
Andrei Voronkov (Ed.)

Logic Programming and
Automated Reasoning

4th International Conference, LPAR '93
St. Petersburg, Russia, July 13-20, 1993
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editor

Jêirg Siekmann
University of Saarland
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbrücken Il, FRG

Volume Editor

Andrei Voronkov
Department of Computer Science, University of Uppsala
Polacksbacken 1, Box 311, 5-75105 Uppsala, Sweden

CR Subject Classification (1991): F.4.1, 1.2.3, D.1.6

ISBN 3-540-56944-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56944-8 Springer-Verlag New York Berlin Heidelberg

This work 18 subject to copyright. AU fights are reserved, whether the whole or part
of the material is concemed, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof ls
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its CUITent version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Ptinted in Germany

Typesetting: Camera ready by author
Printing and binding: Druckhaus Beltz, HemsbachlBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

LPAR is an international conference traditionally held in Russia sinee 1990. LPAR'93
is organized by the Russian Association for Logic Programming. It aims at bringing
together researchers interested in logic progr~mming and automated reasoning. The re­
search in logic programming grew out of the research in automated reasomng in the early
1970s. Later, the implementation techniques used in logic programming were used in
implementing theorem proving systems. Results from both fields are used in deductive
databases.

The scientific program of LPAR'93 includes 5 invited talks, 35 talks and 4 advanced
tutorials. 35 papers included in this volume were seleded from 84 submitted papers. In
addition, Peter Wegner made it possible to prepare a written version of his invited talk.
During the conference several systems implemented on IBM PC and compatibles were
demonstrated.

There are many people involved in the organization of LPAR'93. l wish to personally
thank Oleg Gusikhin, !rina Freidson, Igor' Litvinov, Vladimir Popov, Igor' Rents, Tania
Rybina, Michail Simuni, Yuri Shcheglyuk.

l gratefully acknowledge financial sponsorship by the Commission of the European
Communities.

Uppsala, May 1993 Andrei Voronkov

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Program Committee

Dmitri Boulanger (Catholic University Leuven)
Mats Carlsson (SICS, Kista)
Philippe Codognet (INRIA Rocquencourt)
Danny De Schreye (Catholic University Leuven)
Norbert Eisinger (ECRC, Munich)
Harald Ganzinger (Max-Planck-Institut für Informatik, Saarbrucken)
Ryuzo Hasegawa (ICOT, Tokyo)
Steffen Hülldobler (Technische Hochschule Darmstadt)
Deepak Kapur (SUNY at Albany)
Jean-Louis Lassez (IBM Thomas J.Watson Research Center, Yorktown Heights)
Alexander Leitsch (Techuische Universitat Wien)
Giorgio Levi (University of Pisa)
John Lloyd (Uuiversity of Bristol)
Ewing Lusk (Argonne National Laboratory)
Dale Miller (University of Pennsylvania)
Jack Minker (University of Maryland)
Gregory Mints (Stanford University)
Alan Mycroft (University of Cambridge)
Lee N aish (University of Melbourne)
Hans·JÜrgen Ohlbach (Max-Planck-Institut für Informatik, Saarbrucken)
Michel Parigot (University of Paris 7)
Frank Pfenning (Carnegie Mellon University)
Vladimir Sazonov (Program Systems Institute, Pereslavl-Zalesski)
Marek Sergot (Imperial College)
Mark Stickel (SRI International, Menlo Park)
Pascal Van Hentenryck (Brown University) .
Konstantin Vershinin (Institute for Cybernetics, Kiev)
Andrei Voronkov (Uppsala University) - chairman
Nail Zamov (Kazan' University)

Organizing Committee

Eugene Dantsin (Electrical Engineering Institute, St. Petersburg)
Robert Freidson (Electrical Engineering Institute, St. Petersburg) - chairman
Andrei Voronkov (ECRC, Munich)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

Andreas Nonnengart (Max-Planck-Irrstitute, Saarbrücken)
Frank O'Carro11 (rCOT, Tokyo)
Doug Palmer (University of Melbourne)
Remo Pareschi (ECRC, Munich)
Lawrence Paulson (University of Cambridge)
Dina Pedreschi (University of Pisa)
Shekhar Pradhan (University of Maryland)
Sanjiva Pras ad (ECRC, Munich)
Sophie Renault (INRIA - Roquencourt)
Eike Ritter (University of Cambridge)
Igor Romanenko (University of Kiev)
François Rouaix (INRIA - Roquencourt)
Paul Rozière (University of Paris 7)
Vladimir Rudenko (University of Kiev)
Carolina Ruiz (University of Maryland)
Dan Sahlin (SlCS, Kista)
Gernot Salzer (Technische U niversitiit Wien)
Torsten Schaub (Technische Hochschule Darmstadt)
Manfred Schmidt-Schaufi (Universitiit FranI,furt)
Kees Schuerman (EeRC, Munich)
Yasuyuki Shinai (rCOT, Tokyo)
Marianne Simonot (University of Paris 7)
Gert Smolka (DFKI Saarbrucken)
Rolf Sochet-Ambrosius (Max-Planck-Institute, Saarbrücken)
Harald Sllndergaard (University of Melbourne)
Sury Sripada (ECRC, Munich)
B.Steffen (Max-Planck-Institute, Saarbrücken)
Yukihrde Takayama CICOT, Tokyo)
Michael Thielsche (Technische Hochschule Darmstadt)
Andreas Tonne (Max-Planck-Institute, Saarbrücken)
André Véron (ECRC, Munich)
Benjamin Werner (University of Paris 7)
Mark Wallace (ECRC, Munich)
Richard Zach (Technische U niversitiit Wien)

Invited Speakers

Alan Bundy (Edinburgh University)
Hervé Gallaire (Xerox France)
Ryuzo Hasegawa (ICOT)
Peter Wegner (Brown University)
Naïl Zalnov (Kazan' University)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Entailment and Disentailment of Order-Sorted Feature Constraints 1
Hassan An-Kaci, Andreas Pode/ski

Computing Extensions of Default Logic - Pieliminary Report 19
Grigoris Antoniou, Elmar Langetepe, Volker Sperschneider

Prolog \Vith Arrays and Bounded Quantifications 28
Jonas Barklund, Johan Bevemyr

Linear 0-1 Inequalities and Extended Clauses 40
Peter Barth

Search Space Pruning by Checking Dynamic Term Growth 52
Stefan Brüning

A Proof Search System.for a Modal Substructural Logic
Based on Labelled Deductive Systems ... 64
Hiu Fai Chau

Consistency Checking of Automata Functional Specifications 76
Anatoli N. Chebotarev, Marina K. Morokhovels

Yet Another Application for Toupie: Verification of
Mutual Exclusion Algorithms ... 86
Marc-Michel Corsini, Alain Griffault, Antoine Rauzy

Parsing \Vith DCG-Terms .. ,.. 98
Andrew Davison

A First Order Resolution Calculus with Symmetries 110
Uwe Egly

Ordered Paramodulation and Resolution as Decision Procedure 122
Christian G. Fermü/ler and Gernot Salzer

Static Analysis of Prolog with Cut ... 134
Gilberto Filé, Sabina Rossi

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XII

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Entailment and Disentailment
of Order-Sorted Feature Constraints

Hassan Aït-Kaci and Andreas Podelski

Digital Equipment Corporation. Paris Research Laboratory
85. avenue Victor Hugo. 92500 Rueil-Malmaison. France

{hak,podelski}@prl.dec.com

Abstract. LIFE uses matching on order-sorted feature structures for passing arguments
to functions. As opposed to unification which arnounts to normalizing a conjunction of
constraints. solving a matching problem consists of deciding whether a constraint (guardl
or ilS negation are entailed by the context. We give a complete and consistent set of
rules for entailment anddisentailment of order-sorted feature constraints. Theserules are
directly usable for relative simplification. a general proof-theoretic method for proving
guards in concurrent constraint Iogic languages using guarded rules.

1 Introduction

LIFE [5] extends the computational paradigm of Logic Programming in two essential ways:
• using a data structure richer than that provided by fust -order constructor terms; and.
• allowing interpretable functional expressions as bona fide terms.

The fust extension is based on ,p-terms which are attributed partially-ordered sorts denoting
sets of objects [1. 2]. In particular. ,p-terms generalize fust-order constructor terms in their
rôle as data structures in that they are endowed with a unification operation denoting type
intersection.

The second extension dea1s with building into the unification operation a means to reduce
functional expressions using definitions of interpretable symbols over data patterns. The basic
insight is that unification is no longer seen as an atomic operation by the resolution mie.
Indeed. since unification amounts to normalizing a conjunction of equations. and since this
normalization process commutes with resolution. these equations may be left in a normal form
that is not a fully solved form. In particular. if an equation involves a functional expression
whose arguments are not sufficiently instantiated to match a definiens of the function in
question. it is simply left untouched. Resolution may proceed until the arguments are proven to
match a definition from the accumulated constraints in the context [3]. This simple idea turns
out invaluable in practice.

This technique-delaying reduction and enforcing determinism by allowing only equiv­
alence reductions-is ca1led residuation [3]. It does not have to be limited to functions.
Therefore. we explain it for the general case of relations. Intuitively. the arguments of a relation
which are constrained by the guard are its input parameters and correspond to the arguments
of a function. This has been used as an implicit control mechanism in general concurrent
constraint logic programming schemes; e.g .• the logic of guarded Horn-clauses studied by
Maher [Ill. Concurrent Constraint Programming (CCP) [12]. and Kernel Andorra Prolog
(KAP) [9]. These schemes are parameterized with respect to an abstract class of constraint
systems. An incremental test for entailment and disentailment between constraints is needed
for advanced control mechanisms such as delaying, coroutining. synchronization. committed
choice, and deep constraint propagation. LIFE is formally ân instance of this scheme. name1y a

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

CLP language using li oonstraint system based on order-sorted feature (OSF) structures [5]. Il
employs a related. but limite<!, suspension strategy ta enforœ deterministic functional applica­
tion. Roughly, these systems are conCllITent thanks to a new effective discipline for procedure
pararneter-passing that cau he described as "call-by-oonstraint-entailment" (as opposed to
Prolog's cal!-by-UIlification).

The most direct way to explain the issue is with an example. In LIFE, one cau define
functions as usual; say:

fact(O) ---> 1.

fact(N: int) ---> N * fact(N - 1).

More interesting is the possibility to compute with partial information. For example:

minus(negint) -+ posint.
minus(posint) _ negint.

minus(zero) ---> zero.

Let us assume that the symbols in!. posint. negint. and zero have been deiined as sorts with
the approximation ordering sucb. that posint, zero, negint are pairwise incompatible subsorts
of the sort int (i.e., posin/ "zero == .1., negint" zero == .1.,posint" negint = 1..). This is
decJared in LIFE as int:= {posin/;zero; negint}. Furthermore, we assume the sort definition
posin/ :== {posodd; poseven}; i.e., posodd and poseven are subsorts of posint and mutually
incompatible.

TheLIFEquery Y = minus(X: poseven)? willretum Y = negint. The sortposeven of the
actual parameter is incompatible Viith the sort negint of the forma! parameter of the fus! rule
defining the function minus. Therefore, that mIe is skipped. The sort poseven is more specific
than the sort posint of the forma! parameter of the second rille. Renee. that rule is applicable
and yields the result Y = negint.

The LIFE query Y = minus(X : string) will fail. Indeed, the sort string is incompatible
with the sort of the forma! pararneter of every rule defining minus.

Thus. in order to determine whlch of the mIes. if any. defining the functiOll in a givm
functional expression will he applied, two tests are neœssary:

• verify whether the actu.al parameter is more specifie than or equal to the forma! parameter;
o verify whether the actuaJ parameter is al all compatible with the forma! paramerer.

What happens if both of these tests fail? For example. consider the query consisting of the
conjunction:

y == minus(X : in/), X = minus(zero)1

Like Prolog. LIFE follows li left-to-right resolutioll strategy and examines the equation
y == minus(X : in!) mst. However. both foregoing tests fail and deciding whlch rule to use
among those de!ining minus is incondusive. Indeed. the sort in! of the actual parameter in
that call is neither more specifie than. nOf incompatible with. the sort negint of the fus! rule's
forma! parameter. Therefore. the f.mction cali will residuate on the variable X. 1hls means
that the functional evaluation is suspended pending more information on X. Tne second goal
in the query is treated next. There. il is found tha! the actual parameter i8 incompatible with
fue fust two rules and is the same as the las! rule's. Ibis aliows reducti.on and binds X 10 zero.
At fuis poLl1t. X has been instantiated and therefore the residual equatiOll pending on X cau be
reexamined. Agam. as before. a redex is found for the las! rule and yields Y = zero.

The two tests above cau in faet he worded in a more genelal setting. Viewing data
structures as constraints. "more specific" is simpiya particular case of constrcint entailment.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

We will say that a constraint disentails another whenever their conjunction is unsatisfiable;
or, equivalently, whenever it entails its negation. In particular, fust-order matching is deciding
entailment between constraints consisting of equations over fust -order terms. Similarly,
deciding unifiability of fust-order terrns arnounts to deciding "compatibility" in the sense used
informally above.

The suspension/resumption mer:hanism illustrated in our example is repeated each lime a
residuated actual parameter becomes more instantiated from the context; i.e., through solving
other parts of the query. Therefore, it is most beneficial for a practical algorithm Iesting
entailment and disentailment to be inaemental. This means that, upon resumption, the lest for
the instantiated actual parameter builds upon partial results obtained by the previous test. One
outcome of the results presented in this paper is that it is possible to build such a test; namely, an
algorithm deciding simultaneously two problems in an inaemental manner-entailment and
disentailment. The technique that we have devised to do !hat is called relative simplification
of constraints.

We have organized this paper as follows. In Section 2, we review background on our
OSF formalism. This is for the sake of staying self-contained since its technical notation
and terminology is pervasive in this paper's presentation. In Section 3, we give rules for
inaementally deciding entailment and disentailment of OSF constraints, and we make explicit
the effectuality of relative simplification. In Section 4, we prove the termination of the rules.
In Section 5. we show the correctness and completeness of these rules. Section 6 estabIishes
the property of independence of negated OSF constraints. Fma1ly, we conclude in Section 7.

2 OSF Formalism

We introduce briefiy the OSF formalism terminology and notation !hat we use. For a thorough
investigation of these notions. the reader is referred to [5].

2.1 OSF algebras and OSF constraints

The building blocks of OSF algebras are sorts and features.
An order-sortedfeature signature (or simply OSF signature) is a tuple (8,~, I\,:F) such

that:
• 8 is a set of sorts containing the sorts T and J..;
• ~ is a decidable partial order on 8 such that J.. is the lesst and T is the greatest element;
• (8,~, 1\) is a lower semi-Iattice (s 1\ 1 is called the greatest oo=on subsortofsorts s and

1);
• :F is a set offeature symbols.

An OSF signature has the following interpretation. An OSF algebra over the signature
(8, ~, 1\, :F) is a structure:

A = (DA, (sALEs' (lALEF)
such that:

• DA is a non-empty set, called the domain of A (or, universe);
• for each sort symbol s in 8. sA is a subset of the domain; in particular. TA = DA and

J..A = ÇZ};
• the greatest lower bound (GLB) operation on the sorts is interpreted as the intersection;

i.e., (s 1\ I)A = sA n lA for two sorts s and 1 in 8.
• for each feature lin :F,lA is a total unary function from the domain into the domain; i.e .•

lA: DA DA;

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

