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Preface

The Computer Science Logic Workshop CSL’92 was held in San Miniato (Pisa)
from September 28 ta October 2, 1992, It ook place in the charming environment
of the Centro Studi I Cappuccint, a nicely restored monastery made available by
the Cassa di Risparmio of San Miniato. CSL’92 was the sixth of the series and the
first one which was held as Annual Conference of the Furepean Asseciation for
Computer Sctence Logic, founded in SchloB Dagstuhl in July 1992 by computer
scientists and logicians from 14 countries.

'The workshop was attended by 78 participants from 15 countries; 8 invited
lectures and 25 talks, selected from 72 submissions, were presented. Following
the traditional procedure for CSL volumes, full versions of the original contribu-
tions have been collected after their presentation at the workshop and a regular
reviewing procedure has been started. On the basis of 58 reviews, 26 papers werce
selected for publication. They appear here in revised final form.

We thank the referces, without whose help we would not have been able to
accomplish the difficult task of sclecting amaong the many valuable contributions.

We also gratefully acknowledge the gencrous sponsorship by the following
institutions:

Consiglio Nazionale delle Ricerche (CNR)

Cassa di Risparmio di San Minialo

Universita degli Studi di Pisa

Dipartinento di Inforinalica dell’Universita di Pisa
Cassa di Risparmic di Pisa

Hewlett-Packard Italiana S.p.A., Pisa Science Center

Finally, we would like to thank the following persons who gencrously helped
in various ways in the organization of the conference: Antonelia 1Y’ Alessandro,
Paola Glavan, Stefania Gnesi, Elvinia Riccobene.

March 1993

E. Borger G. Jager Ii. Kleine Biining S. Martini M.M. Richter
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A Universal Turing Machine

Sial Aanderaa

University of Oslo
staal.aanderaa@math.ujo.no

Abstract. The aim of this paper is to give an example of a univer-
sal Turing machine, which is sermewhat small. To get a small wniversal
Turing machine a common consiructions would go through simulating
Lag syslem (see Minsky 1967}. The universal machine here simnlate two-
symbol Turing machines directly.

The Turing machinc 1s defined by the Figure 1 or the Table 1. Suppose the
universal Turing machine should simulate the Turing machine defined by the
Iigure 2 or by the Table 2, starting by the instantaneous description

010p,100 (1)

Then the universal Turing machine UTm should start by the inslantanecus
description

014 ABngaacadsggcdlqcadwscdl B3P 103 8 M ed e (2)

Here the first three symbols in (2): 01A, code the first three symbolsin (1):
010. The next two symbeols in (2): AB code 1he state symbol pg in (1). q¢ in (2)
denote the state of the universal Turing machine. The symbols baa in (2) code
the last three symbols 100 in (1). The last part of (2):

3 )59 37 5 36
c'idj Bcdl‘icdd;(}ScdlSCSdQQQCd‘IOcldb44cdllc_ (3)

codes the Turing machine Tme defined in Tahle 2. The exponents are calcu-
lated as follows:

A B C D E F
(i) . Ops0t 0H0 AABA {0010), =2 RAAAD, (21113); = 599
(i) Opol by p101 AABE (0011); =3 LBBOI (00032); = 14
(ii)) Op,0 kg 0lpy ABBA (0110)2 = 6 ROBAB (23010); = 708
(iv) Opi1Fz p00 ABBB (0111); =7 LBB0D (00033); = 15
(v) 1m0k IHO BABA (1010); = 10 RAAAC, (21113); = 599
(vi) 1pol kg py1l BABB (1011)y = 11 LBBI1 {00022), = 10
(vii) 1p0Fg 11pp BBBA (1110}, = 14 RIBAB (22010); = 644
(viii) 1py1 bz p,10 BBBR (1111), = 15 LBB10 (00023), = 11

In row (ii} the exponents of d is calculated 1o be 14, in order to simulate the
movestated in column A . First we have to calculate where to put the informalion.



BIBLIOTHEQUE DU CERIST

Fhis ts done coding Opyloin she lollowing way. Repiace 0, jp and & by 4, 44
and B, cespectively. Then we get the word AABB in cotumn B. This word
is interpreted as a binary numbher which is caleufated in column C to be 3.
This means that the information about the move is to be located between the
« number 4 and 5. The L in the word ZBB01 means that the head maves to
the left in this move. The rest BB01 of the word LB EQO1 codes the word p;01,
where pq is replaced by BB and the rest of the word is kept unchanged. Then
LBBQ1 is interpreted as a base 4 number in the following way: L, B, 0 and 1
are interpreted as the digits 0, 0, 3 and 2, respectively. The resull is {(00032)4
which is the dectinal number 14.

U
+ )_/ _/1) PO P'l
/L HALT 1 & po

v p1 Il Lp 0L p

Fig. 2. Turing machine example: e

o row (240) the colunns A, B aud C are made 1n the same way as in row {(ii).
in column I the word ROUBAB represents the subword 0lpg of column A in the
following way. R mecans that the move is a right move. § is kepé unchanged. 1 is
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qo o gz g3 g4 g5
AR@gallqg albagleRe oLy algs
Bququl qu2 qu,a qu‘;qu_s
celRg v Lg elLgalelgy clygs eLy
dRg yRg dLga|lvlbqe dlqgu d1gs
s Rag v Aq IL‘}}: JSRQ:& JSLQ« CL%
YyRa yRen v lap|yRas ylaw dl g
ARQ{)ARQ]BLQQARQaqua ITALT
BhRqgHRpy AR@p|B Ry ARgr B R
ORg ORG ARg|0Rg BLge alaqs
1 Hg 1R BReIRqg 0Rg V1L g

— b hhle 5 Rjn o8

Table 1. Universal Turing machine: UTm

replaced by B and py is replaced by AB. Then R, 0, B and A are interpreted as
the digits 2, 3, 0 and 1respectively, in the number system of the base four. The
resitlt is (23010)4 which s calculated to be 708 in decimal.

To simulate the move 010pe100 F 01p13100 of the Tme machine, the UTm
machine will have to use about 20 000 steps. Among the instantaneous deserip-
tions which will occur are the following instantanecus descriptions {Compare
row (i} ahove):

01AABgobaac®d®® cd P dT08ed 5 3 d59%cd103d544cdl ¢,
OlAABBql0063(15998{1'1403(1:‘?08 d15 34595 . J10,3 4644 g1,
01AABBagarc?d™ e d TP e d BBl 3 df g ¢
UBqaﬁb’BHuu.z:a 599 4 14,8708, J15, 8 j500, L0 3 644 11
DBBEBB Bauxr3y % quayd'3e3ad78 1563 599 103454 11
0BBROlaax’ u”’m}“gr‘;cidmacdlrc A" edl0c3 544 gl e
0BBBqpabaactd®ed 4P d" Bed 5 3 g7 0ed 103 4% cd ¢,

‘to sinulate the next move 01p;0100 + 011psl00 of the Tme machine, the
following instantaneous descriptions will occur (Compare row (vii) above):

0BBBQOGba“C:*.dsgéicd1463(3?086(11Sc3d5996d1063d644cd11c_
0BBDBAq baac3d % cd * P dTBed 5 3 @59%ed 0 c3d8 4 cd e,
UBBBAbagyazc?d" ¥ ed? e dT8ed 23 d® ¥ ed 08 1 cd ¢
Ags BBBBbaazdy 9y 403y 708,103,599 11053 16410 11 o
ABBBB{‘NLG.J!H ysqqrymray?osleursyuwlywxaqqa e 1643(;({110.
01 BABZNL(L.I:37 599J,yl4 SJ’."U&J,yl.JJ,ByuQQTy‘Lnz‘!yf‘tlaqr ycdnc.
01 BABgobaac®di¥¥ed 3 T8 J15 3 4599, J10 304 o g1 ¢

The loop ¢; - g2 converts from binary to unary in order to find the information
about the next move.

Before the information is evalnated the UTm machine guesses that the next
move will be a left move. Hence to be prepared for a left move, the UTm machine
changes the content of a square when moving [rom state g; to the state g5. (a 0
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is ehanged to A and a | is canged to 8). H the move Lurn out to be a night move,
the guess was wrong, and in order to change back sach R in colemn D above is
replaced by 2 in colemu E. If the move was a left mave, the guess was correct,
and nothing has to be changed and aech £ in colemn D above is replaced by 0
in colemn E.

The loop g3 - g4 converts from unary to a number in base four in order to
code the next state and to code the new position of the head.

Reference

Minsky, Marvin Compulation : Finite and Infintte Muachines. Preutice-Hall
1967.

Ty et e LT ITING A TR T . -
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Recursive Inseparability in Linear Logic

Stil Aanderaal and Herman Ruge Jervell?

1 University of QOslo
staal,aanderaa@math.uio.no
2 Universities of Oslo and Tromsg
herman.jervell@ilf.nio.no

Abstract. We first give our version of the register machines to be simu-
lated by proofs in propositional linear logic. Then we leok further into the
structure of the computations and show how to extract "finite counter
models” from this structure. In that way we get a version of Trakhten-
brots theorem wilhout going through a completeness theorem for propo-
sitional Linear logic. Lastly we show that the interpolant 7 in proposi-
tional linear logic of a provahle formula A—o B cannot be totally recur-
sive in A and B. :

We use results and notations about linear logic as given by Troelstra in his

lectures {T].

1

ANDOR machines

We consider register machines with a finite numbet of registers a b e @ ...
The machines have a number of states say p q r s ...t. The computations are
controlied by instructions. There are four forms of instruction

=T~ B~ W~

- )

ta+ (g) add 1 to register a and proceed to state g

: @ — {q) subtract 1 from register a if possible and proceed to state ¢
and(q,r) spawn off two processes and proceed with states ¢ and r
:er(q,r} proceed nondeterministically to one of the states ¢ and r

There are the following important differences from ordinary register machincs

. In the ordinary register machine the subtraction instruction is combined

with a branch. If the register is empty we proceed in one direction, else we
subtract 1 and proceed in another direction. This is not the case with andor
machines. If the subtraction is not possible, we go over into a waiting state
from which the computation does not proceed.

. In the and-branching we spawn off two new processes from a given process.
. A process halts if it comes to a halting state and all registers are empty.
. To get termination of the machine we demand that all spawned processes

halt.
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Let us sec that for regisier machine computations with empty halving states
we get the same computations with andor machines. This & done by showing
that register machine instructions can be translated directly intoc andor machine
instructions. To do thie we need a simple frick (ses [LMSS]). Assume we have
one halting state b and two registers a b and have the following register machine
mnstruction

p:if e = then goto g else a — {r)

To translate this insiruction we need some new anxiliary states k L m n |
The following andor machine instructions do the job for the case of {wo registers
a b and one halting state k. The general case with more registers and more
halting states is done in a similar way., The instruction above is replaced by

p or(k,l)
£ :and{m,q}
m : or{n,h)
n:b—(m)
I ra-(r

The :irick ig to allow a number of garbage computations which does not
matier. After having come to state k | you can only come to state q if it is
possible to get to a halting state h afier emplying all other registers than a (in
our case register b ).

Any computation on a register machine ending in a halting state with empty
registere can then be fransferred to z ferminating computation on an andor
machine.

2  The structure of computations

A computation in a regisier machine can be thought of as a transition between
storage states. In an andor machine we must also take into account all the
processes that are spawned. This is done by the following syntax

register : alb|c|d] ...

state:: plglir|s]|...

storagestate 11 empty | register | state | storagestate - storagestate
configuration 11 setof storagsstate

The product of storage states given by - is asstmed to be commutative. We
are only interested in storage states which have al most cne state present -
even if we have notation for more. The storage state asabbq indicates that
we are in state g with 3 in register a and 2 in register b. The following is a
configuraticn {aabg,aar, abs} . Coenfigurations are nterpreted conjunctively so
that the configuraiion above can be thought of as three processes with storage
siales aabg asr sbs . Configurations are scts and not multisets. A typical
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halting state is a configuration { h } with empty registers. The computations in
an andor machine can be thought of as transitions between configurations in an
obvious way.

Recursive inseparability 1 There s an instruction sef I with twoe halling con-
figurations C and D such that no state is transformed into both C end D, and the
configurations transformed into C and those infto D are recursively inseparable.

To gel to the algebraic structures we first remark that the storage state
together with the concatenation - and empty makes a commutative monoid
with unit. We use this to make an IL-algebra (see [I]) in the standard way

X+Y={zr-y:z€ X,y Y}
X—oV:i={z:Vee X(z-2z€Y)}

Then (configurations,N,U, §, —e ,*, {empty}, ) is an 1L-algebra. (See [T}
Proposition 8.9). On the top of this algebraic structure we introduce the tran-
sition made by the andor machine. The transition —+ gives a relation between
configurations. For the transition we have the following laws

Tl: IfC—D ,thenalso AxC—-A4xD
T2: C=C
T3: HC—D and D—FE then C—F

Note T1. This is the crucial property in the construction of andor machines.
It s not true for register machines.

An mslruction set I is given by a finite number of relations of the following
forms

IN: A+C — D (from a+)

I2: C— A+ D (froma-)

I3: ¢ — DUE (from and)

I4: ¢ — D and C — E (from or)

Given an andor machine we can transform it faithfully into a configuration
space with transitions and a finite nurnber of equations of form 11-4. A configura-
tion space with transition is a very simple structure. The laws are just sufficient
io simulate computations in an andor machine given the instructions.

3 Linear logic
Now consider propositional linear logic. In most of our discussions we use the

fragment MALLA — multiplicative additive propositional linear logic with as-
sumptions, We write '

AB,C,...F F,G H,...
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Here the assumpticns are to the left of F . The formnlas 4, B, C, F, &, 5 are
from the multiplicative addilive fragment of linear logic. The intended meaning
is thal assumptions can be brought into derivations any number of times — or
possibly nov at all, Using exponentizls we can interpret this as

A1 BHIC—e F 4+ G+ H

In MALLA there is an obvious interpretation of instruction sets for andor
machines

— the letters in the instruction set is taken as atomic formulas
— # into multiplicative conjunction =

— N into additive conjunction M

~ L! into additive disjunetion LJ

— — into linear implication —o

— {empty} into the multiplicative unit 1

Given an andor machine with the instruction set I. Let I# be the correspond-
ing ‘ormula in propositional linear logic. A configuration C can be transformed
into a propositional linear formula C# in {he same way. Then

Theorem 1. Let I be an instruction set and O and D configurations in an andor
machine. The following are equivalent

-~ I transfers C info D

— from the equations [ we can derive C—J) using TI-3 and the lows of 71-
afgebre

~ #FC#—oD# is dertvable in propositional linear logic

The only slightly difficult part here is to prove that there are not more for-
mulas of the form I# + C# —o D# provable in propositional linear logic than
those given by the andor machine. This is proved in [LMSS] by a cut elimination
arguinent.

Recursive inseparability 2 There is an instruction st I and halling configu-
ration [} such that for configurations C we cannol recursively seperate whether

—~ we can prove i# b+ C¥ —o D¥# in propositional linear logic
— a configuralion structure with transition gives a counter model thai C—D
using tnsiructions I

4 Qetting a2 phase structure

The configuration space is of course not much more than a convenient Ianguage
for our syntactical transformations. The infermation about the particular andor
machine we use is contained in the transitions. We now bring the transitions into
the IL-algebra. A transition iz a binary telation between configurations. We can
interpret this in an IL-algebra by repeating the usual subset construction on the
configuration space to get an IL-algebra with
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Domain : Scts of configurations

Product : X«xY ={rry:z€X,yeY}
Implication: XY ={z:Vz€ X(zxz €Y)}
Lattice : Union and intersection of sets

On this [L-algebra we can interpret transitions as operators

CX)={y:y—zAz€ X}

taking sets of configurations into sets of configurations.
A closure operation in an IL-algebra satisfies

. X COX)

L XCY=CO(X)yC oY)
. CC(X) C C(X)

L CX)xCY)COX +Y)

= L0 b2 =

We observe that the crucial property T1 for transitions is exactly whal is
needed to get property 1 above,

Lemma 2. C is e closure operation.

Let M be an andor machine. The phase structure corresponding to M is the
IL-algebra given by the transition closure C above. We denote this algebra by
oM.

5 Finite parts of machines

Each particular computation uses only finite information. This is the extra trick
used to get the Trakhtenbrot theorem. Let us introduce machines with bounded
registers. Such a machine 18 given by a number MAX. Assume that register a
contains the number N. If N « MAX the instructions a+ and a- behaves as
usual. If N = MAX | then a+ gives MAX while a- gives a nondeterministic
choice between MAX and MAX-1. If M is the original machine, we let M/MAX
be Lthe machine with registers bounded by MAX. This construction works both
for register machines and andor machines.

Lemma 3. Fer register machines or andor machines. Let C and D be configu-
rattons with all registers < MAX . Then if M transfers C into D, so does also
M/MAX.

Lemma4. For o delerminisiic regisier machine M. Let D and E be halling
configurations with emply regisiers. Assume thal M transfer C inte D, buf not
E. Then neither does M/MAX for large enough MAX.
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We would Like to get lemma 3 for arbitrary machines. We do not need to do
this in general. It is only necessary to do this for andor machines derived from
deterministic register mackines. The andor machinss are going to be nondeter-
minigtic in general with nondeterminism introduced by the branching instruc-
tions in the deterministic register 1nachine. The nondeterminism dervived from
the branching

p:if ¢ = 0 then goto ¢ else a - (r)

or{k, i)
: and{m, g}
ror{n,h)
1o —(m)
a—~(r}

The branch going down from state k will only be used to get down fo state q
exactly when register a is empty, The same construction works equally well for
an andor machine with bounded registers. Hence

~ 3 3 W

Lemmab. Let M be an endor mackine derived from o deterministic register
machine gnd let D and ¥ be haliing configurations with emply registers. Assume
that M transfers C info D, but not E. Then nesther doce M/MAX for large
enough MAX.

Recursive inseparability 3 There ic an instruction sei [ and halting configu-
ration D such that for configuration C we cannol recursively separate whether

— we can prove i prepositional linear logic that C gives D in [
~ @ finile configuration struclure gives ¢ couniermodel that C—D in [

The construction of the phase structure &M from andor machine M can also
be repeated using bounded registers giving $Mprax for registers bounded by
MAX.

6 Exponentials
Tc interpret exponentials in ap IL-algebra we need what Troelstra callz a modal-
ity; we then get an IL-algebra with storage {[1] Defigition 8.16). A modality is a
subset F of the domain X of the IL-algebra satisfying certain conditions {1dem-
potency and < !} and

{LI}CFC{rizxz=crz <1}

i all such modalities our transitions are going to be interpreted as 1. Because
given an interpetation of !, a transition C — D and the phase structure M (or
FMurax), C — D is translated into & formula F in the maltiplicative additive
fragment of }inear logic. In the phase structure we have 1 < F, and hence 1 =IF
for any modality.
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Recursive inseparability 4 [t is recursively inseparable whether for formulas
F in linear logic

— F s derwable in intuitionistic linear {ogic
— A finite phase structure with modalily gives o counter example to F

7 Introducing duality

So far the recursive inseparability is in intuitionistic linear logic. The ocutline of
the argument 1s as follows. We started with an andor machine with two halting
states where we canuot recursively separate whether a particular starting con-
figuration ends in one or the other of the halting states. The computations can
be represented as proofs in linear logic or by interpretations in a configuration
space with transitions. The configuration space is later taken over to a phase
structure. To gel recursive inseparability in classical linear logic it is sufficient
to show that an IL-algebra can be embedded into a CL-algebra.

We start with an IL-algebra L. Let L1 be the dual lattice. We then construct
a lattice LLY by using the sum of L and Lt - put L and Lt between the top
and boltom elements T and L. The lattice operations in LL* are defined in the
obvious way. We have also defined a duality 1. We need to define products in
the extended latiice. To do that we divide up into cases depending on whether
the elements come from T, L, Lt or L. We define products by the following
mmmltiplication table

= |T A Bi’ 1
TI|T T T L
Ag|T  ApxA; (Ap—o Bt L
BT (Ay—o By)* T L
1L L 1 1

To prove that LLL is a CL-algebra we note

— % is commutative

~ 1 is a mulliplicative unit
— * i associative

- X—oY = (XxY4)t

- Xl =Xx—%9

Having constructed the embedding of an intuitionistic lincar algebra into a
classical linear algebra we can conclude

Recursive inseparability 5 For formules F in propositional lnear logic we
cannol recursively separate whether

— we can prove F in classical propositional linear logic
- a finite CL-algebra with medalily gives a counter-model to F
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8 Interpoclation

The interpolation theorem is irue for classical and intuitionistic linear logic {(see
Roorda’s thesis [R]}, and we can show many of the usual properties of the inter-
polant. In particular, we can conciude that if we have twe formulas A, B without
any other common propositional symbols than 0 and 1 and if we can prove
FA-—o B
then there is an interpolans I built up from the propositional constants alone
such that

A—of

- f—oB.

But the foliowing argument shows that there is no to.al recursive function
giving the inferpolant as a function of the two forimulas A& and B. As in classical
predicate logic we need io know the derivation of the formula A—o B.

Let A and B be the formulas expressing that an andor machine terminates in
z halting state a respectively b. We know that there is no recursive function which
can decide whether 4 or B is derivable. Consider now the following implication

C={lA—l)—e!8

Ohserve
Lemma6. For 4 8 and C as above we heve {in boih infuifionislic and classical
logic} :

-rFA=HC
- FB=kC

Now let I be an interpolaiing formula for the implication C. T is baiit up
from the propositional constants alone. We have
H{lA—o t)—o ]
b I—-olB

We have then

iAo i j—o
+l—o il

Observe that in our models of linear logic with the trivial modality — 1 and
1 — we have
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FK =EK =1
FEK—oL=E K<L

Qur model can separate between derivations terminating in a and terminating
in b. We have

FA=EA=L
FB=>EB=1
Applying this we get

FA=WYBoEIB=1oW=1
FBF AEA= Lal(lA—o)=1=1=1

The interpolation formula !I is built up from the propositional constants.
The interpretation of 1] is given as L or 1 depending on whether I as a classical
propositional formula has truth value false or true. So the interpretation of !
is recursively given by I.

Theorem 7. In (classical or intuilionistic) propositional linear logic there is no
totally recursive inlerpolation functlion.
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Ahstrect

Propositional Provability Logic was axiomatized in {5). This logic describes
the behaviour of the arithmetical cperator "y is prevable”. The aim of the
current paper is to provide propositional axiomatizations of the predicate “r is
a proof of ™ by means of modeal logic, with the intention of meeting some of the
needs of computer science.

1 Introduction

The Propositional Provability Logic GL was axiomatized in {5]. This logic describes
the behaviour of the arithmetical operator “y is provable™ by means of modal logic,
Although seme properties of this logic are relevant for computer science {e.g, various
forms of Gddel’s incompleteness thecrem for consistency proofs in datzbases), GL is
rether a mathematical domain. One reasor is that in computer science not only the
srovebility of a siatement is of interest, but alse in many cases the proofe themselves,
respectively informations about the time or memory expenditure for a proof are known.
These considerations lead to a different situation. For example it is well- known that
a powsrfnl machine cannot prove its own consistency, but it is very well posaible for
siuch 2 machine to demonstrate that a given proof does not derive 6 =1, or that no
computation within 2 fixed time comes to that answer, The studies en the Logic of
Proofe have been initiated by & series of questions by G. Jager related to this topic. One
was to give an arithmetically comnlete propositional axiomatization of the predicate
“z is a proof of ¥". The mndal systems P and PF introduced helow solve this probiem.

Most definitions in this introduction are in accordance with ihose of the classical
Provability Logic [3]. Nevertheless, the Basic Logic of Proofs is entirely different from
the Provability Logic, and the ariihmetical completeness proof for it does not use the
Solovay argumest.

*Supporied by the Swiss Nationalfonds {projece 21-27878.85} during = stay at ibe University of
Eerne in January 1882,

tFinenced by the Union Bank of Switzerland {{JBS/SBG) and by the Swiss NasioosHonds
{prajects 21-27876.89 and 20-32705.91}.
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1.1 Definition The modal language contains two sorts of variables,

P, P1, - - - (called proof variables),
S50, 51,. .. (called sentence variables),

the usual boolean connectives, truth values T (for truth) and L1 (for absurdity), and
the labeled modality symbel O,, for each proof variable p;. The modal language is
generated from the atoms T,.1, 5o, 51,... by the boolean connective — as usual, and
by the unary modal operators O, (-},0,,(-},... as follows: if p is a proof variable and
A a modal formula then O,(A) {O,A for short) is a modal formula.

Parentheses are avoided whenever possible by the usual conventions on precedence
along with the modal convention that 0;,{-) is given the minimal scope. Smali letters
P, 4,7, ... are used for proof variables, capital letters S, T, . .. for sentence variables and
A, B,C, ... for modal formulas.

The clear intention is to interpret [J,A as “p is a proof of A”. In order to allow
iterations of modalities, which is an essential principle of the Logic of Proofs, the
modal language must be interpreted in theories, which are able to link theorems and
proofs after some natural coding. These considerations lead to the notion of the
arithmetical interpretation of the modal language,

1.2 Definition Let the theory T be a recursive extension of IZ; which is valid in
the standard model of arilthmetic, for example let T be Peano Arithmetic PA. Greek
letters p,1,... denote arithmetical formulas. In this paper it will not be distinguished
between the number n and its numeral 7.

1.3 Definition An arithmetical formula Prf{-,) is called a proof predicate in T iff
¢ Prf{z, y) is {provably-in-T equivalent to) a recursive formula in z and y.
e The &= dneN: Prf(n,"¢") for all arithmetical formulas .

A proof predicate is thus nothing but a recursive enumeration of the theorems of T.

1.4 Example

1. A standard Gédel proof predicate for the theory T is a recursive formula Prf(., 7,
siich that for every n, m: ﬁ;}'(n, m) is true iff n codes a proof in T of the formula
coded by m. Examples of such formulas can be found e.g. in [3] or [4]. Note that,
according to Prf {+, ), (a) each proof codes exactly one theorem but each theorem
has infinitely many proofs, and, {b) each proof is longer than the theorem proved
by it, provided the usual Gddel numbering is used.

2. A modification Prf,{-,-) of Prf(-,-} is obtained if one allows not only proofs as
first argument, but also programs. Note that property {b} of the first example
fails for Prfi{-,-): Prf,{z,y) does not imply in general # > y because short
programs can compute long theorems.
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3. In the context of resource bounded ressoning one can construct the proof predi-
cate Prf,(z,y):=3p < z: Prf(p,y), ie. which is true iff there i¢ a 2 program
of size not greater than # which computes y. Note that also property {2) of the
frst example fails for Prfy{:,-): for some z there cen be several formulas ¢ such
that Prf,{z, ") holds.

1.5 Definition A proof predicate ir celled functionel iff for all n, %y, & & N
H Pri(n,k) and Prf(n,k;) then k; =k

The standard Gédel proof predicate Prf(:,-) and Prf,{-, -) from example 1.4 are ex-
amples of such functional proof predicates.

1.8 Definition Let Prf(-,-) be a proof predicate in T, and let ¢ be a function that
assigns to each proof variable p; some n £ M and to each sentence variable 5; a sentence
of T. An erithmetical interprelation ()" is a pair (Prf(-,),#) of such Frf(-,-) and
¢. The arithmetical interpretaticn {A}* {A” for short) of & modal formula A is the
extension of ¢ to all modal formulas by:

¢ Toi={0=0) L":=(0=1) p":=¢(p} 5 =4(5)
8 (A B) 1= A"~ B-
e (0. A) := Prf{p’," A"}

1.7 Definition Let = dencie the syntectical identity of formules {e.g. ¢ = ¢,
but p Ap £ ¢, Sp # 5 and O, T £ 0, T). An arithmetical intersretation {-)* =
{Prf(-,"},d) is called functional iff Prf(-,-) is functional and {-}" is injective, which
means that A” = 8* implies A = B, The reguirement of injectivity can be eliminated
as it is demonstrated in [2].

The Basic Logic of Proofs is not concerned with occasional details about the coding of
proofs in T by means of one fixed Prf{-,-}. Kather the Basic Logic of Proofs describes
those hasic principles which are true for ell proof predicates of 2 given class.

In this paper the decidable madal logics P and PF are introduced, with axioms and
rules of inference as follows:

{A1} All (boolean) tautologies }
(AZ) O,A— 4 s
. A A—=B !
{R1) —5 i
(A3) LA— -O,B (A% B)

PF

where A and B are modal formulas ard p is a proof varizble,
{42) is the Reflezivity Arfom and (A3} the Functionality Aziom.
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The main result of the paper claims that for each modal formula A:

PrA &= A*is true for every interpretation (-)°
PFHA &= A*is true for every functional interpretation (-)*

Moreaver, for each of these completeness theorems a proof predicate Prf(-,:) can
uniformly be chasen.

It is easy to see that neither P nor PF is closed under the necessitation A+ 0,A, or
under the substitution rule A & BF1,A & 0O,B.

The standard Godel proof predicate Prf{-,-) enjoys an additional property, namely to
be monotonie:

1.8 Definition A proof predicate is called monotone iff Prf{n,k) implies n = k
for all n, k € N, An arithmetical interpretation (-}* = (Prf(:,-), @) is called monotone
iff Prf(:,+) is a monotonic proof predicate,

A logic PFM containing all those formulas which are true under all interpretations
based on any fixed functional and monotonic proof predicate has been established ia
[1], too. Thereby, PFM is the logic of the standard Godel proof predicate Prf(-,-).
PFAMA will not be presented in this paper.

In section 2 the soundness and completeness for P is proved, in section 3 the same is
done for PF and section 4 iz devoted to uniform proof predicates,

2 Arithmetical soundness and completeness of P

The aim of this section is to prove soundness and completeness of the modal system
‘P with respect to arithmetical interpretations.

2.1 Theorem Let A be a modal formula. Then

PrA = ¥v': Tk A*
— V' A* istrue

Proof of the soundness of P: Let (-)* be some arithmetical interpretation. One has
to show that T - A*. Induction on the complexity of the proof of A:

(Al) and {R1} straightforward.

(A2) 1" case: TF Prf{p=," A*7). It follows that T F A*,
hence T+ Prf(p=,"A*7) = A",
2" case: T Prf(p*,"A*7). As Prf(:,-) is recursive T - —Prf(p*,"A*7),
hence TF Prf(p*,"A™™) = A~

The next task is to prove the arithmetical completeness of P.





