
Arndt Bode Mike Reeve Gottfried Wolf (Eds.)
/.~\~?-~

" ", . . <;,/ \64'
? ." /1.;\10
. i"" 0' ' "i. Le·. .,.

PARLE '93~ ... >
Parallel Architectures --'
and Languages Europe
5th International PARLE Conference
Munich, Germany, June 14-17, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitilt Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-Stratle 1
D-76131 Karlsruhe, FRG

Volume Editors

Arndt Bode
Institut fiir Informatik, TU München
Arcisstr. 21, D-80333 München, Germany

Mike Reeve

Juris Hartmanis
ComeU University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

European Computer-Industry Research Centre (BCRC)
ArabellastraBe 17, D-81925 München, Germany

Gottfried Wolf
Deutsche Forschungsanstalt für Luft- und Raumfahrt (DFLR)
Rudower Chaussee 5, D-12489 Berlin Adlershof, Germany

CR Subject Classification (1991): C.1-4, D.I, D.3-4, El.3

ISBN 3-540-56891-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56891-3 Springer-Verlag New York Berlin Heidelberg

This work ls subject to copyright. Al! rights are reserved, whether the whole or pan
of the material i8 concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its CUITent version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.
© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author
Printing and binding: Druckhaus Beltz, HemsbachIBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

PARLE is an international, European based conference which focuses on the
parallel processing subdomain of informatics and information technology. Paral
lei processing is today recognized as an area of strategie significance throughout
the world. As a result, many national, pan-European and world-wide initiatives
are being planned or already exist to further research and development in this
area.

Ever increasing demands are being made on computer technology to provide
the processing power necessary to help understand and master the complexityof
natural phenomena and engineering structures. Within human organizations ever
more processing power is needed to master the increasing information flow. Many
so-called "Grand Challenges" have been identified as being orders of magnitude
beyond even the most powerful computers available today.

Although the microelectronics industry has made vast, impressive strides
both in improving the processing power available from individual components
and in dramatically reducing the cost of basic processing power, it is not in itself
enough to satisfy even today's requirements.

Parallel processing technology offers a solution to this problem. By taking
several basic processing devices and connecting them together the potential ex
ists of achieving a performance of many times that of an individual device.
However, it is still an important topic of research to discover how to do this
optimally and then to be able to effectively exploit the potential power through
real applications solving real-world problems. Sorne progress has been made,
particularly in isolated applications, but building parallel application programs
is today recognized as a highly complex activity requiring specialist skills and
in-depth knowledge of both the application domain and the particular parallel
computer to be used.

Many international conferences in the area of parallel processing focus on
the now well-established technical areas broadly described as number-crunching.
Although this area is also within PARLE's scope, it has tended to put more
emphasis in its technical program on other areas, such as novel architectures,
symbolic processing, parallel database technology,and functional and logic tech
nology. These represent sorne of the most difficult challenges in making general
purpose parallel computing a reality.

The PARLE Conference came into existence in 1987. It started its life as an
initiative coming from the ESPRIT 1 programme and was financially supported
by the Commission of the European Communities through that programme.
Between 1987 and 1991 the conference was held biannually around Eindhoven
in the Netherlands with Philips taking the responsibility for its organization.

ln 1991 Philips decided that they no longer wished to continue organizing
PARLE and so the future of the conference was reviewed. The conference Steer
ing Committee members felt that PARLE had an important role to fulfil and so
decided to continue, but with a revised format. PARLE is now focused on be-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

coming the European (:Onference with an international reputation in the domain
of parallel architectures and languages.

Anew conference organizational format has been adopted to emphasize this
new commitment in a number of ways:

the conference will be held annually,
PARLE will be held exclusively within Europe,
the conference venue. will change country each year,
the Steering Committee will represent various European countries,
the Steering Commit tee should contain sorne of the most eminent European
workers,
the Programme Committee will represent most European countries,
the Programme Committee will contain sorne important non-European ex
perts,
the Programme Committee will include specialists from industry as weil as
academia.

This Îormat was first used for the 1992 conference held in June in a suhurb
of Paris and organized through the French Informatics Society, AFCET. It was
judged to be a success in terms of the number of paper submissions received,
the increased levei of attendance, and the improved technical quality.

PARLE intends te become the European forum for interchange between ex
perts in the paraUeJ processing domain. It is intended to attract both industrial
and academic participants with a technical programme designed to provide a bal
ance between theory and practice. This role is an important function of PARLE
and a consequence of its history.

The ESPRIT programme was partly conceived as an umbreJJa for collab
orations involving industrial and academic participants. By working together
and exchanging ideas, an important synergy can occur which profits both com
munities and can lead to extremely fast exploitation of innovative solutions in
the market place. This promotes mutual understanding of important issues and
prevents technology transfer barriers.

PARLE refiects this by promoting exchange between industry and academia,
between practitioners and theoreticians, especially within the European context
but also within the rest of the international community involved in the field of
parallel processing systems. These different roles represent a key component of
the strength and importance of PARLE.

Within Europe, the ESPRIT programme represents a significant research ef
fort involving industrial and academic workers in, amongst other topics, the
design and Implementation of new computer architectures, theoretical work,
parallel language design and development, tools to support parallel application
construction, and, of course, the construction of prototype paraUd applications.
Considering the history and roles of PARLE, it is natural that the conference
is supported by the Commission of the European Communities through the
ESPRIT Programme and through representation at the level of the Steering

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

Committee. The European nature has also been emphasised through the sup
port of CEPIS, the Council of European Informatics Societies, which represents
over 200 000 Information Technology professionals in Europe.

PARLE'93 was organized in Munich by the European Computer-Industry
Research Centre, ECRC, in cooperation with the Technical University of Munich
and SIEMENS Central Research Laboratories. The conference was sponsored
by the ESPRIT Programme of the Commission of the European Communities,
ECRC, the Dresdner Bank, the city of Munich, AFCET, CEPIS, GI and ITG.

More than 200 papers were submitted and the best 52 were accepted as
full papers. Additionally, the proceedings include short summaries of the papers
accepted for presentation at the poster session and brief overviews of sorne of
the CEC ESPRIT projects that provided support for PARLE'93.

An industrial exhibition was organized as part of the PARLE'93 conference.
This provided an excellent opportunity for all attendees to gain first-hand ex
perience of the newest products available. Considering this was the first time
such an event has been held as part of a PARLE conference, it is gratifying that
so many major international companies chose to participate. PARLE'93 also
featured tutorials covering advanced parallel processing techniques. These two
things have undoubtedly added an important new dimension to PARLE and we
hope that next year's organizers will continue with them.

The programme chairmen are grateful to the authors, the members of the
programme and steering committees, the referees, the supporting societies, and
the organizing committee for their help in preparing PARLE'93 and the pro
ceedings. We would also like to thank the following for their efforts in ensuring
the smooth running of the conference: Uli Fuetterer, Christiane and Susanne
Hollmayer, Isabelle Syre, and Ulrich Koschkar and family.

April 1993 Arndt Bode, Mike Reeve, Gottfried Wolf

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

PARLE 93 Organization

PARLE 93 Steering Committee

Werner Damm (D. of Oldenburg, D) Jean Claude Syre (Bull SA, F)
Jose Delgado (INESC,P) Jorgen Staunstrup (TU Denmark, DK)
Lucio Grandinetti (U. of Calabria, 1) Mateo Valero (U. of Catalunya, E)
Constantin Halatsis (U. of Athens, GR)Thierry Van der Pyl (DGXIII, CEC)
Ron Perrot (U. of Belfast, UK) Pierre Wolper (U. of Liege, B)
Martin Rem (TU Eindhoven, NL)

PARLE 93 Organizing Commlttee

Arndt Bode (T. U. Munich, D)
Werner Damm (U. of Oldenburg, D)
Doug DeGroot (Texas Instruments /
CSC, USA)
Ulrike Jendis (ECRC, D)
Peter Kacsuk (KFKI, H)
Masaru Kitsuregawa (U. of Tokyo, J)
Rudi Kober (SiemensjZFE, D)
Michael Ratcliffe (ECRC, D)
MikeReeve (BeRC, D)
Gottfried Wolf (DLR, D)

Joint Programme Chair
Steering Committee Liaison
N. & S. American Co-ordinator

Treasurer
East European Co-ordinator
Japan & Asian Co-ordinator
Exhibition Cha.ir
Organizing Committee Chair
Joint Programme Chair
.Joint Programme Chair

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

PARLE 93 Programme Committee

Emile Aarts (Philips/Research, N) Michalis Hatzopoulos (U. of Athens, GR)
GuI Agha (U. of Illinois, USA) Hiromu Hayashi (Fujitsu Labs., J)
Khayri Ali (SICS, S) Manuel Hermenegildo (U. of Madrid, E)
Makoto Amamiya (Kyushu U., J) Tony Hey (U. of Southampton, UK)
Francoise Andre (IRISA, F) Peter Hilbers (Shell/Research, NL)
Gianfranco Balbo (U. of Torino, 1) Ladislav Hluchy (Slovak A. Sei., CS)
Bjorn Bergsten (Bull/RADO, F) Chris Jesshope (U. of Surrey, UK)
Maurelio Boari (U. of Bologna, 1) Peter Kacsuk (KFKI, H)
Kiril Boyanov (Bulgarian A. Sei., BU) Martin Kersten (CWI, NL)
Andrzej Ciepielewski (Carlstedt, S Masaru Kitsuregawa (U. of Tokyo, J)
Michel Cosnard (ENS, F) Rao Kotagiri (U. of Melbourne, AUS)
Felix Costa (INESC, P) Simon Lavington (U. of Essex, UK)
Jose Cunha (U. Nova de Lisboa, P) Bernard Lecussan (U. of Toulouse, F)
Bill Dally (MIT, USA) Burkhard Monien (U. of Paderborn, D)
John Darlington (Imperial College, UK)Peter Muller-Stoy (Siemens/ZFE, D)
Doug DeGroot (TI/CSC, USA) Lee Naish (U. of Melbourne, AUS)
Josep Diaz (U. of Catalunya, E) Flemming Nielson (U. of Aarhus, DK)
Daniel Etiemble (U. of Paris-Sud, F) Wolfgang Paul (U. of Saarbrucken, D)
Geoffrey Fox (Syracuse U., USA) Emile Restivo (U. of Porto, P)
Ivan Futo (Multilogic, H) Leonardo Roncarlo (Elsag, 1)
Guang Gao (McGill U., CDN) Dirk Roose (K. U. Leuven, B)
Jean Luc Gaudiot (USC, USA) Paul Spirakis (U. of Patras, GR)
David Gelernter (Yale, USA) Kazuo Taki (Kobe U., J)
Wolfgang Gentzsch (GENIAS Soft., D) Hiroaki Terada (Osaka U., J)
Pascal Gribomont (1. Montefiore, B) Mario Tokoro(Keio U., J)
Jozef Gruska (U. of Hamburg, D) Roman l'robec (Inst. "J. Stefan", Slovenia)
Anoop Gupta (Stanford, USA) Ulrich Trottenberg (GMD, D)
John Gurd (U. of Manchester, UK) Marek Tudruj (Polish A. Sei., PL)
Chris Hankin (Imperial College, UK) Emile Zapata (U. of Malaga, E)

PARLE 93 Sponsors

ESPRIT Programme, Commission of the European Communities
European Computer-Industry Research Centre (ECRC)
Dresdner Bank
Stadt München
AFCET
CEPIS
GI
ITG

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Paper Sessions

Architectures: Virtual Shared Memory

Simulation-Based Comparison of Hash Functions for Emulated Shared
Memory................................. 1
C. Engelmann, J. Keller

Task Management, Virtual Shared Memory, and Multithreading in a Dis-
tributed Memory Implementation of Sisal. 12
M. Haines, W. Bôhm

Simulating the Data Diffusion Machine. 24
E. Hagersten, M. Grindal, A. Landin, A. Saulsbury, B. Werner,
S. Haridi

Functional Programming

2DT-FP: An FP Based Programming Language for Efficient Parallel Pro-
gramming of Multiprocessor Networks 42
Y. Ben-Asher, G. Rù"nger, A. Schuster, R. Wilhelm

The Data-Parallel Categorial Abstract Machine. 56
G. Hains, C. Foisy

Data Parallel Implementation of Extensible Sparse Functional Arrays. . . 68
J. T. O'Donnell

Interconnection Networks: Embeddings

Embeddings of Tree-Related Networks in Incomplete Hypercubes. 80
S. Ôhring, S. K. Das

Static and Dynamic Performance of the Mübius Cubes. 92
P. Gull, S. M. Larson

Optimal Mappings of m Dimensional FFT Communication to k Dimen-
sion al Mesh for Arbitrary m and k . 104
Z. G. Mou, X. Wang

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XII

Language Issues

Implicit Parallelism: The United Functions and Objects Approach . . . 120
J; Sargeant

Detection of Recurrences in Sequential Programs with Loops 132
X. Redon, P. Feautrier

Parallel Programming Using Skeleton Functîons. .. . 146
J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp,
Q. Wu, R. L. While

Data-Parallel Portable Software Platform: Principles and Implementation 161
V. B. Mttchnick, A. V. Shafarenko, C. D.Sutton

Concurrency: Responsive Systems

A Composition al Approach for Fault-Tolerance U sing Specification Trans-
formation. .. 1'73
D. Peled, M. Joseph

Concurrent METATEM - A La.nguagefof Modelling Reactive Systems. 185
M. Fisher

Trace-Based Compositional Reasoning About Fault Tolerant Systems.. . 197
H. Schepers, J. Hooman

A. KahnPrinciple for Networks of Nonmontonic Real-Time Processes. .. 209
R. K. Yates, G. R. Gao

IntercoDnection Networks: Routing

Adaptive Multicast Wormhole Routing În 2D Mesh Multicomputers 228
X. Lin, P. K. McKinley, A.-H. Esfahanian

The Impact of Packetizationin Wormhole-Routed Networks .. " 242
J. H. Kim, A. A .. Chien

Grouping Virtual Channels for Deadlock-Free Adaptive Wormhole Rout-
ing.. 254
Z. Liu, J. Duato, L.-E. Thorelli

Logic Programming

Monaco: A High-Performance Flat Concurrent Logic Programming Sys-
tem... 266
E. Tick

Exploiting Recursion-Parallelism in Prelog............................. 279
J; Bevemyr, T. Lindgren, H. Millroth

Why and How in the ElipSys OR-Parallel CLP System.. 291
.4 .. Véron, K. Schuerman, M. Reeve, L.-L. Li

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XIII

Architectures: Caches

Skewed-Associative Caches. 304
A. Seznec, F. Bodin

Trace-Splitting for the Parallel Simulation of Cache Memory.. 317
N. Ironmonger

Locality and False Sharing in Coherent-Cache Parallel Graph Reduction 329
A. J. Bennett, P. H. J. Kelly

SLiD - A Cost-Effective and Scalable Limited-Directory Scheme for
Cache Coherence. 341
G. Chen

Concurrency: Semantics

Formai Development of Actor Programs Using Structured Algebraic Petri
Nets. .. 353
D. Buchs, N. Gue/fi

A Parallel Programming Style and Its Aigebra of Programs. 367
C. Hankin, D. Le Métayer, D. Sands

B(P N)2 - A Basic Petri Net Programming Notation. 379
E. Best, R. P. Hopkins

A Calculus of Value Broadcasts. 391
K. V. S. Prasad

Tools

TRAPPER: A Graphical Programming Environment for lndustrial High
Performance Applications. 403
C. Scheidler, L. Schiifers, O. Kriimer-Fuhrmann

Control and Data Flow Visualization for Parallel Logic Programs on a
Multi-Window Debugger HyperDEBU 414
J. Tatemura, H, Koike , H. Tanaka

Neural Networks

Artificial Neural Networks for the Bipartite and K-Partite Subgraph Prob-
lems... 426
J.-S. Lai, Y.-J. Ko , S.- y. Kuo

Homogeneous Neuronlike Structures for Optimization Variational Prob-
lem Solving. 438
1. A. Kalyayev

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XIV

Scheduling

Effeciiveness of Heuristics and Simu]ated Annealing for the Scheduling of
Concurrent Tasks - An Empirical Comparison , - 452
C. Coroyer, Z. Liu

Task Scheduling with Restricted Preemptions. 464
K. Ecker, Il. Hirschberg

Effects of Job Size Irregularity on the Dynamic Resource Scheduling of a
2-D Mesh Multicomputer ., . , 476
D. Min,M. W. Mutka

Static Allocation of Tasks on Multiprocessor Architectures with Interpro-
cessor Communication Delays " 488
S. Norre -

Specification, Verification

PEI: A Single Unifying Madel to Design Parallel Programs............. 500
E. Viola rd, _ G.-H. Perrin

Correctness of Automated Distribution of Sequential Programs 517
C. Bareau, B.Caillaud, C. Jard, R. Thoraval

Compositionality Issues of Concurrent Object-Oriented Logic Languages 529
E. Pimentel, J. M. Troya

Using State Variables for the Specification and Verification of TCSP Pro-
cesses.•..................... 541
L. M. Alonso, R. Peiia Mari

Algorithms

A ParaUd Reduction of Hamiltonian Cycle to Ha..'TIiltonÎan Path in Tour-
naments . 553
E, Bampis, M. El Haddad, Y. Manoussakis, M. Santha

A Unifying Look at Semigroup Computations on Meshes with Multiple
Broadcasting 561
D. Bhagavathi, S. Olariu, W. Shen, L. Wilson

A Fast, Simple Algorithm to Balance a ParaUel Multiway Merge........ 570
li. Francis, 1. Mathieson, L. Pannan

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Architectures: Fine Grain Parallelism

Sorne Design Aspects for VLIW Architectures Exploiting Fine-Grained
Parallelism 582
W. Karl

Load Balanced Optimisation of Virtualised Algorithms for Implementa--
tion on Massively Parallel SIMD Architectures. 600
C. A. Farrell, D. H. Kieronska

Performance Evaluation of WASMII: A Data Driven Computer on a Vir-
tual Hardware. 610
x.-P. Ling, H. Amano

Databases

On the Performance of Parallel Join Processing in Shared Nothing
Database Systems. 622
R. Marek, E. Rahm

Processing Transactions on G RIP, a Parallel Graph Reducer. 634
G. Akerholt, K. Hammond, S. Pey ton Jones, P. Trinder

Arithmetic for Parallel Linear Recursive Query Evaluation in Deductive
Databases . 648
J. Robinson, S. Lin

Poster Session

Regular Posters

Computing the Complete Orthogonal Decomposition Using a SIMD Array
Processor . 660
E. J. Kontoghiorghes, M. R. B. Clarke

A Dynamic Load Balancing Strategy for Massively Parallel Computers . 664
M. Cannataro, ·Y. D. Sergeyev, G. Spezzano, D. Talia

Issues in Event Abstraction. 668
T. Kunz

Modelling Replicated Processing . 672
M. Koutny, L. V. Mancini, G. Pappalardo

Performance of M3S for the SOR Algorithm.. 676
C. Rochange, P. Sainrat, D. Litaize

Multi-Criteria: Degrees of Recoverability in Distributed Databases. 680
M. Nygiird, S. De/ab

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XVI

Deaàlock-Free Aàaptive Routing Algorithms for the 3D-Tortis: Limita
iionsand Solutions. 684
P. Lapez, J. Duaio

Convergence of Asynchronous Iterations of Least Fixeà Points. 688
J. Wei

LU-Decomposition on a Massively Parallel Transputer System.......... 692
S. Lüpke

PSEE: Parallel System Evaluation Environment . 696
E. Luque, R. Suppi, J. Sorribes

Implementation of a Digital Modular Chip for a Reconfigurable Artificia!
Neural Network.. 700
S. Pakzad, P. Plaskonos

Article-Acquisition: A Scenario for Non-Serializability in a Distributed
Database . 704
M. Nygard, S. Delab

An Empirical Study of Vision Programs for Data Dependence Analysis . 708
L. A. Barragan, A. Roy

Cyclic Weighted Reference Counting Without Delay. 712
R. E. Jones, R. D. Lins

Parallel Optimisation of Join Queries Using an Enhanced Iterative Im
provement Technique. 716
M. Spiliopoulou, Y. Cotronis, M. Haizopoulos

Precis: Distributed Shortest Path Algorithms. 720
J. L. rrâff
A Disabling of Event Structures. 724
N. A. Anisimov

Barrier Semantics in Very Weak Memory.. 728
A. Pears, R. Prancis

Csing Hammock Graphs to Eliminate Nonstructured Branch Statements 732
F. Zhang, E. H. D'Hollander

Performance Modeling of Microkernel Thread ScheduJers for Shared Mem-
ory Multiprocessors. 736
W. Van de Velde, J. Opsommer, E. H. D'Hollander

From Data Flow Networks to Pro cess Algebras......................... 740
C. Bernardeschi, A. Bondavalli, L. Simoncini

PMallel Complexity of Lattice Basis Reduction and a Floating-Point Par-
allel Aigorithm . 744
C. Heckler, L. Thiele

Computer Vision Applications Experience with Actors 748
F. Arcelli, M. De Santo, M. Di Santo, A. Picariello

Grid Massively Parallel Processor. 752
V. P. [l'in, Y.l. Fet

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XVII

ESPRlT Project Overvies

APPLAUSE: Application & Assessment of Parallel Programming Using
Logic.. 756
M. Reeve et al.

EPOCH - European Parallel Operating System Based on Chorus ; 760
L. Borrmann et al.

Pythagoras Project Overview (EP7091) 764
K.-F. Wong et al.

Authors Index. 769

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

-~,"-'" ,-1

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Simulation-based Comparison of Hash
Functions for Emulated Shared Memory*

Curd Engelmann1 and Jorg Keller2

1 Universitiit des Saarlandes, Computer Science Department
lm Stadtwald, 6600 Saarbrücken, Germany
2 Centrum voor Wiskunde en lnformatica

Postbus 4079, 1009 AB Amsterdam, The Netherlands

Abstract. The influence of several hash functions on the distribution of
a shared address space onto p distributed memory modules is compared
by simulations. Both synthetic workloads and address traces of appli
cations are investigated. It turns out that on ail workloads linear hash
functions, although proven to be asymptotically worse, perform better
than theoretically optimal polynomials of degree O(logp). The latter are
also worse than hash functions that use boolean matrices. The perfor
mance measurements are done by an expected worst case analysis. Thus
linear hash functions provide an efficient and easy to implement way to
emulate shared memory.

1 Introduction

Users of parallel machines more and more tend to program with the view of
a global shared memory. Commercial machines (with more than 16 processors)
however usually have distributed memory modules. Therefore the address space
has to be mapped onto memory modules, memory access is simulated by packet
routing on a network connecting processors and memory modules. This has to be
done in a way that for (almost) all access patterns the requests are distributed
almost evenly among the memory modules. The reason to demand this is obvious:
if cases happen where the number of requests per module (the so called module
congestion) is too high, then performance gets very poor.

Several kinds of hash functions have been proposed. But their theoretically
provable properties are asymptotical results. As currently available machines
are quite small (the number p of processors and memory modules usually is less
than 1000) the actual behaviour of the chosen hash function can differ quite a
lot from these theoretical properties. The lack of experimental data makes the
selection of a particular hashing scheme difficult in practice. We are not aware
of comparisons of hash functions based on simulated behaviour.

* This work was supported by the German Science Foundation (DFG) in SFB 124, TP
D4, and by the Dutch Science Foundation (NWO) through NFl Project ALADDIN
under Contract number NF 62-376. Part of this work was done while the second
author was working at Universitat des Saarlandes, Computer Science Department,
Saarbrücken, Germany.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

The goal of this investigation is to provide these data by comparing four
kinds of hash functions by simulations. In Sect. 2 the most common !Gnds of
hash functions are introduced. Section 3 describes the types of synthetic and real
a.ccess patterns that were used as workloads. Section 4 sketches the experiments
made and Sect. 5 presents and discusses the results.

2 Hash Functions

As already mentioned, a hash function serves to map a global address space
onto distributed memory modules. More formally, for an address space M of
size m = 2V and a set N of p = 2" memory modules, the mapping is a function
h : M -+ M that maps addresses ta memory cells. The function mod : M -+

N, mod(x) = x div mlp specifies the module of a memory ceIl x, the function
loc: M -+ M',loc(:I:) = x mod m/p specifies the local address of ceIl:l:.

An optimal mapping function h should guarantee low module congestion for
almost ail possible access patterns (if ail addresses of one pattern are distinct).
This is a.chieved by using classes of fun ct ions in which each function has low
module congestion for almost al! patterns. A particular function iB randomly
chosen. This guarantees with very high probability that the CUITent application
does not exhibit the patterns on which the chosen function pro duces hot spots.

An additional problem consista in patterns with several processors concur
rently accessing one cell. This problem cannot be solved by hashing. However
there exist routing algorithms that perform combining. Requests that access the
same cell are merged during routing, answers are duplicated. Ranade's emulation
algorithm [10] is a good example. Therefore, concurrent access does not increase
module congestion.

A class that restricts module congestion to O(logp) is

'Ii = { p(x) = (t ai . Xi) .. mod P mod m : 0 S ai < p}
, .=0)

P is a prime larger than m, ~ = O(logp). A function of 'Ii is obtained by
randomly choosing the values for ai. This class was used in several theoretical
investigations [6, 8, 10] to emulate shared memory on a processor network. The
module congestion of O(logp) is sufficient because access from processors to
memory modules across a constant--degree interconnection network needs time
n(log p) anyway.

However the functions in 'Ii are not bijective. This means that several ad
dresses of the shared memory could be mapped onto the same cell. This requires
secondary. hashing on. eac.\ memory module. Ranade [10] describes a method
that performs secondary hashing in constant time and increases the size of the
memory module only by a constant factor.

In practice however one should avoid secondary hashing and waste of memory
because a constant factor of performance loss can destroy an asymptotically good
result. Furtherrnore, the time to evaluate the hash function should be short. The

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

functions in 7t require ~ = O(log p) multiplications and additions and a modulo
division by a prime which needs a lengthy computation.

Therefore sorne alternatives were proposed:

1. For ~ = 1 one obtains a linear function. This reduces evaluation time to one
multiplication, one addition and one modulo division. The function is still
not bijective.

2. Furthermore if the modulo division by a prime is skipped and the coefficient
ao is set to zero, the evaluation time is reduced to one multiplication. The
operation modulo m is not counted because m is a power of two. If only odd
values are chosen for al the function also is bijective.

3. If the binary representation of an address is seen as a boolean vector, the
hash function consists of multiplying this vector with an invertible boolean
matrix. The time to evaluate this function is shorter than one multiplication.

Dietzfelbinger et. al. prove that the first alternative is asymptotically equiv
aient to the second [5]. Furthermore he proves that linear functions can result
in a module congestion of 8(.../P) for patterns with addresses of the form b + s . i
where i = 0, ... , n - 1 [4]. The constants b and s are called base and stride. This
means that linear functions modulo a power of two are asymptotically worse
than polynomials.

The third alternative was used in the design of the IBM RP3. Norton and
Melton [9] introduce a class of boolean matrices where all matrices are invertible
(whicl1 means bijectivity). Optimal distribution can be guaranteed for patterns
with strides where s is a power of two and where in the binary representation of
base b bits s to s + log n - 1 are zero. For other bases the module congestion is at
most 2. No theoretical results are given for other patterns, but their simulations
hint that distribution is acceptable for other patterns, too. One particular matrix
is obtained by randomly choosing several bits of the matrix and then computing
all the other bits with respect to the above properties.

3 Workloads

The workloads are chosen to compare the hash functions with respect to known
differences, especially behaviour on access patterns with strides, and with respect
to patterns taken from applications. Therefore both synthetically generated pat
terns and application traces were taken.

The synthetic traces consist of randomly chosen patterns as a reference and
strides with s = 1,13,32. The strides were chosen to compare matrix hashing
and the other hash functions and to check whether linear functions get worse on
these patterns. For s = 32 and s = 1 matrix hashing is optimal [9]. Theoretical
results about the performance on the others are not known.

The traces were taken from three application programs: list ranking, matrix
multiplication and connected components. The reasons for taking traces from
applications are the variety of produced patterns and the structure of. single
patterns that often is more complex and less regular than in synthetical traces.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4.

The three applications are chosen to represent a large yariety of algorithms.
Matrix multiplication is an example of a class of algorithms where the access
patterns are regular and do not depend on the particular input values. Many
other numerical algorithms behave that way, especially as many of them are
originally designed to work on a processor network with a fixed interconnection
structure (see e.g. [3]).

List ranking represents combinatorial algorithms where access patterns de
pend on "the actual data. An example technique is pointer doubling. Processor i
loads or stores F[F[i]], where F is an array in the shared memory. Part of the
accesses to shared memory still are regular. If processor i loads or stores F[i),
the access pattern is a stride with s = 1. Many PRAM c.lgorithms working on
lists and graphs are of this type (see e.g. [7]).

The connected cûmponents' algorithm represents algorithms where access pat
terns depend on the actual data, but not ail processors may participate in the
access. This together with concurrent accesses to sorne cells, which get~combined,
makes module congestion smaller. Thus, connected components and similar al
gorithms are remarkable exceptions compared to list ranking type algorithms.

The list ra.nking algorithm is taken from a survey [7J. For a given linked
list of n elements, the distance (or mnk) ta the end of the list is computed for
each element. Thealgorithm needs n processors and O(logn) time. The list is
represented as an array F, where F[iJ means successor of i in the list. For the
last el~ment of the list, F[iJ = i. The rank is contained in array R. The PARDO
code is shown in Fig. l(a).The access patterns of this algorithm partly depend
on the structure of the list and. partly are strides vlrith s = 1.

In the matrix multiplication algorithm C = A . B, each processor computes
one element of the destination matrix C. In order to avoid concurrent accesses,
all processors start at different rows and columns of the matrices A and B.
The PARDO code is shown in Fig. l(b).Matrices A and C consist of n = w22z

elements and have dimension 2Z x w2z , matrix B has dimension w2 Z xw2 z . The
algorithm needs n processors and takes tirne O(n1/ 2). The access patterns of this
algorithrn only depend on the dimensions of the matrices.

The connected components algorithrn was adapted from Shiloach and Vishkin
[11J. For a. given undirected gra.ph G = (V,E), the connected cornponents are
computed. The algorithm needs n = max(jV\' 21EI) processors and takes time
O(logn). The graph is represented by two arrays HEAD and TAIL. For a given
edge e, HEAD[e] and TAIL[e] contain the nodes to which e is adjacent. The
components are represented by an array F. Two nodes u, v are in the same
cornponent if and only if Flu] = F[v] after running the program. The PARDO
code is shown in Fig. 1 (c). The access patterns partly depend on the structure of
the input graph and partly are .trides with s = 1. Not all processors participate
in every- access.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

(* luit rank R *)
for i := 1 to n pardo

if F[i] = i then R[i] := 0 else R[i] := 1
od;
(* Compute rank R *)
for t:= 1 to flognl do

for i := 1 to n pardo
R[i] := R[i] + R[F[i]] ;
F[i] := F[F[i]] (* Pointer doubling *)

od
od;

(a) list ranking

(* n = w22z *)
k := 2z; m := w2 Z

j l := w2 Z
j

for (i,j):= (1,1) to (k,m) pardo
Cri, j] := 0 (* lnit C *)

od;
for r := 1 to 1 do

for (i,j):= (1,1) to (k,m) pardo
t := (i + j + r) mod 1 ;
Cri, j] := Cri, j] + A[i, t] . B[t, i]

od
od;

(b) matrix multiplication

Fig. 1. Code of applications

4 Experiments

5

for u E V pardo F[u] := u od;
for t:= 1 to 210g IVI do

for u E V pardo change[u] := 0 od;
starcheck;
for all (u,w) with {u,w} E E pardo

if star[u] and F[w] < F[u] then
F[F[u]] := F[w];

fi

change[F[u]] := 1;
change[F[w]] := 1

od;
starcheck;
for all (u,w) with {u,w} E E pardo

if star[u] and not change[F[u]]
and F[w] f. F[u] then

F[F[u]] := F[w]
fi;
F[u] := F[F[u]]

od
od.

proe starcheck ;
begin

for i E V pardo
star[i] := true;
if F[F[i]] f. F[i] then

star[F[F[i]]] := false
fi;
star[i] := star[F[F[i]]]

od
end;

(c) connected components

To obtain the input data for the experiments, al! applications are simulated by
sequential programs, only the address traces are extracted. This frees us from
considering a particular microprocessor instruction set and compiler. The address
traces of the synthetic workloads are generated by a program, that simulates 4
steps of the machine. In the workloads with strides, the base b is inereased each
step by ns.

We are only interested in the resulting module congestion and not in the time
to route the requesting packets from processors to memory modules. Therefore
we can negleet the structure of the interconnection network. We only model it
by a latency term because the processors perform latency hiding (see below).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

An experiments are carried out for m = 222 , the prime P is chosen closest
to m. We simulate machines ","Ïth p = 2", u = 5, ... , 10 processors. We mn
multiple processes per processor to hide the network latency from processors.
The processes are executed in a round-robin manner, one instruction per turn.
The exact number c of necessary processes per processor is depending on p, e.g.
O(logp) in a butterfty network. We choose a fixed c to obtain comparableresults
and take c = 5 as an average from a machine Bize of p = 128 [2]. Therefore in each
step 5p requests are made. Step in this context means synchronous execution of
one instruction on each of the 5p processes.

As polynomials we used functions of degree ç = 2, 10, 20. Each of the experi
ments was done 5 times with randomly chosen hash functions. More exactly, for
each class five functions were randomly chosen and then used for aH workloads
and machine sizes.

As input for liat ranking a Hst of length n = 10p was randomly chosen. As
input for connected components, a graph with n ; 10p nodes and 5p edges
was randomly chosen. The problem size n is twice as large as the number of
pro cesses in these applications. Each process simulates two program processors
step by step. A problem size larger than 5p is needed to obtain access patterns
depending on the list or graph.

In matrix multiplication, the dimensions of the matrices are as follows: if
p = 22z then w = c = 5, if p = 22z+1 then w = 2c = 10.

In each experiment we measured for each step of the trace the maximum
module congestion Cma.x and then computed the expected value of al! Cm." av
eraged over al! stepa. The analysis is a kind of (expected) worst case analysis.
Each expected value was checked for significance by looking at the variance. The
five values obtained by using five functions of one class for each experiment were
checked against significant differences. In case there were none, the average was
taken. In case there were sorne, ten ~dditional hash functions were chosen and
the average was taken from these 15 values. Significant differences appeared only
for stride s = 13, p = 27 , •.. ,29 in both linear functions and for st ride s = 32,
p = 29 ,210 in the !inear function modulo power of two.

Because of mapping 5p requests per step onto p memory modules, E(cma.x) ;:::
5. The only exception is connected components, because not necessarily al! pro
cessors make accesses in IF statements (see Sect. 3).

5 Results

The results of the experiments are presented in two ways. First we show the per
formance of the hash functions sorted by benchmarks. In Fig. 2 the performance
on random patterns is given as a reference. The legend of the hash function8 i8
shown in Fig. 3, which shows al! other benchmarks. Second we show the perfor
mance sorled by hash functions in Fig. 4.

AIl figures are built as foHows: the x-axis shows log p in range 5 ... 10, the
y-axis shows the expected value of the maximum module congestions in range
4 ... 14.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

E(cmaz)

11
4
2 .,,;!a,~:~iii.;·"~

"":'l"'''· ~. a·!-I.':@J"·
10 $:'"

8

6

4
L,--,--,--,--,--,-logp
5678910

Fig. 2. Performance on random patterns

The performance on random patterns (see Fig. 2) is similar for all hash func
tions. Thus none of the hash functions is bad in an obvious way. The maximum
module congestion rises from 10 for p = 32 to 12 for p = 1024. This will serve
as a reference to analyse the performance on the other benchmarks.

5.1 Analysis of Benchmarks

The curves of Fig. 3 show similar shapes for all benchmarks: the polynomials of
different degrees behave in a similar way and so do the three other hash functions.
The behaviour of the polynomials furthermore is on all workloads worse than
the behaviour of the simpler hash functions. Among the linear functions, the
one modulo a prime always behaves a little bit worse than the linear function
modulo a power of two. Thus the most interesting part is the comparison of our
simple linear function with the boolean matrix hashing.

For strides that are a power of two, the boolean matrix hashes values op
timally (see (a) and (c)) and reaches a module congestion of 6. The module
congestion reached by the linear function lies between 6.5 and 7.5, so it is not
far away.

A similar behaviour of linear function and boolean matrix can be seen in (d)
and (f). This results from the fact that part of the accesses in these workloads
are strides 1, when processors load or store values in arrays in the manner that
processor i reads or writes P[i].

However, as soon as we obtain other patterns, the boolean matrix hashing
gets worse than the linear function (see (b) and (e)). Even for the m~trix mul
tiplication workload, where accesses always consist of 5 . pl/2 strides with s = 1
and pl/2 processors involved in each stride, the linear function is better.

5.2 Analysis of Hash Functions

Figure 4 shows the performance of the different hash functions. Because the
connected components benchmark is not comparable to the others as explained

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

in Sect. 3, it is Dot ShOWD here. The first observation is, that aIl hash functions
behave on all workloads not worse than on random patterns. The second obser
vation is that thepolynomials show roughly the Baffie behaviour on all workloads
as they do on random patterns (see (d) to (f)). We conclude that their perfor
mance is independent of the application. That is what we expected. But this
performance is bad in comparison to what is reached by the other functions that
behavebetter than on random patterns on all workloads.

The linear function (see (a)) shows almost uniform behaviour on al! work
ioads, too, but it varies between 6.5 and 8, which is significantly better than the
behaviour on random patterns.

The behaviour of the linear function modulo a prime is not uniform and
varies between 6.3 and 10.

The behaviour of the boolean matrix hashing function can be divided in an
expected optimal behaviour for strides with s a power of two and a significantly
higher module· congestion for other patterns, which is however still below the
ODe produced by random patterns.

6 Conclusions

The above experiments show surprisingly that linear functions modulo a power
of two and boolean matrix functions show best performance for practical use.
Both have the additional properties of bijectivity and short evaluation time. The
choice between these two depends on the expected user profile (if such exists)
and the surrounding machine architecture. For machines that aIready contain
a hardware multiplier this could be used to perforrn hashing in the case of the
linear fun ct ions. Moreover, the use of matrix hashing is restricted by the fact
that an imp1ementation needs (log m)2 bit register hardware to store the boolean
matrix. Therefore, if no user profile is known and chip area is restricted (or a
multiplier already available), the use of the linear function is preferable.

The observations presented here lead to the use of linear hash functions
in the prototype design of the SB-PRAM [1, 2] which emulates a synchronous
shared memory machine with p = 128 physical processors and provides hardware
support for hashing and packet routing including combining.

Unfortunately, some open questions remain. First, there is no theoretical
framework to explain why simple hash functions work better than complex ones.
Also, the exact relationship between linear functions with and without "modulo
prime" is still unknown.

Acknowledgements

The authors would like to thank Martin Dietzfelbinger for helpful discussions.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

12

10

8

6

4

12
10

8

6

4

5 6 7 8 9 10
(a) stride s = 1

5 6 7 8 9 10
(h) stride s = 13

E(cmax)

14
12
10

8

6

4

5678910
(c) stride s = 32

o linear function modulo m
• linear function modulo P
o boolean matrix

Fig. 3. Performance on benchmarks

9

12
10

8

6

4

5 6 7 8 9 10
(d) list ranking

E(cmax)

14 ,\il ~
12
10

8

6

4

... ",."~",, (!5" ..
~:;":<:9

.. ·t::::'·
•... , + .. " ,i!:"; ;!;:.>::.Q Q

~--,--,---,--,--,.logp

5 6 7 8 9 10
(e) matrix multiplication

E(cmax)

14
12
10

8

6

4

5 6 7 8 9 10
(f) connected components

<J polynomial of degree ç = 2
* polynomial of degree ç = 10
o polynomial of degree ç = 20

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

E(Cmax)

14i .,0
12 ...•....•..
1D~ G> ••• ",Q. "'.. ,*""",*

:~ i;;;i;;:t~'".·",~
1 1 1 1 1 l' log P
5678910

(a) linear function

r:Cm~~ ~)...:;
10 . .~:.<"",,::.0 ... * , .. * ,:-'lIiê!'

8~;.;.;~~;;:,:.:g;:::~:': ..• ··" .. '<1

6 1

4~
1 1 1 1 1 l' logp
5 6 7 8 9 10

(b) linear function modulo prime

E(cmax)

14
12
10

8

6

4

.. "Q .. ' Q"." .. :: :.~ Q

G>' .' •• ®
~ .:::: ~ .::.,::t:::: t .. ::.J~P·:···*
0 0"·0 0·
CI····· ... ····· .. ·· ····· ... · .. ·· ...

5678910
(c) boolean matrix

10 random patterns
i. stride s = 1
:0 stride 8 == 13

Fig. 4. Performance or hash functions

10

E(cmax)

•
141 .AiI,,'.'i'
12.J ,~,'·i;j"';'··

1 .. ,CïW:rr'
10 ~'""".
8

6
4

5 6 7 8 9 ID
(d) polynomial, degree e == 2

E(cmax }

~: ~ 1$;' •..•.. iil"i;!.~;,;if.:::,:~
10 il""·"'"
8

:~
1 1 1 1 1 l' logp
5 6 7 8 9 10

(e) polynomial, degree e == 10

E(cmax)

14j .. ,~:t";tf>
- "l;",!"."

12 ",;.Hi';"::(!P'
10 ~!~:~!f:···

:~
1 1 1 1 1 l' logp
5 6 7 8 9 10

(f) polynomial, degree e == 20

<1 stride 8 = 32 i
* iist ranking 1

o matrix multiplication:

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

