BIBLIOTHEQUE DU CERIST

Andrei Voronkov (Ed.) 5 46358

Logic Programming and
Automated Reasoning

4th International Conference, LPAR '93
St. Petersburg, Russia, July 13-20, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Edifor

Iorg Sickmann

University of Saariand

CGerman Research Center for Artiticial Iniclligence {DFKI)
Stuhlsatzeshausweg 3, D-66123 Saarbriicken 11, FRG

Yonime Editor

Andrei Voronkovy
Department of Computer Science, University of Uppsala
Polacksbacken 1, Box 311, S-75105 Uppsaia, Sweden

CR 3ubject Classification (1991 E4.1,L2.3,D,1.6

&l or

ISBHN 3-340-36944-8 Springer-Yerlag Beriin Heidelberg New York
ISBN (-387-56944-8 Springer-Yerlag New York Berlin Heidelberg

This work is subject o copyright. Al righis are reserved, whether the whole o1 pari
of the material is concermned, specifically the rights of ransiation, reprinting, re-use
of illustrations, recitation, broadeasiing, reproduction on microfiimsg or in any other
way, and storage in data banks. Duplication of this publication or parts thereof {s
nermitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use mast always be obtained from
Springer-Verlag. Violations are lizble for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany
Typesetling: Camera ready by author

Printing and binding: Druckhaus Beliz, Hemsbach/Bergstr.
43/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

LPAR is an international! ¢onference traditionally held in Russia since 1990. LPAR’93
is organized by the Russian Association for Logic Programming. It aims at bringing
together researchers interested in logic programming and automated reasoning. The re-
search in logic programming grew out of the research in automated reasoning in the carly
1970s. Later, the implementation techniques used in logic programming were used in
implementing theorem proving systems. Results from both fields are used in deductive
databases,

The scientific program of LPAR’93 includes 5 invited lalks, 35 talks and 4 advanced
tutorials. 35 papers included In this volume werc selected from 84 submitted papers. In
addition, Peter Wegner made it possible to prepare a wrilten version of his invited talk.
During the conference several systems implemented on IBM PC and compatibles were
dernonstrated.,

There are many people involved in the organization of LPAR'93. I wisk to personally
thank Oleg Gusikhin, Irina Freidson, Iger’ Litvinov, Vladimir Popov, Igor’ Rents, Tania
Rybina, Michail Simuni, Yuri Shcheglyuk.

I gratefully acknowledge financial sponsorship by the Commission of the European
Communities.

Uppsala, May 1993 Andrei Voronkov

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

Program Committee

Dmitri Boulanger (Catholic University Leuven)

Mats Carlsson (SICS, Kista)

Philippe Codognet {INRIA Rocquencourt)

Danny De Schreye (Catholic University Leuven}

Norbert Eisinger {(ECRC, Muxzich)

Harald Ganzinger ({Max-Planck-Institut far Informatlk Saarbracken)
Ryuzo Hasegawa (ICOT, Tokyo)

Steffen Holldobler (Technische Hochschule Darmstadt)

Deepak Kapur (SUNY at Albany)

Jean-Louis Lassez (IBM Thomas J.Watson Research Center, Yorktown Heights)
Alexander Leitsch {Technische Universitit Wien}

Giorgio Levi (University of Pisa}

John Lloyd (University of Bristol)

Ewing Lusk {Argonne National Laboratory)

Dale Miller (University of Pennsylvania)

Jack Minker {University of Maryland)

Gregory Miats {Stanford University)

Alan Mycroft {University of Cambridge)

Lee Naish {University of Melbourne)

Hans-Jurgen Ohlbach (Max-Planck-Institut fir Informatik, Saarbricken)
Michel Parigot (University of Paris 7)

Frack Plenning (Carnegie Mellon University)

Vladimir Sazonov (Program Systems Institute, Pereslav]l-Zalesski)
Marek Sergot {Imperial Colicge)

Mark Stickel (SRI International, Menlo Park)

Pascal Van Hentenryck (Brown University)-

Konstantin Vershinin (Institute for Cybernetics, Kiev)

Andrei Voronkov (Uppsala University) — chairman

Nail Zamov (Kazan’ University)

Organizing Committee

Eugene Dantsin (Electrical Engineering Institute, St. Petersburg)
Robert Freidson {Electrical Engineering Institute, St. Petersburg) — chairman
Andrei Voronkev {ECRC, Munich)

BIBLIOTHEQUE DU CERIST

X

Andreas Nonnengari {Max-Planck-Institote, Saarbricken)
Frank Q'Carroll (ICOT, Tokyo)

Doug Palmer {University of Melbourne)

Remo Pareschi (ECRC, Munich}

Lawrence Paulson (University of Cambridge)

Dina Pedreschi (University of Pisa)

Shekhar Pradhan [University of Maryland}

Sanjiva Prasad {ECRC, Munich)

Sephie Renault (INRIA - Boquencaurt}

Eike Ritter (University of Cambridge}

Igor Romanenko {University of Kiev)

Frangois Rouaix {INRIA - Roquencourt)

Paul Roziere (University of Paris 7}

Viadimir Rudenko (Umiversity of Kiev)

Caroling Ruiz {University of Maryland)

Den Sahlin {SICS, Kista)

Gernot Salzer {Technische Universitit Wien)
Torsten Schaub (Technische Hochschule Darmstadt)
Manfred Schmidt-Schaufl (Universitat Frankfurt}
Kees Schuerman (ECRC, Munich}

Yasuyuki Shirai (1COT, Tokyo)

Marianne Simonot {University of Paris 7)

Gert Smolka {DFKI Saarbricken)

Rolf Socher-Ambrosius (Max-Planck-Institute, Saarbricken)
Harald 3pndergaard {(University of Melbourne)

Sury Sripada (ECRC, Munich}

B.Steffen {Max-Planck-Tnstitute, Saarbricken)
Yukihrde Takayama (ICOT, Tokyo)

Michael Thielsche {Technische Hochschule Darmstadt)
Andreas Ténne (Max-Planck-Institute, Ssarbricken)
André Véron {ECRC, Munich}

Benjamin Werner (University of Paris 7)

Mark Wallace (ECRC, Munich}

Richard Zach {Technische Universitit Wien)

Invited Speakers

Alan Bundy {Edinburgh University)
Hervé Gallaire {Xerox France)
Ryuzo Hasegawa (ICOT)

Peter Wegner (Brown Unlversity)
Nail Zamov (Kezan® University)

BIBLIOTHEQUE DU CERIST

Contents

Entailment and Disentailment of Order-Sarted Feature Constralntsc0.00.n 1
Hassan Ait-Kaci, Andreas Podelski

Compuiing Extensions of Default Logic — Prelimizary Report 19
Grigoris Antoniouw, Elmar Langefepe, Volker Sperschneider

Prolog with Arrays and Bounded Quantificationsl 28
Jonas Barklund, Johan Bevemyr

Linear 0-1 Inequalities and Extended Clanses oot 40
Peter Barth
Search Space Pruning by Checking Dynamic Term Growthl 52

Stefan Brining

A Proof Search System for a Modal Substructural Logic
Based on Labelled Deductive Systemsoooiiiiiiiiii 64
Hiv Fai Chau

Consistency Checking of Automata Functional Specifications 76
Anatoli N. Chebotares, Marinae K. Morokhoveis

Yet Anolher Application for Toupic: Verification of
Mutual Exclusion Algorithms 86
Mare-Michel Corsind, Alain Griffault, Antoine Rauvzy

Parsing with DCG-Terms it it ieai e acea e enaas ... 98
Andrew Davison

A First Order Resolution Calculus with Symmetries 110
Uwe Egly
Ordered Paramodulation and Resolulion as Decision Procedure 122

Christien G. Fermiller and Gernot Salzer

Static Analysis of Prolog with Cut i i iir s 134
Gilberto Filé, Sabina Rossi

Xl

1S1430 NAd INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

Entailment and Disentailment
of Order-Sorted Featare Constraints

Hassan Ait-Kaci and Andreas Podelski

Digital Equipment Corporation, Paris Research Laboratory
85, avenue Victor Hugo, 92500 Rueil-Mzlmaison, France

{hak,podelski}lprl.dec.com

Abstract. LIFE uses matching on order-sorted festure structures for passing arguments
to functions, As opposed to pnification which amounts to normalizing a conjunction of
constraints, solving a marching problem consists of deciding whether a conswraint (guard}
or its negation are entailed by the context. We pive a complete and consistent set of
rules for entailment and disentailment of order-sorted feature constraints, These rules are
directly usable for relative simplification, a general proof-theoretic method for proving
guards in concurrent constraint logic languages using guarded rules.

1 Introduction

LIFE [5] extends the computational paradigm of Logic Programming in two essential ways:

+ using a data stracture richer than that provided by first-order constructor terms; and,

» allowing interpretable functional expressions as bona fide terms.
The first extension is based on v-terms which are attributed partially-ordered sorts denoting
sets of objects [1, 2). In particular, -terms generalize first-order constructor terms in their
rdle as data structures in that they are endowed with a unification operation denoting type
intersection.

The second extension deals with building into the unification operation a means to reduce
functional expressions using definitions of interpretable symbols over data patterns. The basic
insight is that unification is no longer seen as an atomic operation by the resolution rule.
Indeed, since unification amounts to normalizing a conjunction of equations, and since this
normalization process commutes with resolution, these equations may be left in a normal form
that is not a fully solved form. In particular, if an equation invelves a functional expression
whose arguments are not sufficiently instantiated to maich & definiens of the function in
question, it is simply left untouched. Resolution may proceed until the arguments are proven to
match a definition from the accummlated constraints in the context [3]. This simple idea tarns
out invaluable in practice.

This technique—delaying reduction and enforcing determinism by allowing only equiv-
alence reductions—is called residuation [3). It does not have to be limited to functions.
Therefore, we explain it for the general case of relations. Intuitively, the arguments of a relation
which are constrained by the guard are its input parameters and correspond to the arguments
of a function. This has been used as an implicit control mechanism in general concurrent
constraint logic programming schemes; e.g., the logic of guarded Homn-clauses siudied by
Maher [11], Concurrent Constraint Programming (CCP) [12], and Kernel Andomra Proiog
(KAP) [9]. These schemes are parameterized with respect to an abstract class of constraint
systems. An incremental test for entailment and disentailment between constraints is needed
for advanced control mechanisms such as delaying, coroutining, synchronization, committed
choice. and deep constraint propagation. LIFE is formally an instance of this scheme, namely a

BIBLIOTHEQUE DU CERIST

CLP language using 2 constraing system based o order-sotied feature (OSF) structures 3] It
employs 2 related, but limited, suspensicn strategy o enforce deterministic funcdonal applica-
tior. Roughly, these systerns are concurzent thanks to a new effective discipling for procedure
parameter-passing that can be described as “call-by-constraint-entailment” (as opposed to
Prolog’s call-by-unification),

The most direct way to explain the issue is with an example. In LIFE, one can define
functions as usual; say:

fact(O) —+ 1.
fact(N : int) — N« fact{N — 1}.

Mose interesting is the possibility to compnte with partial informatien. For example:

minus(negint) — posint.
minus(posinf) — negint.
inus{zero) — zero.

Let us assume that the symbaols int, posing, negini, and zerp have been defined as sorts with
the gpproximation ordering such that posint, zere, negint are pairwise incompatible subsorts
of the sort int (i.e., posint A zero = 1, negint A zero = L, posint A negint — 1). This is
declared in LIFE as inf ;= {posint; zero; negint}. Farthermore, we assume the sort definition
posint := {posodd, poseven}; i.e., posodd end poseven sre subsorts of posiné end mwtually
incompatible.

‘The LIFE query ¥ = minus(X : poseven)? will return Y = negine. The sort poseven of the
actval parameter is incompatible with the sort neginf of the formal parameter of the first male
defining the function minus. Therefore, that rule is skipped. The soré poseven is more specific
than the sort posint of the formal parsmeter of the second rale. Hence, that nle is applicable
and yields the result Y = negint.

The LIFE query Y = minus(X : string) will fail. Indeed, the sort string is incompatible
with the sort of the formal parameter of every nule defining minies.

Thus, in order to determine which of the ruies, if any, defining the function in a given
functional expression will be applied, two tests are necessary:

» verify whether the actual parameter is more specific than or equal to the forma! parameter;
o verify whether the actual parameter is at all compatible with the formal parameter.

What happens if both of these tests f2il7 For exampie, consider the query consisting of the

conjenction:

Y = minus(X : int), X = minus{zero}?

Like Prolog, LIFE follows a lefi-to-right resolution strategy and examines the equation
¥ = minex(X ; ini) first. However, both foregoing tests fai! and decidicg which rule to use
among those defiving minus is inconclusive. Indeed, the sort ini of the acheal paremeter in
that call is neither more specific than, nor incompatible with, the sort neginf of the first mie’s
formal parameter. Therefore, tbe fanction call will residuate on the variable X. This means
that the functional evaluaticn is suspended pending more information or X. The seoond goal
in the guery is treated next. There, it is found that the actual parameter is incompatible witk
the fiest two roles and is the same as tha last mle’s. This ailows reduction and binds X to zero.
At this point, X has been instantjated and thercfore the residual equation pending on X can be
recxamined. Again, as before, & redex is found for the Iast rule and yields ¥ = zezo.

The two tests above can in fact be worded in & more general setiing Viewing deta
structures as constraints, “more specific” is simply a particular case of constrzint entsilment.

BIBLIOTHEQUE DU CERIST

We will say that a constraint disentails another whenever their conjunction is unsatisfiable;
or, equivalently, whenever it entails its negation. In particular, first-order matching is deciding
entailment between constraints consisting of equations over first-order terms. Similarly,
deciding unifiability of first-order terms amounts to deciding “compatibility” in the sense nsed
informaily above.

The suspension/resumption mechanism illustrated in cur example is repeated each time a
residuated actual parameter becomes more instantiated from the context; i.e., through solving
other parts of the query. Therefore, it is most beneficial for a practical slgorithm testing
entailment and disentailrent to be incrementa!. This means that, upon resumption, the test for
the instantiated actual parameter builds upon partial results obtained by the previous test. One
outcome of the results presented in this paper is that it is possible to build such a test; namely, an
algorithm deciding simmultaneously two problems i an incremental manner—entailment and
disentailment. The technique that we have devised to do that is called relative simpiification
of constraints.

We have organized this paper as follows. In Section 2, we review background on our
OSF formalism, This is for the sake of staying self-contamed since its technical notation
and terminology is pervasive in this paper’s presentation. In Section 3, we give rules for
incrementally deciding entailment and disentailment of OST constraints, and we make explicit
the effectuality of relative simplification. In Section 4, we prove the termination of the rules.
In Section 5. we show the correciness and completeness of these rules. Section 6 establishes
the property of independence of negated OSF constraints, Fally, we conclude in Section 7.

2 OSF Formalism

We introduce briefly the OSF formalism terminology and notation that we use. For a thorough
investigation of these notions, the reader is referred to {5].

2.1 OSF algebras and OSF constraints

The building blocks of OSF algebras are sorts and feahures.
An order-sorted feature signature (or simply OSF signature) is a tuple {S, <, A,) such
that:
& is a set of sorts containing the sorts T and | ;
* < is a decidable partial order on § such that { is the east and T is the greatest element;
o {&,<, A} is alower semi-lattice (s A ¢ is called the greatest common subsort of soris 5 and
&)
e F is a set of feature symbols.
An OSF signature has the following interpretation. An OSF algebra over the signature
{F, <, A, F) 1s a stmcture:

A= (DA ' ('r()sss : (zA)JEF)

such that;

s D+ is a non-empty set, called the domain of A {or, universe);

. fo;eacl&ssm symbo} 5 in 8, s* is a subset of the domain; in particular, T4 = DA and

At =

s the greatest lower bound (GLB) operation on the sorts is interpreted as the intersection;
ie, (s ALY =5 Ny fortwosorts sand ¢ in 8.

» for each feature £ in , £* is a total unary function from the domain into the domain; i.c.,
f”" B D'A et D‘A',

