
terns and application traces were taken.

The synthetic traces consist of randomly chosen patterns as a reference and
strides with s = I, 13,32, The strides were chosen to compare matrix hashing
and the other hash functions and to check whether linear functions get worse on
these patterns. For s = 32 and s = 1 matrix hashing is optimal [9]. Theoretical
results about the performance on the others are not known.

The traces were taken from three application programs: list ranking, matrix
multiplication and connected components. The reasons for taking traces from
applications are the variety of produced patterns and the structure of single
patterns that often is more complex and less regular than in synthetical traces.

BIBLIOTHEQUE DU CERIST

The three applications are chosen to represent a large variety of algorithms.
biatrix multiplication is an example of a class of algorithms where the access
patterns are regular and do nct depend on the particular input values, Many
other numerical algorithms behave that way, especially as many of them are
originally designed to work on a processor network with a fixed interconnection
structure (see e.g. [3]).

List ranking represents combinatorial algorithms where access patterns de-
pend on the actual defa. An example technique is pointer deubling. Processor i
loads or stores F[Fi]], where F' is an array in the shared memory. Part of the
accesses $0 shared memory still are reguiar. If processor i loads or stores F'i],
the sccess pattern is a stride with 3 = 1. Many PRAM =zigorithims werking on
lists and graphs are of this rype (see e.g. [T]).

The zonnected components algorithm represents algorithms where access pat-
terns depend on the actual data, but not all precessors may participate in the
access. This together with concurrent accesses to some cells; which get combined,
makes module congestion smaller. Thus, connected components and similar al-
gorithms are remarkable exceptions compared to list ranking type algorithms,

The list ranking algorithm is taken from a survey [7]. For a given linked
list of n elements, the distance (or rank) to the end of the list is computed for
each element. The algorithin needs n processors and O{logn) time. The list is
represented as an array F, where F{i] means successor of ¢ in the liet. For the
last element of the list, F[3} = 4. The rank is contained in array £. The PARDO
code is shown in Fig. 1{a}.The access patterns of this algorithm partly depend
on the structure of the list and partly are strides with s = 1.

In the matrix multiplication algorithm C = A - B, cach processor computies
one element of the destination matrix €. In order to avoid concurrent accesses,
all processors start at different rows and columns of the matrices A and B.
The PARDO code is shown in Fig. 1(b).Matrices A and C consist of n = w2?*
elements and have dimension 2° x w2®, matrix B has dimension w2® x w2*. The
algorithm needs n processors and takes time G(n!/?). The access patterns of this
algorithm only depend an the dimensions of the matrices.

The connected components algorithm was adapted from Shiloack and Vishkin
{1L}. For & given undirected graph G = {V, &), the connected components are
computed. The algorithm needs n = max{;V|, 2|F|) processors and takes time
O(logn). The graph is represented by two arrays HEAD and TAIL. For a given
edge e, HEADI[e] and TAJLIe] contain the nodes to which e is adjacent. The
components are represented by an array . Two nodes w, v are in the same
component if and only if F(u] = Fiu] after running the program. The PARDO
cede is shown in Fig. 1{c).The access patterns partly depend on the structure of
the input graph and partly are strides with s = 1. Not all processors participate
in every access.

BIBLIOTHEQUE DU CERIST

{(* Init rank R *)
for i :=1 to n pardo
if F[i] ={ then Rl] :=0 else R[f] :=1
od ;
(* Compute rank R *)
for t :=1 to [logn] do
for i:= 1 to n pardo
Rl == RJi) + RIF[] ;
Fli] .= F[F[d]] (* Pointer doubling *)
od
od ;

{a) list ranking

(* n = w2 *)
k:=2% m:= w2 | = w2%;
for (4,7} :=(1,1) to (k,m) pardo
Cli, 5] 1= 0 (* Init C ¥}
od ;
forr:=1to ! do
for (i,7} = (1,1) to {k, m) pardo
t:=(i+j+r)mod(;
Cli il = Cs j] + Ali, 8] - Blt, 5]
od
od ;

{b} matrix multiplication

Fig. 1. Code of applications

4 Experiments

for u € V pardo Flu] =« od;
for L :=1 to 2log|V| do
for u € V pardo change[u] 1= 0 od;
starcheck;
for all (w,w) with {u,w} € E pardo
if star{u] and Flw|] < Flu] then
F[F[u]} := F[wl];
change[F[u]] := 1;
change[Fw]} =1

od;
starcheck;
for all (u,w) with {¥,w} € E pardo
if star[u] and not change[Fful}
and Flw] # Flu] then
FFfu)) = Flul

Flu] = F[F[u]
od
od.

proc starcheck ;

begin
for i € V pardo
star|d] ;= true;

if F[F'[i]] # F[i] then
. star{F[F[i]]] := false
si’ar [?] := star [F[F[]]]
od
end;

(¢) connected components

To obtain the input data for the experiments, all applications are simulated by
sequential programs, only the address traces are extracted. This frees us from
considering a particular microprocessor instruction set and compiler. The address
traces of the synthetic workloads are generated by a program, that simulates 4
steps of the machine. In the workloads with strides, the base b is increased each

step by ns.

‘We are only interested in the resulting module congestion and not in the time
to route the requesting packets from processors to memory modules. Therefore
we can neglect the structure of the interconnection network. We only meodel it
by a latency term because the processors perform latency hiding (see below).

BIBLIOTHEQUE DU CERIST

ar

411 experiments sre carried cut for m = 222 the prime P is chosen closest
to m. We simulate machines with p = 2%, w = 5,...,10 processors. We run
multiple processes per processor to hide the network latency from processors.
The processes are executed in a round-robin manner, one instruction per turn.
The exact number ¢ of necessary processzes per processor is depending on p, 6.4,
O(log p) in a butterfly netwark. We choose a fixed ¢ to obtain comparable resulte
and take ¢ = 5 as an average from a machine size of p = 128 [2]. Therefore in each
step Bp requests are made. Step in this context means synchronous execution of
one instruction on each of the 5p processes.

As polynomials we used functions of degree § = 2, 10, 20. Each of the experi-
ments was done § times with randomly chosen hash functions. More exactly, for
each class five functions were randomly chosen and then used for all workloads
and machine sizes,

As input for list ranking a list of length n = 10p was randomly chosen. As
input for connected components, a graph with n = 10p nodes and 5p edges
was random!ly chosen. The problem size n is twice as large as the number of
processes in these applications, Each process simulates two program processors
step by step. A problem size larger than Sp is needed to obtain access patterns
depending on the list or graph.

In matrix multiplication, the dimensions of the matrices are az follows: if
9 = 222 then w = ¢ = 5, if p = 2***! then w = 2c = 10.

In cach experiment we measured for each step of the trace the maximum
module congestion Cma, and then computed the expected value of all ¢pax av-
eraged over 2ll steps. The analysis iz a kind of {expected) worst case analysis.
Each expected value was checked for significance by looking at the variance. The
five values obtained by using five functions of one class for each experiment were
checked against significant differences. In case there were none, the average was
taken. In case there were some, ten additional hash functione were chosen and
the average was taken from these 15 values. Significant differences appeared only
for stride s = 13, p = 27,...,2% in both linear functions and for stride s = 32,
p = 29, 210 in the linear function modulo power of two.

Because of mapping 5p requests per step onto p memory modules, E(¢mas) =
5. The only exception is connected components, because not necesserily all pro-
cessors make accesses in IF astatements (see Sect. 3),

53 Resulis

The results of the experiments are presented in two ways. First we show the per-
formance of the hask functions sorted by benchmarks. In Fig. 2 the performance
on random patterns is given as a reference. The legend of the hash functions is
shown in Fig. 3, which shows al! other benchmarks. Second we show the perfor-
mance sorted by hash functions in Fig. 4. _

All figures are built as follows: the z—axis shows logp in range 5...10, the
y—axis shows the expected value of the maximum module congestions in range
4...14.

BIBLIOTHEQUE DU CERIST

E(Cmaz]

e B
10- ??:"-"S

T T T T logp

Fig. 2. Performance on random patterns

The performance on randem patterns (see Fig. 2) is similar for all hash func-
tions. Thus none of the hash functions is bad in an obvious way. The maximum
module congestion rises from 10 for p = 32 to 12 for p = 1024. This will serve
as a reference to analyse the performance on the other benchmarks.

5.1 Analysis of Benchmarks

The curves of Fig. 3 show similar shapes for all benchmarks: the polynomials of
different degrees behave in a similar way and so do the three other hash functions.
The behaviour of the polynornials furthermore is on all workloads worse than
the behaviour of the simpler hash functions. Among the linear functions, the
one modulo a prime always behaves a little bit worse than the linear function
module a power of two. Thus the most interesting part is the comparison of our
simple linear function with the boolean matrix hashing.

For strides that are a power of two, the boolean matrix hashes values op-
timally (see (a) and (¢)) and reaches a module congestion of 6. The module
congestion reached by the linear function lies between 6.5 and 7.5, so it is not
far away.

A similar behaviour of linear function and boolean matrix can be seen in (d)
and (f). This results from the fact that part of the accesses in these workloads
are strides 1, when processors load or store values in arrays in the manner that
processor i reads or writes F[i].

However, as soon as we obtain other patterns, the boolean matrix hashing
gets worse than the linear function (see {b) and (e)). Even for the matrix mul-
tiplication workload, where accesses always consist of 5 - p!/2 strides with s = 1
and p'/2 processors involved in each stride, the linear function is better.

5.2 Analysis of Hash Functions

Figure 4 shows the performance of the different hash functions. Because the
connected components benchmark is not comparable to the others as explained

BIBLIOTHEQUE DU CERIST

in Sect. 3, it is not shown here. The first observation ig, that all hash functions
behave on all workloads not worse than on random patierns. The second obser-
vaiion is that the polynamials show roughly the same behaviour on all workloads
as they do on random patterns (see (d) to (f}). We conclude that their perfor-
mance is independent of the application. That is what we expected. But this
performance is bad in comparisen 1o what is reached by the other functions that
behave better than on random patterns on all workloads.

The linear function (see (2)) shows almost uniform behaviour on all work-
loads, too, but it varies between 6.5 and 8, which is significantly better than the
behaviour on random patterns.

The behaviour of the linear function medulo a prime is not uniform and
varies between 6.3 and 19. '

The behaviour of the boolean matrix hashing function can be divided in an
expected optimal behaviour for strides with s a power of two and a significantly
higher module congestion for other patierns, which is however still below the
one produced by random patterns.

§ Conclusions

The above experiments show surprisingly that linear functions modulo a power
of two and boclean matrix functions show best performance for practical use.
Both have the additional properties of bijectivity and short evaluation time. The
choice between these two depends on the expected user profile {if such exists)
and the surrounding machine architecture. For machines that already contain
& hardware multiplier thiz couid be used to perform hashing in the case of the
linear functions. Moreover, the use of matrix hashing is resiricted by the fact
that an implementation needs {(log m)* bit register hardware to store the boslean
matrix. Therefore, if no user profile is known and chip area is restricted (or a
multiplier already available), the use of the linear function is preferable.

The observations presented here lead to the use of linear hash functions
in the prototype design of the SB-PRAM 1, 2] which emulates a synchronous
shared memory machine with p = 138 physical processors and provides hardware
support for hashing and packet routing including combining.

Unfortunately, some ovpen guestions remain. First, there is o thecvetical
framework o explain why simple hash funciions work better than complex ones.
Also, the exact relationship between linedr functions with and without “module
prime” is still unknown.

Acknowledgements

The authors would like 1o thank Martin Dietzfelbinger for helpful discussions.

BIBLIOTHEQUE DU CERIST

14_‘ x::I:(B
12 ;:é:""::@ e
104 @ &
8 o
- -
PO DGO St it G UIION
4_
T T i+ logp
S 6 7 & 9 10
{a) stride s = 1
E(Cmaz)
14—‘ --,-;:1@
12 _I,::Eg:'l-'“@:-:‘::fl
10 @B o T8
o PRl
8 - o.gg ,,,,, Fe T, o
6o«
4_
- — —— —1 —*logp
5 6 7 8 9 10
(b) stride s = 13
E(Cmcm)
E :T gii® a-::gf:"‘:"@
Lo @ @rr'-—
.
8_ 9'.' .-". ----- ﬂ ------ Q-': ﬁ
6 — @5.@,@.4»4)
4 .

. ; » logp
5 6 7 8 9 10
(c) stride s = 32

E(‘cmaz)

14

12 .‘H,@“*@"’“'@ ‘
10 ®=:::Q“ ; fe
g g g gakEie 0
6,.

44

{d} list ranking
E(cmaz)

14 J ,uQﬁT“@

12 ‘::_;1@5!5’$'
10- @:;E::@' -;_".:Q

8_
6

4 —

| = T T logp
5 6 Y7 8 ¢ 10
{

<) matrix multiplication

P v . 28
g""g"”'?l gi i |"']Dgp
5 6 T 8 9 10

{

f) connected components

o linear function modulo m
& [inear function modulo P
¢ boolean matrix

< polynomial of degree £ =2 J
* polynomial of degree £ = 10
& polynomial of degree £ = 20

Fig. 3. Performance on benchmarks

BIBLIOTHEQUE DU CERIST

T T ogp
5 6 T 8 9 10
{(a) binear function
E(cmaz;
144 e
124 e
10+ o 9:,:;:*:::::%
g e *. g r"'?:“::.
f— ée}'r.@ﬁ" g---»a h
4__

: - logp
B 6 T 8 9 1

{b} linear function module prime

E{emaz)
144

12— FreEE Lot -0-"‘"9

10 g e

-\@ @

- & DI S T -

4

E ! | T ™ logp

5 6 7 8 9 10

(c) boclean matrix

T T T 0B P
B 6 7 & 9 10

(d) polynomial, degree £ = 2
E(Cma.x}
141
12 e i
10-| g
8_
6 _
4 -

— T T T T logP
5 6 7 8 9 10
{e) polynomial, degres £ = 10
E(cma.z:)
14
12 A __.-1-40“!:
10— @::a!?igzzr-'
8-

g

i@
48

4

! T T I T ~ logp
5 6 7 8§ 9 10

{f} polynomial, degree £ = 20

o random patterns
mgtride s =1
1o stride s =13

4 stride s = 32
* Jist ranking
© matrix multiplication|

Fig. 4. Performance of hash functions

