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Preface 

LPAR is an international conference traditionally held in Russia sinee 1990. LPAR'93 
is organized by the Russian Association for Logic Programming. It aims at bringing 
together researchers interested in logic progr~mming and automated reasoning. The re­
search in logic programming grew out of the research in automated reasomng in the early 
1970s. Later, the implementation techniques used in logic programming were used in 
implementing theorem proving systems. Results from both fields are used in deductive 
databases. 

The scientific program of LPAR'93 includes 5 invited talks, 35 talks and 4 advanced 
tutorials. 35 papers included in this volume were seleded from 84 submitted papers. In 
addition, Peter Wegner made it possible to prepare a written version of his invited talk. 
During the conference several systems implemented on IBM PC and compatibles were 
demonstrated. 

There are many people involved in the organization of LPAR'93. l wish to personally 
thank Oleg Gusikhin, !rina Freidson, Igor' Litvinov, Vladimir Popov, Igor' Rents, Tania 
Rybina, Michail Simuni, Yuri Shcheglyuk. 

l gratefully acknowledge financial sponsorship by the Commission of the European 
Communities. 

Uppsala, May 1993 Andrei Voronkov 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Program Committee 

Dmitri Boulanger (Catholic University Leuven) 
Mats Carlsson (SICS, Kista) 
Philippe Codognet (INRIA Rocquencourt) 
Danny De Schreye (Catholic University Leuven) 
Norbert Eisinger (ECRC, Munich) 
Harald Ganzinger (Max-Planck-Institut für Informatik, Saarbrucken) 
Ryuzo Hasegawa (ICOT, Tokyo) 
Steffen Hülldobler (Technische Hochschule Darmstadt) 
Deepak Kapur (SUNY at Albany) 
Jean-Louis Lassez (IBM Thomas J.Watson Research Center, Yorktown Heights) 
Alexander Leitsch (Techuische Universitat Wien) 
Giorgio Levi (University of Pisa) 
John Lloyd (Uuiversity of Bristol) 
Ewing Lusk (Argonne National Laboratory) 
Dale Miller (University of Pennsylvania) 
Jack Minker (University of Maryland) 
Gregory Mints (Stanford University) 
Alan Mycroft (University of Cambridge) 
Lee N aish (University of Melbourne) 
Hans·JÜrgen Ohlbach (Max-Planck-Institut für Informatik, Saarbrucken) 
Michel Parigot (University of Paris 7) 
Frank Pfenning (Carnegie Mellon University) 
Vladimir Sazonov (Program Systems Institute, Pereslavl-Zalesski) 
Marek Sergot (Imperial College) 
Mark Stickel (SRI International, Menlo Park) 
Pascal Van Hentenryck (Brown University) . 
Konstantin Vershinin (Institute for Cybernetics, Kiev) 
Andrei Voronkov (Uppsala University) - chairman 
Nail Zamov (Kazan' University) 

Organizing Committee 

Eugene Dantsin (Electrical Engineering Institute, St. Petersburg) 
Robert Freidson (Electrical Engineering Institute, St. Petersburg) - chairman 
Andrei Voronkov (ECRC, Munich) 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



x 

Andreas Nonnengart (Max-Planck-Irrstitute, Saarbrücken) 
Frank O'Carro11 (rCOT, Tokyo) 
Doug Palmer (University of Melbourne) 
Remo Pareschi (ECRC, Munich) 
Lawrence Paulson (University of Cambridge) 
Dina Pedreschi (University of Pisa) 
Shekhar Pradhan (University of Maryland) 
Sanjiva Pras ad (ECRC, Munich) 
Sophie Renault (INRIA - Roquencourt) 
Eike Ritter (University of Cambridge) 
Igor Romanenko (University of Kiev) 
François Rouaix (INRIA - Roquencourt) 
Paul Rozière (University of Paris 7) 
Vladimir Rudenko (University of Kiev) 
Carolina Ruiz (University of Maryland) 
Dan Sahlin (SlCS, Kista) 
Gernot Salzer (Technische U niversitiit Wien) 
Torsten Schaub (Technische Hochschule Darmstadt) 
Manfred Schmidt-Schaufi (Universitiit FranI,furt) 
Kees Schuerman (EeRC, Munich) 
Yasuyuki Shinai (rCOT, Tokyo) 
Marianne Simonot (University of Paris 7) 
Gert Smolka (DFKI Saarbrucken) 
Rolf Sochet-Ambrosius (Max-Planck-Institute, Saarbrücken) 
Harald Sllndergaard (University of Melbourne) 
Sury Sripada (ECRC, Munich) 
B.Steffen (Max-Planck-Institute, Saarbrücken) 
Yukihrde Takayama CICOT, Tokyo) 
Michael Thielsche (Technische Hochschule Darmstadt) 
Andreas Tonne (Max-Planck-Institute, Saarbrücken) 
André Véron (ECRC, Munich) 
Benjamin Werner (University of Paris 7) 
Mark Wallace (ECRC, Munich) 
Richard Zach (Technische U niversitiit Wien) 

Invited Speakers 

Alan Bundy (Edinburgh University) 
Hervé Gallaire (Xerox France) 
Ryuzo Hasegawa (ICOT) 
Peter Wegner (Brown University) 
Naïl Zalnov (Kazan' University) 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Contents 

Entailment and Disentailment of Order-Sorted Feature Constraints .................. 1 
Hassan An-Kaci, Andreas Pode/ski 

Computing Extensions of Default Logic - Pieliminary Report ..................... 19 
Grigoris Antoniou, Elmar Langetepe, Volker Sperschneider 

Prolog \Vith Arrays and Bounded Quantifications .................................. 28 
Jonas Barklund, Johan Bevemyr 

Linear 0-1 Inequalities and Extended Clauses ...................................... 40 
Peter Barth 

Search Space Pruning by Checking Dynamic Term Growth ......................... 52 
Stefan Brüning 

A Proof Search System.for a Modal Substructural Logic 
Based on Labelled Deductive Systems ............................................. 64 
Hiu Fai Chau 

Consistency Checking of Automata Functional Specifications ....................... 76 
Anatoli N. Chebotarev, Marina K. Morokhovels 

Yet Another Application for Toupie: Verification of 
Mutual Exclusion Algorithms ..................................................... 86 
Marc-Michel Corsini, Alain Griffault, Antoine Rauzy 

Parsing \Vith DCG-Terms ...................................................... ,.. 98 
Andrew Davison 

A First Order Resolution Calculus with Symmetries .............................. 110 
Uwe Egly 

Ordered Paramodulation and Resolution as Decision Procedure ................... 122 
Christian G. Fermü/ler and Gernot Salzer 

Static Analysis of Prolog with Cut ............................................... 134 
Gilberto Filé, Sabina Rossi 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



XII 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Entailment and Disentailment 
of Order-Sorted Feature Constraints 

Hassan Aït-Kaci and Andreas Podelski 

Digital Equipment Corporation. Paris Research Laboratory 
85. avenue Victor Hugo. 92500 Rueil-Malmaison. France 

{hak,podelski}@prl.dec.com 

Abstract. LIFE uses matching on order-sorted feature structures for passing arguments 
to functions. As opposed to unification which arnounts to normalizing a conjunction of 
constraints. solving a matching problem consists of deciding whether a constraint (guardl 
or ilS negation are entailed by the context. We give a complete and consistent set of 
rules for entailment anddisentailment of order-sorted feature constraints. Theserules are 
directly usable for relative simplification. a general proof-theoretic method for proving 
guards in concurrent constraint Iogic languages using guarded rules. 

1 Introduction 

LIFE [5] extends the computational paradigm of Logic Programming in two essential ways: 
• using a data structure richer than that provided by fust -order constructor terms; and. 
• allowing interpretable functional expressions as bona fide terms. 

The fust extension is based on ,p-terms which are attributed partially-ordered sorts denoting 
sets of objects [1. 2]. In particular. ,p-terms generalize fust-order constructor terms in their 
rôle as data structures in that they are endowed with a unification operation denoting type 
intersection. 

The second extension dea1s with building into the unification operation a means to reduce 
functional expressions using definitions of interpretable symbols over data patterns. The basic 
insight is that unification is no longer seen as an atomic operation by the resolution mie. 
Indeed. since unification amounts to normalizing a conjunction of equations. and since this 
normalization process commutes with resolution. these equations may be left in a normal form 
that is not a fully solved form. In particular. if an equation involves a functional expression 
whose arguments are not sufficiently instantiated to match a definiens of the function in 
question. it is simply left untouched. Resolution may proceed until the arguments are proven to 
match a definition from the accumulated constraints in the context [3]. This simple idea turns 
out invaluable in practice. 

This technique-delaying reduction and enforcing determinism by allowing only equiv­
alence reductions-is ca1led residuation [3]. It does not have to be limited to functions. 
Therefore. we explain it for the general case of relations. Intuitively. the arguments of a relation 
which are constrained by the guard are its input parameters and correspond to the arguments 
of a function. This has been used as an implicit control mechanism in general concurrent 
constraint logic programming schemes; e.g .• the logic of guarded Horn-clauses studied by 
Maher [Ill. Concurrent Constraint Programming (CCP) [12]. and Kernel Andorra Prolog 
(KAP) [9]. These schemes are parameterized with respect to an abstract class of constraint 
systems. An incremental test for entailment and disentailment between constraints is needed 
for advanced control mechanisms such as delaying, coroutining. synchronization. committed 
choice, and deep constraint propagation. LIFE is formally ân instance of this scheme. name1y a 
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CLP language using li oonstraint system based on order-sorted feature (OSF) structures [5]. Il 
employs a related. but limite<!, suspension strategy ta enforœ deterministic functional applica­
tion. Roughly, these systems are conCllITent thanks to a new effective discipline for procedure 
pararneter-passing that cau he described as "call-by-oonstraint-entailment" (as opposed to 
Prolog's cal!-by-UIlification). 

The most direct way to explain the issue is with an example. In LIFE, one cau define 
functions as usual; say: 

fact(O) ---> 1. 

fact(N: int) ---> N * fact(N - 1). 

More interesting is the possibility to compute with partial information. For example: 

minus( negint) -+ posint. 
minus(posint) _ negint. 

minus(zero) ---> zero. 

Let us assume that the symbols in!. posint. negint. and zero have been deiined as sorts with 
the approximation ordering sucb. that posint, zero, negint are pairwise incompatible subsorts 
of the sort int (i.e., posin/ "zero == .1., negint" zero == .1.,posint" negint = 1..). This is 
decJared in LIFE as int:= {posin/;zero; negint}. Furthermore, we assume the sort definition 
posin/ :== {posodd; poseven}; i.e., posodd and poseven are subsorts of posint and mutually 
incompatible. 

TheLIFEquery Y = minus(X: poseven)? willretum Y = negint. The sortposeven of the 
actual parameter is incompatible Viith the sort negint of the forma! parameter of the fus! rule 
defining the function minus. Therefore, that mIe is skipped. The sort poseven is more specific 
than the sort posint of the forma! parameter of the second rille. Renee. that rule is applicable 
and yields the result Y = negint. 

The LIFE query Y = minus(X : string) will fail. Indeed, the sort string is incompatible 
with the sort of the forma! pararneter of every rule defining minus. 

Thus. in order to determine whlch of the mIes. if any. defining the functiOll in a givm 
functional expression will he applied, two tests are neœssary: 

• verify whether the actu.al parameter is more specifie than or equal to the forma! parameter; 
o verify whether the actuaJ parameter is al all compatible with the forma! paramerer. 

What happens if both of these tests fail? For example. consider the query consisting of the 
conjunction: 

y == minus(X : in/), X = minus(zero)1 

Like Prolog. LIFE follows li left-to-right resolutioll strategy and examines the equation 
y == minus(X : in!) mst. However. both foregoing tests fail and deciding whlch rule to use 
among those de!ining minus is incondusive. Indeed. the sort in! of the actual parameter in 
that call is neither more specifie than. nOf incompatible with. the sort negint of the fus! rule's 
forma! parameter. Therefore. the f.mction cali will residuate on the variable X. 1hls means 
that the functional evaluation is suspended pending more information on X. Tne second goal 
in the query is treated next. There. il is found tha! the actual parameter i8 incompatible with 
fue fust two rules and is the same as the las! rule's. Ibis aliows reducti.on and binds X 10 zero. 
At fuis poLl1t. X has been instantiated and therefore the residual equatiOll pending on X cau be 
reexamined. Agam. as before. a redex is found for the las! rule and yields Y = zero. 

The two tests above cau in faet he worded in a more genelal setting. Viewing data 
structures as constraints. "more specific" is simpiya particular case of constrcint entailment. 
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We will say that a constraint disentails another whenever their conjunction is unsatisfiable; 
or, equivalently, whenever it entails its negation. In particular, fust-order matching is deciding 
entailment between constraints consisting of equations over fust -order terms. Similarly, 
deciding unifiability of fust-order terrns arnounts to deciding "compatibility" in the sense used 
informally above. 

The suspension/resumption mer:hanism illustrated in our example is repeated each lime a 
residuated actual parameter becomes more instantiated from the context; i.e., through solving 
other parts of the query. Therefore, it is most beneficial for a practical algorithm Iesting 
entailment and disentailment to be inaemental. This means that, upon resumption, the lest for 
the instantiated actual parameter builds upon partial results obtained by the previous test. One 
outcome of the results presented in this paper is that it is possible to build such a test; namely, an 
algorithm deciding simultaneously two problems in an inaemental manner-entailment and 
disentailment. The technique that we have devised to do !hat is called relative simplification 
of constraints. 

We have organized this paper as follows. In Section 2, we review background on our 
OSF formalism. This is for the sake of staying self-contained since its technical notation 
and terminology is pervasive in this paper's presentation. In Section 3, we give rules for 
inaementally deciding entailment and disentailment of OSF constraints, and we make explicit 
the effectuality of relative simplification. In Section 4, we prove the termination of the rules. 
In Section 5. we show the correctness and completeness of these rules. Section 6 estabIishes 
the property of independence of negated OSF constraints. Fma1ly, we conclude in Section 7. 

2 OSF Formalism 

We introduce briefiy the OSF formalism terminology and notation !hat we use. For a thorough 
investigation of these notions. the reader is referred to [5]. 

2.1 OSF algebras and OSF constraints 

The building blocks of OSF algebras are sorts and features. 
An order-sortedfeature signature (or simply OSF signature) is a tuple (8,~, I\,:F) such 

that: 
• 8 is a set of sorts containing the sorts T and J..; 
• ~ is a decidable partial order on 8 such that J.. is the lesst and T is the greatest element; 
• (8,~, 1\) is a lower semi-Iattice (s 1\ 1 is called the greatest oo=on subsortofsorts s and 

1); 
• :F is a set offeature symbols. 

An OSF signature has the following interpretation. An OSF algebra over the signature 
(8, ~, 1\, :F) is a structure: 

A = (DA, (sALEs' (lALEF) 
such that: 

• DA is a non-empty set, called the domain of A (or, universe); 
• for each sort symbol s in 8. sA is a subset of the domain; in particular. TA = DA and 

J..A = ÇZ}; 
• the greatest lower bound (GLB) operation on the sorts is interpreted as the intersection; 

i.e., (s 1\ I)A = sA n lA for two sorts s and 1 in 8. 
• for each feature lin :F,lA is a total unary function from the domain into the domain; i.e .• 

lA: DA ...... DA; 
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