
E.Borger G.Jager H.Kleine Büning
S. Martini M.M.Richter (Eds.)

Computer
Science Logic
6th Workshop, CSL '92
San Miniato, Italy
September 28 - October 2, 1992
Selected Papers

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitat Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-Straile 1
D-76131 Karlsruhe, Germany

Volume Editors

Egon Bürger
Simone Martini

Juris Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, l\'Y 14853, USA

Dipartimento di Informatica, Università di Pisa
Corso Italia, 40, 1-56125 Pisa, Italy

Gerhard Jager
Universitat Bern, Institut für Informatik und angewandte Mathematik
Liinggasstrafie 51, CH-3012 Bem, Switzerland

Hans Kleine Büning
FB 17, MathematiklInformatik, Universitat - GH Paderborn
Postfach 1621, D-33095 Paderborn, Germany

Michael M, Richter
FB lnforrmitik, Universitat Kaiserslautern
Postfach 30 49, D-67653 Kaiserslautern, Germany

CR Subject Classification (l991):F, 1.2.3-4, G,2, D3

ISBN 3-540-56992-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56992-8 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Al! rights are reserved, whether the whole or part
of the material is concerned. specifically the rights of translation, reprinting, re,use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
perrnitted on1y under the provisions of the German Copyright Law of September 9,
1965, in its CUITent version, aud pennissioli for use must always be obtained from
Springer-Verlag. Violations are Hable for prosecution under the Germau Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Gerrnany

Typesetting: Camera-ready by authors
Printing and binding: Druckhaus Beltz, HemsbachIBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

The Computer Science Logic Workshop CSL'92 was held in San Miniato (Pisa)
from September 28 to October 2, 1992. It took place in the charming environment
of the Centro Studi 1 Cappuccini, a nicely restored monastery made available by
the Cassa di Risparmio of San Miniato. CSL '92 was the sixth of the series and the
first one which was held as Annual Conference of the European Association for
Computer Science Logic, founded in SchloB Dagstuhl in July 1992 by computer
scientists and logicians from 14 countries.

The workshop was attended by 78 participants from 15 countries; 8invited
lectures and 25 talks, selected from 72 submissions, were presented. Following
the tradition al procedure for CSL volumes, full versions of the original contribu­
tions have been collected after their presentation at the workshop and a regular
reviewing procedure has been started. On the basis of 58 reviews, 26 papers were
selected for publication. They appear here in revised final form.

Wê thank the referees, without whose help we would not have been able to
accomplish the difficult task of selecting among the many valuable contributions.

We also gratefully acknowledge the generous sponsorship by the following
institutions:

Consiglio Nazionale delle Ricerche (CNR)
Cassa di Risparmio di San Miniato
Università degli Studi di Pisa
Dipartimento di Informatica dell'Università di Pisa
Cassa di Risparmio di Pisa
Hewlett-Packard Italiana S.p.A., Pisa Science Center

Finally, we would like to thank the following persons who generously helped
in various ways in the organization of the conference: Antonella D'Alessandro,
Paola Glavan, Stefania Gnesi, Elvinia Riccobene.

March 1993

E. Bürger G. Jager H. Kleine Büning S. Martini M.M. Richter

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

List of Referees

K. Ambos-Spies, Heidelberg
H. Baren.dregt, Nijmegen
M. Bezem, Utrecht
E. Borger, Pis a
S. Buss, San Diego
T. Coquand, Goteborg
E. Dahlhaus, Sydney
R. De Nicola, Roma
M. Dezani-Ciancaglini, Torino
A. Goerdt, Paderborn
E. Gradel, Aachen
E. Grandjean, Caen
Y. Gurevich, Ann Arbor
M. Hanus, Saarbrücken
R. Hasegawa, Paris
F. Honsell, Udine
M. Hyland, Cambridge
N. Immerman, Amherst
G. Jiiger, Berne
H. Jervel!, Oslo
H. Kleine Bünihg, Paderborn
P. Kolaitis, Santa Cruz
P. Lincoln, Stanford
J. Makowsky, Haifa

S. Martini, Pisa
W. McCune, Argonne
E. Moggi, Genova
F. Montagna, Siena
L. Pacholski, Wroclaw
M. Parigot, Paris
C. Paulin-Mohring, Lyon
L. Priese, Koblenz
W. Reisig, München
M.M. Richter, Kaiserslautern
D. Rosenzweig, Zagreb
L. RoversÎ j Pisa
D. Sangiorgi, Edinburgh
A. Scedrov, Philadelphia
W. Schonfe!d, Heidelberg
H. Schwichtenberg; München
D. Seese, Karlsruhe
J. Shepherdson, Bristol
E. Speckenmeyer, Düsseldorf
D. Spreen, Siegen
R. Stark, Münich
W. Thomas, Kiel
le Wagner, Würzburg

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

A Universal Turing Machllne
Still Aanderaa

Recursive Inseparability in Linear Logic
Still Aanderaa and Herman Ruge Jervell.

The Basic Logic of Proofs
Sergei Artëmov and Tyko StrafJen

Aigorithmic Structuring of Cut-Free Proofs
Matthias Baaz and RichaJod Zach

Optimization Problems: Expressibility, Approximation Proper­
ties and Expected Asymptotic Growth of Optimal Solutions

1

5

14

29

Thomas Behrendt, Kevin Compton and Erich Gradel 43

Linear À-Calculus and Categorical Models Revisited
Nick Benton, Gavin Bierman, Valeria de Paiva and Martin Hyland 61

A Self-Interpreter of Lambda Calculus Having a Normal Form
Alessandro Berarducci and Corrado Bdhm. 85

An "Ehrenfeucht-FraÏssé Game" for Fixpoint Logic and Strati­
fied Fixpoint Logic
Uwe Bosse . 100

The Class of Problems that Are Linearly Equivalent to Satisfia­
bility, or a Uniform Method for Proving NP-Completeness
Nadia Creignou 115

Model Building by Resolution
Christian G. Fermüller and Alexander Leitsch 134

Comparative Transition System Semantics
Tim Fernando 149

Reasoning with Higher Order Partial Functions
Antonio Gavilanes-Franco, Francisca Lucio-Carrasco and
Mario Rodriguez-Artalejo 167

Communicating Evolvillg Aigebras
Paola Glavan and Dean Rosenzweig

On the Completeness of Narrowing as the Operational Semantics
of Functional Logic Programming
Juan Carlos Gonzrilez-Moreno, Maria Teresa Hortalri-Gonzrilez and

182

Mario Rodriguez-Artalejo . 216

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

viii

Inductive Definability with Counting on Finlte Structures
Erich Gradel and Martin Otto 231

Linear Time Algorithms and NP-Complete Problems
Etienne Grandjean

The Semantics of the C Programming Language
Yuri Gurevich and James K. Huggins

A Theory of Classes for a Functional Language with Effects

248

274

Furio Honsell, Ian A. Mason, Scott Smith and Carolyn Ta/coit . 309

Logical Definability of NP-Optimization Problems with Monadic
Auxiliary Predicates
Clemens Lautemann . 327

Universes in the Theories of Types and Names
Markus Marzetfa . 340

Notes on Sconing and Relators
John C. Mitchell and Andre Scedrov 352

Solving 3-Satisfiability in Less than 1,579n Steps
Ingo Schiermeyer

Kleene's Slash and Existence of Values of Open Terms in Type
Theory

379

Jan M. Smith. 395

Negation-Complete Logic Programs
Robert F. Stark.

Logical Characterizations of Bounded Query Classes II: Polyno­
mial-Time Oracle Machines

403

Iain A. Stewart. 410

On Asymptotic Probabilities of Monadic Second Order Properties
Jerzy Tyszkiewicz ... 425

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

A U niversal Turing Machine

Stiil Aanderaa

University of Oslo
8taal.aanderaa@math.uio.no

Abstract. The aim of thi8 paper is to give an example of a univer­
sal Turing machine, which is 80mewhat smal!. To get a smal! universal
Turing machine a common constructions would go through simulating
tag system (see Minsky 1967). The universal machine here simulate two­
symbol Turing machines directly.

The Turing machine is de;~ned by the Figure 1 or the Table 1. Suppose the
universal Turing machine should simulate the Turing machine defined by the
Figure 2 or by the Table 2, starting by the instantaneous description

010pa 100 (1)

Then the universal Turing machine UTm should st art by the instantaneous
description

01AABqabaac3 d599 cdl4c3 d708 cdl5 c3 d599 cdlO c3 d644Cdl1 c. (2)

Here the first three symbols in (2): DIA, code the first three symbols in (1):
010. The next two symbols in (2): AB code the state symbol Po in (1). qa in (2)
denote the state of the univers al Turing machine. The symbols baa in (2) code
the last three symbols 100 in (1). The last part of (2):

(3)

codes the Turing machine Tme defined in Table 2. The exponents are calcu­
lated as follows:

ABC D E
(i) OpoO t- OHO AilBA (OOlOh = 2 RAAAO, (21113)4
(ii) Opo1 t-L PIOl AilBB (OOl1h = 3 LBB01 (00032)4
(iii) OPIO t-R 01pa ABBA (0110h = 6 ROBAB (23010)4
(iv) OP l lt-Lp I OOABBB (Ol11h=7 LBBOO (00033)4
(v) 1paO t- 1HO BABA (1010h = 10 RAAAO, (21113)4
(vi) 1po1 t-L Pl 11 BilBB (1011h = 11 LBB11 (00022)4
(vii) IplO t-R 11pa BBBA (1l10h = 14 R1BAB (22010)4
(viii) 1Pl 1 t-L Pl 10 BBBB (llllh = 15 LBB10 (00023)4

F
= 599
= 14
= 708
= 15
= 599
= 10
= 644
= 11

In row (ii) the exponents of ri is calculated to be 14, in order to simulate the
move stated in column A. First we have to calculate where to put the information.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

This 18 done coding Opol ln the following way. Replace 0, Po and l hy A, /lB
and B, respectively. Then we get the word AABB in column B. This word
is interpreted as a binary number which i8 calculated in calumn C to be 3.
This means that the information about the maYe i8 to be located between the
c number 4 and 5. The L in the word LBBOI means that the head moves ta
the left in this maYe. The rest BBOI af the ward LBBOI codes the ward PIOI,
where Pl is replaced by BB aud the rest of the word is kept unchanged. Then
LBBOI is interpreted as a base 4 number in the fallowing way: L, B, 0 and 1
are interpreted as the digits 0, 0, 3 and 2, respectively. The result i8 (00032)4
which is the decimal number 14.

_~, iCD/ R --~ il.
, qo b

--B

!
1

Fig. 1. Universal Turing Iuachine: UTIn

Fig. 2. Turing machine example: Tme

iTPo-~1

io HALT l Rpo

il 1 L Pl 0 L Pl

In row (iii) the columns Ar Band C are made in t,he same way as in row (ii).
In column D the word ROBAB represents the subward Olpa af column A in the
fallawiug way. R means that the maye is a right maYe. 0 i8 kept unchanged. 1 i8

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

qo q, q2 q3 q, qs

a AR q, a R q, aL q2 a R q3 aL q, aL qs
b BR q, bR q, b L q2 bR q3 b L q, b L qs

c cR qo x L q2 cL q2 cL qs cL q, cL qs

d d R qo y R q, dL q2 Y L q, dL q, dL qs

x x R qo x R q, xL q2 X R q3 xL q, cL qs
y y R qo y R q, y L q2 Y R q3 Y L q, dL qs

A A R qo A R q, B L q2 AR q3 1 R q3 HALT
B B R qo B R q, A R q, B R q3 A R q3 B R qo
a a R qo a R q, A R q3 a R q3 B L q, a L qs

1 1 R qo 1 R q, BR q3 1 R q3 a R q3 b L qs

Table 1. U niversal Turing machine: UTm

replaced by B and Po is replaced by AB. Then R, 0, B and A are interpreted as
the digits 2, 3, 0 and 1,respectively, in the number system of the base four. The
result is (23010)4 which is calculated to be 708 in decimal.

To simulate the move 010p0100 f- 01p101OO of the Tme machine, the UTm
machine will have to use about 20 000 steps. Among the instantaneous descrip­
tions which will occur are the following instantaneous descriptions (Compare
row (ii) above):

o 1AAB qo baac3 d 599 Cd14C3 d70B cd15 c3 d599 cd10 c3 d644cd11 c.
01AAB Bq1 aac3d li99 cd14ér170Bcd15 c3d 599 cd10c3 d644cd11 c.

o 1AAB B aq2 axc2 d599 cr114 c3 d70B Cd15 c3 d 599 cd1 0 c3 d644cd11 c.
OB q3B B B Baax3 y 599 x;d14c3d708cd15 c3 d 599 cd10 c3d644Cd11c.

OB B B B B aax3 y599 q4 x yr113 c 3 r1708cr1l5 c 3 r1599 cd1 0 c 3 d644cdll c.

OB B B01aax3 y 599 xy13 q5YC3 d708cd15 c3d 599 cd10c3 d644Cd1lc.

OB B B qo abaac3 d599 cd14c3 d70Bcd15 c3 d 599 cd1 0 c3 d644cdl1 c.

To simulate the next move 011'10100 f- 011p0100 of the Tme machine, the
following instantaneous descriptions will occur (Compare row (vii) above):

OB B B qo abaac3 d599 cr114 é d708cd15 c3 d 599 cd1 0 c3 d644Cd1l c.
OB BBAq1 baac3d 599 Cd14C3 d708Cd15 c3 d 599 cd10c3d644cdllC.

OB B B Abaq2 axc2 d,;99 Cd14 c3 d708 Cd15 c3 d 599 cd1 0 c3 d644Cd11 c.
Aq3B B B Bbaax3 y599,,;y14 x 3y70Bxy15 x 3y 599 xy10 x 3 d644cdl1 c.
ABB B Bbaax3 y599 ;r:y14 ;r;3 y70Bxy15 x 3y 599 xy10 x 2 q4,,;yd643cdllc.

01BABbaax3 y 599 xy14 x 3 y70Bxy15 X3y 599 xy10 X3 y643 q5ycd11 c.

o lB AB qo baac3 d599 Cd14 c3 d708 cd15 c3 d599 cd1 0 c3 d644Cd11 c.

The loop q1 - q2 converts from binary to unary in or der to find the information
about the next move.

Before the information is evaluated the UTm machine guesses that the next
move will be a left move. Hence to be prepared for a left move, the UTm machine
changes the content of a square when moving from state q2 to the state q3. (a 0

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

is changed to il. and a l is canged to B). If the move tum out to be a right move,
the guess was wrong, and in order to change back each R in colemn D ab ove is
replaced by 2 in colemn E. If the move was a left move, the guess was correct,
and nothing has to be changed and aech L in colemn D above is replaced by 0
in colemn E.

The loop q3 - q4 con verts from unary to a number in base four in order to
code the next state and to code the new position of the head.

Reference

~1insky, Marvlll Computation Finite and Infinite Machines. Prentice-Hall
1967.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Recursive Inseparability in Linear Logic

Stiil Aanderaa' and Herman Ruge Jervell2

1 University of Oslo
staal.aanderaa@math.uio.no

2 U niversities of Oslo and Tromsli!
herman.jervell@ilf.uio.no

Abstract. We first give our version of the register machines to be simu­
lated by proofs in propositionallinear logic. Then we look further into the
structure of the computations and show how to extract "finite counter
models" from this structure. In that way we get a version of Trakhten­
brots theorem without going through a completeness theorem for propo­
sitional linear logic. Lastly we show that the interpolant l in proposi­
tionallinear logic of a provable formula A--<l B cannot be totally recur­
sive in A and B.

We use results and notations about linear logic as given by Troelstra in his
lectures [Tl.

1 ANDOR machines

We consider register machines with a finite number of registers abc d
The machines have a numbelt of states say p q r s ... t. The computations are
controlled by instructions. There are four forms of instruction

p: a + (q) add 1 to register oz and proceed to state q
p: a - (q) subtract 1 from register a if possible and proceed to state q
p : and(q, r) spawn off two processes and proceed with states q and r
p : or(q, r) proceed nondeterministically to one of the states q and r

There are the following important differences from ordinary register machines

1. In the ordinary register machine the subtraction instruction is combined
with a branch. If the register is empty we proceed in one direction, else we
subtract 1 and proceed in another direction. This is not the case with andor
machines. If the subtraction is not possible, we go over into a waiting state
from which the computation does not proceed.

2. In the and-branching we spawn off two new processes from a given process.
3. A process halts if it cornes to a halting state and ail registers are empty.
4. To get termination of the machine we demand that all spawned processes

hait.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

Let us see that for register machine computations with empty halting states
we get the same computations with andor machines. This is done by showing
that register machine instructions can be translated directly into andor machine
instructions. To do this we need a simple trick (see [LMSSJ). Assume we have
one halting state h and two registers a b and have the following register machine
instruction

p : if a = 0 then goto q else a - (r)

To translate this instruction we need sorne new auxiliary states k 1 m n .
The following andor machine instructions do the job for the case of two registers
a b and one halting state h. The general case with more registers and more
halting states is done in a similar way. The instruction ab ove is replaced by

r; : or(k, 1)
i k : and(m, q)
! m : or{n,h)
In:b-(m)

1 :a-(r)

The trick is to allow a number of garbage computations which do es not
matter. After having come to state k , you can only come to state q if it is
possible to get to a halting state h after emptying all other registers than a (in
our case register b).

Any computation on a register machine ending in a halting state with empty
registers can then be transferred to a terminating computation on an andor
machine.

2 The stru.cture of computations

A computation in a register machine can be thought of as a transition between
storage states. In an andor machine we must also take into account ail the
processes that are spawned. This is done by the following syntax

register:: a 1 bic 1 di·· .
state:: p! q 1 ris 1 ...

storagestate:: empty 1 register 1 state storagestate· storagestate
configuration:: setof storagestate

The product of storage states given by . is assumed to be commutative. We
are only interested in storage states which have at most one state present -
even if we have notation for more. The storage state aaabbq indicates that
we are in state q with 3 in register a and 2 in register b. The following is a
configuration {aabq, aar, abs} . Configurations are interpreted conjunctively 80

that the configuration above can be thought of as three pro cesses with storage
states aabq aar abs . Configurations are sets and not multisets. A typical

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

halting state is a configuration { h } with empty registers. The computations in
an andor machine can be thought of as transitions between configurations in an
obvious way.

Recursive inseparability 1. There is an instruction set 1 with two halting con­
figurations C and D such that no state is transformed into both C and D, and the
configurations transformed into C and those into D are recursively inseparable.

To get to the algebraic structures we first remark that the storage state
together with the concatenation . and empty makes a commutative monoid
with unit. We use this to make an IL-algebra (see [Tl) in the standard way

x * Y:=={x. y: x E X,y E Y}
X-oY:=={z: Vx E X(z, x E Y)}

Then (configurations, n, U, 0, -0, *, {empty},) is an IL-algebra. (See [Tl
Proposition 8.9). On the top of this algebraic structure we introduce the tran­
sition made by the andor machine. The transition -. gives a relation between
configurations. For the transition we have the following laws

Tl: If C-.D , then also A * C-.A * D
T2: C-.C
T3: If C-.D and D-.E then C-+E

Note Tl. This is the crucial property in the construction of andor machines.
It is not true for register machines.

An instruction set 1 is given by a finite number of relations of the following
forms

Il: A * C -+ D (from a+)
12: C -. A * D (from a-)
13: C -. DuE (from and)
14: C -. D and C -. E (from or)

Given an andor machine we can transform it faithfully into a configuration
space with transitions and a finite number of equations ofform Il-4. A configura­
tion space with transition is a very simple structure. The laws are just sufficient
to simulate computations in an andor machine given the instructions.

3 Linear logic

Now consider propositional linear logic. In most of our discussions we use the
fragment MALLA - multipIicative additive propositional linear logic with as-
sumptions. We write .

A,B,C, ... I- F,G,H, ...

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

Here the assumptions are to the left of f- . The formulas A, B, C, F, G, H are
from the multiplicative additive fragment of linear logic. The intended meaning
lS that assumptions can be brought into derivations any number of times - or
possibly not at ail. Using exponentials we can interpret this as

lA*!B*!C-o F + G + H

In MALLA there is an obvious interpretation of instruction sets for andor
machines

the let ters in the instruction set is taken as atomlc formulas
* into multiplicative conjunction *
n into additive conjunction n
U into additive disjunction U
-- into linear implication -0

{empty} into the multiplicative unit l

Given an andor machine with the instruction set I. Let 1# be the correspond­
ing formula in propositional linear logic. A configuration C can be transformed
into a proposition al linear formula C# in the same way. Then

Theorem 1. Let l be an instruction set and C and D configurations in an andor
machine. The following are equivaleni

- l transfers Cinto D
- from the equations l we can derive C-.D using Tl-3 and the laws of IL-

algebra
1# f- C#--Q D# is derivable in propositionallinear logic

The only slightly difficult part here is to prove that there are not more for­
mulas of the form 1# f- C# -0 D# provab!e in propositional linear logic than
those given by the andor machine. This is proved in [LMSS] by a eut elimination
argument.

Recursive inseparability 2 There is an instruction set land halting configu­
ration D such that for configurations C we cannat recursive/y separate whether

we can prove r# r C# -0 D# in propositionallinear logic
a configuration structure with transition gives a counter mode! that C-+D
using instructions l

4 Getting a phase structure

The configuration space is oÎ course not much more than a convenient language
for our syntactical transformations. The information about the particular andor
machine we use is contained in the tr.ansitions. We now bring the transitions into
the IL-algebra. A transition is a binary relation between configurations. We can
interpret this in an IL-algebra by repeating the usua.l subset construction on the
configuration space to get an IL-algebra with

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

Domain: Sets of configurations
Product: X*Y={x*y:xEX,yEY}
Implication: X -<J Y = {z : \/x E X(z * x E Y)}
Lattice: Union and intersection of sets

On this IL-algebra we can interpret transitions as operators

C(X) = {y : y -+ x A x E X}

taking sets of configurations into sets of configurations.
A dosure operation in an IL-algebra satisfies

1. X S; C(X)
2. X S; Y '* C(X) S; C(Y)
3. CC(X) S; C(X)
4. C(X) * C(Y) S; C(X * Y)

We observe that the crucial property Tl for transitions is exactly what is
needed to get property 4 above.

Lemma 2. C is a c/osure operation.

Let M be an andor machine. The phase structure corresponding to M is the
IL-algebra given by the transition dosure C above. We denote this algebra by
pM.

5 Finite parts of machines

Each particular computation uses only finite information. This is the extra trick
used to get the Trakhtenbrot theorem. Let us introduce machines with bounded
registers. Such a machine is given by a number MAX. Assume that register a
contains the number N. If N < MAX the instructions a+ and a- behaves as
usual. If N = MAX , th en a+ gives MAX while a- gives a nondeterministic
choice between MAX and MAX-1. If Mis the original machine, we let M/MAX
be the machine with registers bounded by MAX. This construction works both
for register machines and andor machines.

Lemma 3. For register machines or andor machines. Let C and D be configu­
rations with ail registers ~ MAX. Then if M transfers Cinto D, sa does also
M/MAX.

Lemma 4. For a deterministic register machine M. Let D and E be halting
configurations with empty registers. Assume that M transfer Cinto D, but not
E. Then neither does M/MAX for large enough MAX.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

10

VVe would like to get lemma 3 fo, arbitrary machines. We do not need to do
this in general. It is only necessary to do this for andor machines derived from
deterministic register machines. The andor machines are going to be nondeter­
ministic in general with nondeterminism introduced by the bran ching instruc­
tions in the deterministic register Hlachine. The nondeterminism dervived Îrom
the bran ching

lB

p : if a = 0 then goto q else a - (1')

1 p : or(k, 1)

I
le: and(m,q)

.m:or(n,h)
jn:b-(m)
1 1 : a - (1')

The branch going clown from state k will only be lised to get down to state q
exactly when register a is empty. The same construction works equally weil for
an andor machine with bounded registers. Renee

Lemma 5. Let M be an andor machine derived from a deterministic register
machine and let D and E be halting configurations with empty regisiers. Assume
that M transfers Cinto D, but not E. Tken neither does M/MAX for large
wough MAX.

Recursive inseparability 3 There is an instruction set 1 and halting configu­
ration D Buck that for configuration C we cannat recursively separaie whether

- we can prove in propositionallinear logie that C gives D in 1
- a finite configura/ion structure gives a couniermodel that C-+D in 1

The construction of the phase structure ,pM from andor machine Mean also
be repeated using bounded registers giving ,pMMAX for registers bounded by
MAX.

6 Exponentials

To interpret exponentials in an IL-algebra we need what Troelstra calls a modal­
ity; we then get an IL-algebra with storage ((Tl Definition 8.16). A modality is a
subset F of the domain X of the IL-algebra satisfying certain conditions (idem­
potency and::; l) and

{J., l} ç F ç {:Il : :Il * X = x 1\ :Il ::; l}
In al! su ch modalities our transitions are going to be interpreted as 1. Because

given an interpetation of !, a transition C -+ D and the phase structure ,pM (or
,pMM AX), C --Jo D is translated into a. formula F in the multiplicative additive
fragment of linear logic. In the phase structure we have l ::; F, and hence l =!F
for any modality.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

11

Recursive inseparability 4 ft is reeursively inseparable whether for formulas
F in linear logie

F is derivable in intuitionistic linear logie
A finite phase structure with modality gives a eounter example to F

7 Introducing duality

So far the recursive inseparability is in intuitionistic linear logic. The outline of
the argument is as follows. \Ve started with an andor machine with two halting
states where we cannot recursively separate whether a particular starting con­
figuration ends in one or the other of the halting states. The computations can
be represented as proofs in linear logic or by interpretations in a configuration
space with transitions. The configuration space is later taken over to a phase
structure. To get recursive inseparability in classical linear logic it is sufficient
to show that an IL-algebra can be embedded into a CL-algebra.

We start with an IL-algebra L. Let Llo be the duallattice. We then construct
a lattice LL1. by using the sum of L and Llo - put L and Llo between the top
and bot tom elements T and .L.The lattice operations in LL1. are defined in the
obvious way. We have also defined a duality .L. We need to define products in
the extended lattice. To do that we divide up into cases depending on whether
the elements come from T, L, Llo or .L. We define products by the following
multiplication table

* T B1.
l .L

TT T T.L
Ao T Ao * Al (Ao--{) BI)1. .L
Bt T (AI--{) Bo)1. T .L
.L .L.L .L.L

To prove that LL1. is a CL-algebra we note

- * is commutative
- 1 is a multiplicative unit
- * is associative

X--{)Y = (X*y1.)1.
- Xl. = X--{)O

Having constructed the embedding of an intuitionistic linear algebra into a
classical linear algebra we can conclude

Recursive inseparability ~; For formulas F in propositional linear logic we
cannot recursively separate whether

we can prove F in classical propositional linear logie
a finite CL-algebra with modality gives a counter-model to F

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

12

8 Interpolation

The interpolation theorem i8 true for classica! and intuitionistic linear logic (see
Roorda's thesis [R]), and we can show many of the lisual properties of the inter­
polant. In particular, we can concluàe that ifwe have two formulas A, B without
any other common propositional symbols than 0 and 1 and if we can prove

then there is an interpolant 1 built up from the propositioual constants aloue
such that

and

But the roliowing argument shows that there is no tocal recursive function
giving the interpolant as a function of the two formulas A and B. As in classical
predicate logic we need to know the derivation of the formula A ~ B.

Let A and B be the formulas expressing that an andor machine terminates in
a halting state a respectively b. vVe know that there is no recursive function which
can decide whether A or B is derivable. Consider now the following implication

Observe

Lemma 6. For A Band C as above we have (in both intuiiionistic and classical
logic) :

1- A =?I- C
- 1- B =?I- C

Now let l he an interpolating formula for the implication C. l ra built up
from the propositional constants alone. We have

We have then

H(!A~-L)-<>I

1- I~!B

H(!A~l..)~!I

i-!I~!B

Observe that in our models of jinear logic with the trivial modality - l.. and
1- we have

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

13

f-- K ~I=!K = 1

1-. K --{J L ~I= K ::; L

Our model can separate between derivations terminating in a and terminating
in b. We have

Applying this we get

If A ~I=!A = .L

If B ~I=!B = .L

f-- A :::::·If B --I=!B = .L ~!I = .L

f-- B ~If A ~I=!A =.L ~!(!A--{J.L) = 1 ~!I = 1

The interpolation formula. !I is built up from the propositional constants.
The interpretation of !I is given as .L or 1 depending on whether 1 as a classica.l
propositional formula has truth value false or true. So the interpretation of !I
is recursively given by 1.

Theorem 7. In (c/assical or intuitionistic) propositionallinear logic there is no
totally recursive interpolation function.

9 References

B E Bürger. Bereehenbarkeit, Komplexitiit, Logik. Vieweg Verlag 1985. En­
glish translation published by North-Bolland.

LMSS: P D Lincoln, J Mitchell, A Scedrov, N Shankar. Decision problems
for propositional linear logic. In Pme. 31st Annual IEEE Symposium on
Foundations of Computer Science, St Louis, Missouri, October 1990.

R: D Roorda Resouree Logics: Proof-theoretical Investigations. Thesis. Ams­
terdam 1991.

T: A S Troelstra. Lectures on linear logie. CS LI Lecture Notes No 29. 1991 B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

The Basic Logic of Proofs

Sergei Artëmov'
Steklov Ma.thema.tical Institute,

Vavilov str. 42,
117966 Moscow, Russia.

a-mail: artOlog.mian.su

Tyko StraBen t

University of Berne, IAM,
Lii.nggassstr. 51,
eH- 3012 Berne.

@-mail: strassenOiam.uniba.ch

Abstract

Propositional ProvabiIity Logic was axiomatized in [5]. This logic describes
the behaviour of the arithmetical operator "y is provable". The cim of the
current paper is to Plovide propositional a.xiomatizations of the predicate "x l.
a proof of 'II" by means of modallogic, with the intention of meeting sorne of the
needs of computer science.

1 Introduction

The Propositional Provabiiity Logic GL was axiomatized in [5J. This logie describes
the behaviour of the arithmetical operator "y is provable" by means of modal logic.
Although sorne preperties of tbis logic are relevant for computer science (e.g. various
forms of Gode!'. incompleteness theorem for consistency proofs in databases), GL is
rather a mathematical domain. One reasoT is that in computer science not only the
provability of a statement is of interest, but also in many cases the proofs themselves,
respectively informations about the time or memory expenditure for a proof are known.
These considerations lead to a different situation. For example it is well·known that
a powerful machine cannot prove its own consisteney, but it is very weU possible for
snch a machine to demonstrate that a given proof does not derive 0 = 1, or that no
computation within a fixed time cornes to that answer. The studies on the Logic of
Proofs have been initiated by a series of questions by G. Jager related to this topie. One
was to give an arithmetically complete propositional axiomatization of the predicate
"x is a proof of y". The modal systems T and TF introduced below solve this problem.

Most definitions in this introduction are in accordance with those of the classical
Provability Logic [5J. Nevertheless, the Basic Logic of Proofs is entirely different from
the Provability Logic, and the arithmetical completeness proof for it does not use the
Solovay argument.

'Supported by the Swi .. Nationalfonds (project 21-27878.89) during •. slay a' the University of
Berne in January 1992.

tFinanced by the Union Bank of Switze!land (UBS/SBG) and by the Swiss Nationalfonds
(projects 21-27878.89 and 20-32705.91).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

15

1.1 Definition The modal language contains two sorts of variables,

Po, p" . .. (called proof variables),
Sa, S" ... (called sentence variables),

the usual boolean connectives, truth values T (for truth) and 1. (for absurdity), and
the labeled modality symbol Dpi for each proof variable p;. The modal language is
generated from the atoms T, 1., Sa, S" ... by the boolean connective -+ as usual, and
by the unary modal operators D:",('), DpI ('), ••• as follows: if pis a proof variable and
A a modal formula then Dp(A) (Op A for short) is a modal formula.

Parentheses are avoided whenever possible by the usual conventions on precedence
along with the modal convention that DPi (-) is given the minimal scope. Smallletters
p, q, r, . .. are used for proof variables, capitalletters S, T, . .. for sentence variables and
A, B, C, ... for modal formulas.

The clear intention is to interpret DpA as "p is a proof of A". In order to allow
iterations of modalities, which :is an essential principle of the Logic of Proofs, the
modal language must be interpreted in theories, which are able to link theorems and
proofs after sorne natural coding. These considerations lead to the notion of the
arithmetical interpretation of the modal language.

1.2 Definition Let the theory T be a recursive extension of lE, which is valid in
the standard mode! of arithmetic, for example let T be Peano Arithmetic PA. Greek
letters '{>,.p, . .. denote arithmetical formulas. In this paper it will not be distinguished
between the number n and its numeral ÎÏ.

1.3 Definition An arithmetical formula Prf(·,·) is called a proof predicate in T iff

• Prf(x, y) is (provably-in-T equivalent to) a recursive formula in x and y .

• T f- '{> =- 3n E J'Il: Prf(n, r '{>') for ail arithmetical formulas '{>.

A proof predicate is thus nothing but a recursive enumeration of the theorems of T.

1.4 Example

1. A standard Godel proof pmdicate for the theory T is a recursive formula Prf(·, '),
such that for every n, m: p;J(n, m) is true iff n codes a proof in T of the formula
coded by m. Examples of such formulas can be found e.g. in [3] or [4]. Note that,
according to Prf(·, '), (a) eacch proof codes exactly one theorem but each theorem
has infinitely many proofs, and, (b) each proof is longer than the theorem proved
by it, provided the usual GOdel numbering is used.

2. A modification Prf,(·,·) of Prf(·,·) is obtained if one allows not only proofs as
first argument, but also programs. Note that property (b) of the first example
fails for Prf,(·,·): Prf,(x,y) does not imply in general x ~ y because short
programs can compute Ion!: theorems.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

16

3. In the context of resource bounded reasoning one ca.n construct the l'roof predi­
cate Pr!2(x,y):= 3p:::; x: Pr!,(p, y) , i.e. whicÎl ie true iffthere is a a. program
of size not greater than X which computes y. Note that also property (a) of the
nrst example fails for Prf.(·,·): for sorne x there can he severa! formulas tp such
that Prf2(x,rtp') holds.

1.5 Definition A l'roof predica.t.e le callee:! Junctional lIf for all n. 1:" k.E N:

The standard Godel proof predicate Prfh·'; and Prf&,·) from example 1.4 are ex­
amples of sueh functional l'roof prerucates.

1.6 Definition Let Prf\-,·) be a proof predicate in T, and let ,p be a function that
assigna to each proof variable Pi sorne n E N and to ea.ch sentence variable Si a sentence
of T. An arithmetical interprefation 0* ie a pair (PrJ(-,.),,p) of such Prf(·,·) and
,p. The arithmetical interpretation (At (A" for short) of a modal formula A is the
extension of <p to ail modal formulas by:

• T":= (0 = 0) 1.':= (0 = 1) pt:= <P(Pi) S;":= <P(Si)

" (A -t Bl' := A* -t B*

o (OpA)":= Prf(p', rA")

1.7 Definition Let == denoie the syntactical idel1tity of formulas (e.g. '1' == 'l',
but '1' A '1' ~ cp, So ~ S, and 0 ... T ~ Dpl T). An arithmetical interpretation O' =
(Prf(·, ·l, <p) ls called functional iff Prf(-,·) is functional and O' 18 injective, which
meaus that A' == B* implies A == B. The requirement of injectivity cau be eliminated
as it i. demonstrated in [2].

The Basic Logic of Proofs is not concerned with occasional details about the coding ai
proofs in T by mean. of one fixed Prf(-, .). Rather the Basic Logic of Proofs describes
those basic principles which are true for ail proof predicates of a given cIas •.

In this paper the decidable modal logics 'P and 'P:F are introduced, with axioms and
fuIes of inference as foJlows:

(Al) AIl (boolean) tautologies

l) (A2) opA ---t A

J P 'P:F (Rl)
A A-tB

B
(AS) opA ---t ~opB (A iÉ B)

where A and B are modal formulas and p is a proof variable.
(A2) is the Refiexiviiy Axiom and (A3) the Fu"clionalily Axiom.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

17

The main result of the paper daims that for each modal formula A:

'PI-A
'PF 1- A

A" is true for every interpretation (.)"
A" is true for every functional interpretation (.)"

Moreover, for each of these completeness theorems a proof predicate Prf(·,·) cau
uniformly be chosen.

It is easy to see that neither 'P nor 'PF is dosed under the necessitation A 1- OpA, or
under the substitution rule A H B 1- OpA H OpB.

The standard Godel proof predicate Prf(·,·) enjoys an additional property, namely to
be monotonie:

1.8 Definition A proof predicate is called monotone Hf Prf(n, k) implies n ~ k
for ail n, kEN. An arithmetical interpretation 0" = (PrfC .), 4» is called monotone
iff Prf(·,·) is a monotonie proof predicate.

A logic 'PF M containing ail those formulas which are true under ail interpretations
based on any fixed functional and monotonie proof predicate has been established in
[1], too. Thereby, 'PFM is the logic of the standard Godel proof predicate Prf(·, .).
'PFM will not be presented in this paper.

In section 2 the soundness and ooompleteness for 'P is proved, in section 3 the same is
done for 'PF and section 4 is devoted to uniform proof predieates.

2 Arithmetical soundness and completeness of P

The aim of this section is to prove soundness and completeness of the modal system
'P with respect to arithmetical interpretations.

2.1 Theorem Let A be a modal formula. Then

'PI-A V": TI- A"
{=} V": A" is true

Proof of the soundness of 'P: Let (.)" be some arithmetical interpretation. One has
to show that T 1- A". Induction on the complexity of the proof of A:

(Al) and (RI) straightforward.

(A2) 1"' case: T 1- Prf(p", rA"'). It follows that TI- A",
hence T 1- Prf(p", rA"') -t A".

•

2,d case: Tif Prf(p", r A"-'). As Prf(·,·) is recursive T 1- ~Prf(p", rA"'),
hence T 1- Prf(p", rA"') -t A" .

The next task is to prove the arithmetieal completeness of 'P.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

