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Preface 

The Computer Science Logic Workshop CSL'92 was held in San Miniato (Pisa) 
from September 28 to October 2, 1992. It took place in the charming environment 
of the Centro Studi 1 Cappuccini, a nicely restored monastery made available by 
the Cassa di Risparmio of San Miniato. CSL '92 was the sixth of the series and the 
first one which was held as Annual Conference of the European Association for 
Computer Science Logic, founded in SchloB Dagstuhl in July 1992 by computer 
scientists and logicians from 14 countries. 

The workshop was attended by 78 participants from 15 countries; 8invited 
lectures and 25 talks, selected from 72 submissions, were presented. Following 
the tradition al procedure for CSL volumes, full versions of the original contribu
tions have been collected after their presentation at the workshop and a regular 
reviewing procedure has been started. On the basis of 58 reviews, 26 papers were 
selected for publication. They appear here in revised final form. 

Wê thank the referees, without whose help we would not have been able to 
accomplish the difficult task of selecting among the many valuable contributions. 

We also gratefully acknowledge the generous sponsorship by the following 
institutions: 

Consiglio Nazionale delle Ricerche (CNR) 
Cassa di Risparmio di San Miniato 
Università degli Studi di Pisa 
Dipartimento di Informatica dell'Università di Pisa 
Cassa di Risparmio di Pisa 
Hewlett-Packard Italiana S.p.A., Pisa Science Center 

Finally, we would like to thank the following persons who generously helped 
in various ways in the organization of the conference: Antonella D'Alessandro, 
Paola Glavan, Stefania Gnesi, Elvinia Riccobene. 

March 1993 

E. Bürger G. Jager H. Kleine Büning S. Martini M.M. Richter 
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A U niversal Turing Machine 

Stiil Aanderaa 

University of Oslo 
8taal.aanderaa@math.uio.no 

Abstract. The aim of thi8 paper is to give an example of a univer
sal Turing machine, which is 80mewhat smal!. To get a smal! universal 
Turing machine a common constructions would go through simulating 
tag system (see Minsky 1967). The universal machine here simulate two
symbol Turing machines directly. 

The Turing machine is de;~ned by the Figure 1 or the Table 1. Suppose the 
universal Turing machine should simulate the Turing machine defined by the 
Figure 2 or by the Table 2, starting by the instantaneous description 

010pa 100 (1) 

Then the universal Turing machine UTm should st art by the instantaneous 
description 

01AABqabaac3 d599 cdl4c3 d708 cdl5 c3 d599 cdlO c3 d644Cdl1 c. (2) 

Here the first three symbols in (2): DIA, code the first three symbols in (1): 
010. The next two symbols in (2): AB code the state symbol Po in (1). qa in (2) 
denote the state of the univers al Turing machine. The symbols baa in (2) code 
the last three symbols 100 in (1). The last part of (2): 

(3) 

codes the Turing machine Tme defined in Table 2. The exponents are calcu
lated as follows: 

ABC D E 
(i) OpoO t- OHO AilBA (OOlOh = 2 RAAAO, (21113)4 
(ii) Opo1 t-L PIOl AilBB (OOl1h = 3 LBB01 (00032)4 
(iii) OPIO t-R 01pa ABBA (0110h = 6 ROBAB (23010)4 
(iv) OP l lt-Lp I OOABBB (Ol11h=7 LBBOO (00033)4 
(v) 1paO t- 1HO BABA (1010h = 10 RAAAO, (21113)4 
(vi) 1po1 t-L Pl 11 BilBB (1011h = 11 LBB11 (00022)4 
(vii) IplO t-R 11pa BBBA (1l10h = 14 R1BAB (22010)4 
(viii) 1Pl 1 t-L Pl 10 BBBB (llllh = 15 LBB10 (00023)4 

F 
= 599 
= 14 
= 708 
= 15 
= 599 
= 10 
= 644 
= 11 

In row (ii) the exponents of ri is calculated to be 14, in order to simulate the 
move stated in column A. First we have to calculate where to put the information. 
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2 

This 18 done coding Opol ln the following way. Replace 0, Po and l hy A, /lB 
and B, respectively. Then we get the word AABB in column B. This word 
is interpreted as a binary number which i8 calculated in calumn C to be 3. 
This means that the information about the maYe i8 to be located between the 
c number 4 and 5. The L in the word LBBOI means that the head moves ta 
the left in this maYe. The rest BBOI af the ward LBBOI codes the ward PIOI, 
where Pl is replaced by BB aud the rest of the word is kept unchanged. Then 
LBBOI is interpreted as a base 4 number in the fallowing way: L, B, 0 and 1 
are interpreted as the digits 0, 0, 3 and 2, respectively. The result i8 (00032)4 
which is the decimal number 14. 

_~, iCD/ R --~ il. 
, qo b 

--B 

! 
1 

Fig. 1. Universal Turing Iuachine: UTIn 

Fig. 2. Turing machine example: Tme 

iTPo-~1 

io HALT l Rpo 

il 1 L Pl 0 L Pl 

In row (iii) the columns Ar Band C are made in t,he same way as in row (ii). 
In column D the word ROBAB represents the subward Olpa af column A in the 
fallawiug way. R means that the maye is a right maYe. 0 i8 kept unchanged. 1 i8 
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3 

qo q, q2 q3 q, qs 

a AR q, a R q, aL q2 a R q3 aL q, aL qs 
b BR q, bR q, b L q2 bR q3 b L q, b L qs 

c cR qo x L q2 cL q2 cL qs cL q, cL qs 

d d R qo y R q, dL q2 Y L q, dL q, dL qs 

x x R qo x R q, xL q2 X R q3 xL q, cL qs 
y y R qo y R q, y L q2 Y R q3 Y L q, dL qs 

A A R qo A R q, B L q2 AR q3 1 R q3 HALT 
B B R qo B R q, A R q, B R q3 A R q3 B R qo 
a a R qo a R q, A R q3 a R q3 B L q, a L qs 

1 1 R qo 1 R q, BR q3 1 R q3 a R q3 b L qs 

Table 1. U niversal Turing machine: UTm 

replaced by B and Po is replaced by AB. Then R, 0, B and A are interpreted as 
the digits 2, 3, 0 and 1,respectively, in the number system of the base four. The 
result is (23010)4 which is calculated to be 708 in decimal. 

To simulate the move 010p0100 f- 01p101OO of the Tme machine, the UTm 
machine will have to use about 20 000 steps. Among the instantaneous descrip
tions which will occur are the following instantaneous descriptions (Compare 
row (ii) above): 

o 1AAB qo baac3 d 599 Cd14C3 d70B cd15 c3 d599 cd10 c3 d644cd11 c. 
01AAB Bq1 aac3d li99 cd14ér170Bcd15 c3d 599 cd10c3 d644cd11 c. 

o 1AAB B aq2 axc2 d599 cr114 c3 d70B Cd15 c3 d 599 cd1 0 c3 d644cd11 c. 
OB q3B B B Baax3 y 599 x;d14c3d708cd15 c3 d 599 cd10 c3d644Cd11c. 

OB B B B B aax3 y599 q4 x yr113 c 3 r1708cr1l5 c 3 r1599 cd1 0 c 3 d644cdll c. 

OB B B01aax3 y 599 xy13 q5YC3 d708cd15 c3d 599 cd10c3 d644Cd1lc. 

OB B B qo abaac3 d599 cd14c3 d70Bcd15 c3 d 599 cd1 0 c3 d644cdl1 c. 

To simulate the next move 011'10100 f- 011p0100 of the Tme machine, the 
following instantaneous descriptions will occur (Compare row (vii) above): 

OB B B qo abaac3 d599 cr114 é d708cd15 c3 d 599 cd1 0 c3 d644Cd1l c. 
OB BBAq1 baac3d 599 Cd14C3 d708Cd15 c3 d 599 cd10c3d644cdllC. 

OB B B Abaq2 axc2 d,;99 Cd14 c3 d708 Cd15 c3 d 599 cd1 0 c3 d644Cd11 c. 
Aq3B B B Bbaax3 y599,,;y14 x 3y70Bxy15 x 3y 599 xy10 x 3 d644cdl1 c. 
ABB B Bbaax3 y599 ;r:y14 ;r;3 y70Bxy15 x 3y 599 xy10 x 2 q4,,;yd643cdllc. 

01BABbaax3 y 599 xy14 x 3 y70Bxy15 X3y 599 xy10 X3 y643 q5ycd11 c. 

o lB AB qo baac3 d599 Cd14 c3 d708 cd15 c3 d599 cd1 0 c3 d644Cd11 c. 

The loop q1 - q2 converts from binary to unary in or der to find the information 
about the next move. 

Before the information is evaluated the UTm machine guesses that the next 
move will be a left move. Hence to be prepared for a left move, the UTm machine 
changes the content of a square when moving from state q2 to the state q3. (a 0 
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4 

is changed to il. and a l is canged to B). If the move tum out to be a right move, 
the guess was wrong, and in order to change back each R in colemn D ab ove is 
replaced by 2 in colemn E. If the move was a left move, the guess was correct, 
and nothing has to be changed and aech L in colemn D above is replaced by 0 
in colemn E. 

The loop q3 - q4 con verts from unary to a number in base four in order to 
code the next state and to code the new position of the head. 

Reference 

~1insky, Marvlll Computation Finite and Infinite Machines. Prentice-Hall 
1967. 
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Recursive Inseparability in Linear Logic 

Stiil Aanderaa' and Herman Ruge Jervell2 

1 University of Oslo 
staal.aanderaa@math.uio.no 

2 U niversities of Oslo and Tromsli! 
herman.jervell@ilf.uio.no 

Abstract. We first give our version of the register machines to be simu
lated by proofs in propositionallinear logic. Then we look further into the 
structure of the computations and show how to extract "finite counter 
models" from this structure. In that way we get a version of Trakhten
brots theorem without going through a completeness theorem for propo
sitional linear logic. Lastly we show that the interpolant l in proposi
tionallinear logic of a provable formula A--<l B cannot be totally recur
sive in A and B. 

We use results and notations about linear logic as given by Troelstra in his 
lectures [Tl. 

1 ANDOR machines 

We consider register machines with a finite number of registers abc d .... 
The machines have a numbelt of states say p q r s ... t. The computations are 
controlled by instructions. There are four forms of instruction 

p: a + (q) add 1 to register oz and proceed to state q 
p: a - (q) subtract 1 from register a if possible and proceed to state q 
p : and(q, r) spawn off two processes and proceed with states q and r 
p : or( q, r) proceed nondeterministically to one of the states q and r 

There are the following important differences from ordinary register machines 

1. In the ordinary register machine the subtraction instruction is combined 
with a branch. If the register is empty we proceed in one direction, else we 
subtract 1 and proceed in another direction. This is not the case with andor 
machines. If the subtraction is not possible, we go over into a waiting state 
from which the computation does not proceed. 

2. In the and-branching we spawn off two new processes from a given process. 
3. A process halts if it cornes to a halting state and ail registers are empty. 
4. To get termination of the machine we demand that all spawned processes 

hait. 
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6 

Let us see that for register machine computations with empty halting states 
we get the same computations with andor machines. This is done by showing 
that register machine instructions can be translated directly into andor machine 
instructions. To do this we need a simple trick (see [LMSSJ). Assume we have 
one halting state h and two registers a b and have the following register machine 
instruction 

p : if a = 0 then goto q else a - (r) 

To translate this instruction we need sorne new auxiliary states k 1 m n . 
The following andor machine instructions do the job for the case of two registers 
a b and one halting state h. The general case with more registers and more 
halting states is done in a similar way. The instruction ab ove is replaced by 

r; : or(k, 1) 
i k : and(m, q) 
! m : or{n,h) 
In:b-(m) 

1 :a-(r) 

The trick is to allow a number of garbage computations which do es not 
matter. After having come to state k , you can only come to state q if it is 
possible to get to a halting state h after emptying all other registers than a (in 
our case register b ). 

Any computation on a register machine ending in a halting state with empty 
registers can then be transferred to a terminating computation on an andor 
machine. 

2 The stru.cture of computations 

A computation in a register machine can be thought of as a transition between 
storage states. In an andor machine we must also take into account ail the 
processes that are spawned. This is done by the following syntax 

register:: a 1 bic 1 di·· . 
state:: p! q 1 ris 1 ... 

storagestate:: empty 1 register 1 state storagestate· storagestate 
configuration:: setof storagestate 

The product of storage states given by . is assumed to be commutative. We 
are only interested in storage states which have at most one state present -
even if we have notation for more. The storage state aaabbq indicates that 
we are in state q with 3 in register a and 2 in register b. The following is a 
configuration {aabq, aar, abs} . Configurations are interpreted conjunctively 80 

that the configuration above can be thought of as three pro cesses with storage 
states aabq aar abs . Configurations are sets and not multisets. A typical 
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halting state is a configuration { h } with empty registers. The computations in 
an andor machine can be thought of as transitions between configurations in an 
obvious way. 

Recursive inseparability 1. There is an instruction set 1 with two halting con
figurations C and D such that no state is transformed into both C and D, and the 
configurations transformed into C and those into D are recursively inseparable. 

To get to the algebraic structures we first remark that the storage state 
together with the concatenation . and empty makes a commutative monoid 
with unit. We use this to make an IL-algebra (see [Tl) in the standard way 

x * Y:=={x. y: x E X,y E Y} 
X-oY:=={z: Vx E X(z, x E Y)} 

Then (configurations, n, U, 0, -0, *, {empty},) is an IL-algebra. (See [Tl 
Proposition 8.9). On the top of this algebraic structure we introduce the tran
sition made by the andor machine. The transition -. gives a relation between 
configurations. For the transition we have the following laws 

Tl: If C-.D , then also A * C-.A * D 
T2: C-.C 
T3: If C-.D and D-.E then C-+E 

Note Tl. This is the crucial property in the construction of andor machines. 
It is not true for register machines. 

An instruction set 1 is given by a finite number of relations of the following 
forms 

Il: A * C -+ D (from a+) 
12: C -. A * D (from a-) 
13: C -. DuE (from and) 
14: C -. D and C -. E (from or) 

Given an andor machine we can transform it faithfully into a configuration 
space with transitions and a finite number of equations ofform Il-4. A configura
tion space with transition is a very simple structure. The laws are just sufficient 
to simulate computations in an andor machine given the instructions. 

3 Linear logic 

Now consider propositional linear logic. In most of our discussions we use the 
fragment MALLA - multipIicative additive propositional linear logic with as-
sumptions. We write . 

A,B,C, ... I- F,G,H, ... 
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8 

Here the assumptions are to the left of f- . The formulas A, B, C, F, G, H are 
from the multiplicative additive fragment of linear logic. The intended meaning 
lS that assumptions can be brought into derivations any number of times - or 
possibly not at ail. Using exponentials we can interpret this as 

lA*!B*!C-o F + G + H 

In MALLA there is an obvious interpretation of instruction sets for andor 
machines 

the let ters in the instruction set is taken as atomlc formulas 
* into multiplicative conjunction * 
n into additive conjunction n 
U into additive disjunction U 
-- into linear implication -0 

{empty} into the multiplicative unit l 

Given an andor machine with the instruction set I. Let 1# be the correspond
ing formula in propositional linear logic. A configuration C can be transformed 
into a proposition al linear formula C# in the same way. Then 

Theorem 1. Let l be an instruction set and C and D configurations in an andor 
machine. The following are equivaleni 

- l transfers Cinto D 
- from the equations l we can derive C-.D using Tl-3 and the laws of IL-

algebra 
1# f- C#--Q D# is derivable in propositionallinear logic 

The only slightly difficult part here is to prove that there are not more for
mulas of the form 1# f- C# -0 D# provab!e in propositional linear logic than 
those given by the andor machine. This is proved in [LMSS] by a eut elimination 
argument. 

Recursive inseparability 2 There is an instruction set land halting configu
ration D such that for configurations C we cannat recursive/y separate whether 

we can prove r# r C# -0 D# in propositionallinear logic 
a configuration structure with transition gives a counter mode! that C-+D 
using instructions l 

4 Getting a phase structure 

The configuration space is oÎ course not much more than a convenient language 
for our syntactical transformations. The information about the particular andor 
machine we use is contained in the tr.ansitions. We now bring the transitions into 
the IL-algebra. A transition is a binary relation between configurations. We can 
interpret this in an IL-algebra by repeating the usua.l subset construction on the 
configuration space to get an IL-algebra with 
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Domain: Sets of configurations 
Product: X*Y={x*y:xEX,yEY} 
Implication: X -<J Y = {z : \/x E X(z * x E Y)} 
Lattice: Union and intersection of sets 

On this IL-algebra we can interpret transitions as operators 

C(X) = {y : y -+ x A x E X} 

taking sets of configurations into sets of configurations. 
A dosure operation in an IL-algebra satisfies 

1. X S; C(X) 
2. X S; Y '* C(X) S; C(Y) 
3. CC(X) S; C(X) 
4. C(X) * C(Y) S; C(X * Y) 

We observe that the crucial property Tl for transitions is exactly what is 
needed to get property 4 above. 

Lemma 2. C is a c/osure operation. 

Let M be an andor machine. The phase structure corresponding to M is the 
IL-algebra given by the transition dosure C above. We denote this algebra by 
pM. 

5 Finite parts of machines 

Each particular computation uses only finite information. This is the extra trick 
used to get the Trakhtenbrot theorem. Let us introduce machines with bounded 
registers. Such a machine is given by a number MAX. Assume that register a 
contains the number N. If N < MAX the instructions a+ and a- behaves as 
usual. If N = MAX , th en a+ gives MAX while a- gives a nondeterministic 
choice between MAX and MAX-1. If Mis the original machine, we let M/MAX 
be the machine with registers bounded by MAX. This construction works both 
for register machines and andor machines. 

Lemma 3. For register machines or andor machines. Let C and D be configu
rations with ail registers ~ MAX. Then if M transfers Cinto D, sa does also 
M/MAX. 

Lemma 4. For a deterministic register machine M. Let D and E be halting 
configurations with empty registers. Assume that M transfer Cinto D, but not 
E. Then neither does M/MAX for large enough MAX. 
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VVe would like to get lemma 3 fo, arbitrary machines. We do not need to do 
this in general. It is only necessary to do this for andor machines derived from 
deterministic register machines. The andor machines are going to be nondeter
ministic in general with nondeterminism introduced by the bran ching instruc
tions in the deterministic register Hlachine. The nondeterminism dervived Îrom 
the bran ching 

lB 

p : if a = 0 then goto q else a - (1') 

1 p : or(k, 1) 

I
le: and(m,q) 

.m:or(n,h) 
jn:b-(m) 
1 1 : a - (1') 

The branch going clown from state k will only be lised to get down to state q 
exactly when register a is empty. The same construction works equally weil for 
an andor machine with bounded registers. Renee 

Lemma 5. Let M be an andor machine derived from a deterministic register 
machine and let D and E be halting configurations with empty regisiers. Assume 
that M transfers Cinto D, but not E. Tken neither does M/MAX for large 
wough MAX. 

Recursive inseparability 3 There is an instruction set 1 and halting configu
ration D Buck that for configuration C we cannat recursively separaie whether 

- we can prove in propositionallinear logie that C gives D in 1 
- a finite configura/ion structure gives a couniermodel that C-+D in 1 

The construction of the phase structure ,pM from andor machine Mean also 
be repeated using bounded registers giving ,pMMAX for registers bounded by 
MAX. 

6 Exponentials 

To interpret exponentials in an IL-algebra we need what Troelstra calls a modal
ity; we then get an IL-algebra with storage ((Tl Definition 8.16). A modality is a 
subset F of the domain X of the IL-algebra satisfying certain conditions (idem
potency and::; l ) and 

{J., l} ç F ç {:Il : :Il * X = x 1\ :Il ::; l} 
In al! su ch modalities our transitions are going to be interpreted as 1. Because 

given an interpetation of !, a transition C -+ D and the phase structure ,pM (or 
,pMM AX), C --Jo D is translated into a. formula F in the multiplicative additive 
fragment of linear logic. In the phase structure we have l ::; F, and hence l =!F 
for any modality. 
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Recursive inseparability 4 ft is reeursively inseparable whether for formulas 
F in linear logie 

F is derivable in intuitionistic linear logie 
A finite phase structure with modality gives a eounter example to F 

7 Introducing duality 

So far the recursive inseparability is in intuitionistic linear logic. The outline of 
the argument is as follows. \Ve started with an andor machine with two halting 
states where we cannot recursively separate whether a particular starting con
figuration ends in one or the other of the halting states. The computations can 
be represented as proofs in linear logic or by interpretations in a configuration 
space with transitions. The configuration space is later taken over to a phase 
structure. To get recursive inseparability in classical linear logic it is sufficient 
to show that an IL-algebra can be embedded into a CL-algebra. 

We start with an IL-algebra L. Let Llo be the duallattice. We then construct 
a lattice LL1. by using the sum of L and Llo - put L and Llo between the top 
and bot tom elements T and .L.The lattice operations in LL1. are defined in the 
obvious way. We have also defined a duality .L. We need to define products in 
the extended lattice. To do that we divide up into cases depending on whether 
the elements come from T, L, Llo or .L. We define products by the following 
multiplication table 

* T B1. 
l .L 

TT T T.L 
Ao T Ao * Al (Ao--{) BI)1. .L 
Bt T (AI--{) Bo)1. T .L 
.L .L.L .L.L 

To prove that LL1. is a CL-algebra we note 

- * is commutative 
- 1 is a multiplicative unit 
- * is associative 

X--{)Y = (X*y1.)1. 
- Xl. = X--{)O 

Having constructed the embedding of an intuitionistic linear algebra into a 
classical linear algebra we can conclude 

Recursive inseparability ~; For formulas F in propositional linear logic we 
cannot recursively separate whether 

we can prove F in classical propositional linear logie 
a finite CL-algebra with modality gives a counter-model to F 
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8 Interpolation 

The interpolation theorem i8 true for classica! and intuitionistic linear logic (see 
Roorda's thesis [R]), and we can show many of the lisual properties of the inter
polant. In particular, we can concluàe that ifwe have two formulas A, B without 
any other common propositional symbols than 0 and 1 and if we can prove 

then there is an interpolant 1 built up from the propositioual constants aloue 
such that 

and 

But the roliowing argument shows that there is no tocal recursive function 
giving the interpolant as a function of the two formulas A and B. As in classical 
predicate logic we need to know the derivation of the formula A ~ B. 

Let A and B be the formulas expressing that an andor machine terminates in 
a halting state a respectively b. vVe know that there is no recursive function which 
can decide whether A or B is derivable. Consider now the following implication 

Observe 

Lemma 6. For A Band C as above we have (in both intuiiionistic and classical 
logic) : 

1- A =?I- C 
- 1- B =?I- C 

Now let l he an interpolating formula for the implication C. l ra built up 
from the propositional constants alone. We have 

We have then 

H(!A~-L)-<>I 

1- I~!B 

H(!A~l..)~!I 

i-!I~!B 

Observe that in our models of jinear logic with the trivial modality - l.. and 
1- we have 
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f-- K ~I=!K = 1 

1-. K --{J L ~I= K ::; L 

Our model can separate between derivations terminating in a and terminating 
in b. We have 

Applying this we get 

If A ~I=!A = .L 

If B ~I=!B = .L 

f-- A :::::·If B --I=!B = .L ~!I = .L 

f-- B ~If A ~I=!A =.L ~!(!A--{J.L) = 1 ~!I = 1 

The interpolation formula. !I is built up from the propositional constants. 
The interpretation of !I is given as .L or 1 depending on whether 1 as a classica.l 
propositional formula has truth value false or true. So the interpretation of !I 
is recursively given by 1. 

Theorem 7. In (c/assical or intuitionistic) propositionallinear logic there is no 
totally recursive interpolation function. 
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Abstract 

Propositional ProvabiIity Logic was axiomatized in [5]. This logic describes 
the behaviour of the arithmetical operator "y is provable". The cim of the 
current paper is to Plovide propositional a.xiomatizations of the predicate "x l. 
a proof of 'II" by means of modallogic, with the intention of meeting sorne of the 
needs of computer science. 

1 Introduction 

The Propositional Provabiiity Logic GL was axiomatized in [5J. This logie describes 
the behaviour of the arithmetical operator "y is provable" by means of modal logic. 
Although sorne preperties of tbis logic are relevant for computer science (e.g. various 
forms of Gode!'. incompleteness theorem for consistency proofs in databases), GL is 
rather a mathematical domain. One reasoT is that in computer science not only the 
provability of a statement is of interest, but also in many cases the proofs themselves, 
respectively informations about the time or memory expenditure for a proof are known. 
These considerations lead to a different situation. For example it is well·known that 
a powerful machine cannot prove its own consisteney, but it is very weU possible for 
snch a machine to demonstrate that a given proof does not derive 0 = 1, or that no 
computation within a fixed time cornes to that answer. The studies on the Logic of 
Proofs have been initiated by a series of questions by G. Jager related to this topie. One 
was to give an arithmetically complete propositional axiomatization of the predicate 
"x is a proof of y". The modal systems T and TF introduced below solve this problem. 

Most definitions in this introduction are in accordance with those of the classical 
Provability Logic [5J. Nevertheless, the Basic Logic of Proofs is entirely different from 
the Provability Logic, and the arithmetical completeness proof for it does not use the 
Solovay argument. 

'Supported by the Swi .. Nationalfonds (project 21-27878.89) during •. slay a' the University of 
Berne in January 1992. 

tFinanced by the Union Bank of Switze!land (UBS/SBG) and by the Swiss Nationalfonds 
(projects 21-27878.89 and 20-32705.91). 
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1.1 Definition The modal language contains two sorts of variables, 

Po, p" . .. (called proof variables), 
Sa, S" ... (called sentence variables), 

the usual boolean connectives, truth values T (for truth) and 1. (for absurdity), and 
the labeled modality symbol Dpi for each proof variable p;. The modal language is 
generated from the atoms T, 1., Sa, S" ... by the boolean connective -+ as usual, and 
by the unary modal operators D:",('), DpI ('), ••• as follows: if pis a proof variable and 
A a modal formula then Dp(A) (Op A for short) is a modal formula. 

Parentheses are avoided whenever possible by the usual conventions on precedence 
along with the modal convention that DPi (-) is given the minimal scope. Smallletters 
p, q, r, . .. are used for proof variables, capitalletters S, T, . .. for sentence variables and 
A, B, C, ... for modal formulas. 

The clear intention is to interpret DpA as "p is a proof of A". In order to allow 
iterations of modalities, which :is an essential principle of the Logic of Proofs, the 
modal language must be interpreted in theories, which are able to link theorems and 
proofs after sorne natural coding. These considerations lead to the notion of the 
arithmetical interpretation of the modal language. 

1.2 Definition Let the theory T be a recursive extension of lE, which is valid in 
the standard mode! of arithmetic, for example let T be Peano Arithmetic PA. Greek 
letters '{>,.p, . .. denote arithmetical formulas. In this paper it will not be distinguished 
between the number n and its numeral ÎÏ. 

1.3 Definition An arithmetical formula Prf(·,·) is called a proof predicate in T iff 

• Prf(x, y) is (provably-in-T equivalent to) a recursive formula in x and y . 

• T f- '{> =- 3n E J'Il: Prf( n, r '{>') for ail arithmetical formulas '{>. 

A proof predicate is thus nothing but a recursive enumeration of the theorems of T. 

1.4 Example 

1. A standard Godel proof pmdicate for the theory T is a recursive formula Prf(·, '), 
such that for every n, m: p;J(n, m) is true iff n codes a proof in T of the formula 
coded by m. Examples of such formulas can be found e.g. in [3] or [4]. Note that, 
according to Prf(·, '), (a) eacch proof codes exactly one theorem but each theorem 
has infinitely many proofs, and, (b) each proof is longer than the theorem proved 
by it, provided the usual GOdel numbering is used. 

2. A modification Prf,(·,·) of Prf(·,·) is obtained if one allows not only proofs as 
first argument, but also programs. Note that property (b) of the first example 
fails for Prf,(·,·): Prf,(x,y) does not imply in general x ~ y because short 
programs can compute Ion!: theorems. 
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3. In the context of resource bounded reasoning one ca.n construct the l'roof predi
cate Pr!2(x,y):= 3p:::; x: Pr!,(p, y) , i.e. whicÎl ie true iffthere is a a. program 
of size not greater than X which computes y. Note that also property (a) of the 
nrst example fails for Prf.(·,·): for sorne x there can he severa! formulas tp such 
that Prf2(x,rtp') holds. 

1.5 Definition A l'roof predica.t.e le callee:! Junctional lIf for all n. 1:" k.E N: 

The standard Godel proof predicate Prfh·'; and Prf&,·) from example 1.4 are ex
amples of sueh functional l'roof prerucates. 

1.6 Definition Let Prf\-,·) be a proof predicate in T, and let ,p be a function that 
assigna to each proof variable Pi sorne n E N and to ea.ch sentence variable Si a sentence 
of T. An arithmetical interprefation 0* ie a pair (PrJ(-,.),,p) of such Prf(·,·) and 
,p. The arithmetical interpretation (At (A" for short) of a modal formula A is the 
extension of <p to ail modal formulas by: 

• T":= (0 = 0) 1.':= (0 = 1) pt:= <P(Pi) S;":= <P(Si) 

" (A -t Bl' := A* -t B* 

o (OpA)":= Prf(p', rA") 

1.7 Definition Let == denoie the syntactical idel1tity of formulas (e.g. '1' == 'l', 
but '1' A '1' ~ cp, So ~ S, and 0 ... T ~ Dpl T). An arithmetical interpretation O' = 
(Prf(·, ·l, <p) ls called functional iff Prf(-,·) is functional and O' 18 injective, which 
meaus that A' == B* implies A == B. The requirement of injectivity cau be eliminated 
as it i. demonstrated in [2]. 

The Basic Logic of Proofs is not concerned with occasional details about the coding ai 
proofs in T by mean. of one fixed Prf(-, .). Rather the Basic Logic of Proofs describes 
those basic principles which are true for ail proof predicates of a given cIas •. 

In this paper the decidable modal logics 'P and 'P:F are introduced, with axioms and 
fuIes of inference as foJlows: 

(Al) AIl (boolean) tautologies 

l ) (A2) opA ---t A 

J P 'P:F (Rl) 
A A-tB 

B 
(AS) opA ---t ~opB (A iÉ B) 

where A and B are modal formulas and p is a proof variable. 
(A2) is the Refiexiviiy Axiom and (A3) the Fu"clionalily Axiom. 
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The main result of the paper daims that for each modal formula A: 

'PI-A 
'PF 1- A 

A" is true for every interpretation (.)" 
A" is true for every functional interpretation (.)" 

Moreover, for each of these completeness theorems a proof predicate Prf(·,·) cau 
uniformly be chosen. 

It is easy to see that neither 'P nor 'PF is dosed under the necessitation A 1- OpA, or 
under the substitution rule A H B 1- OpA H OpB. 

The standard Godel proof predicate Prf(·,·) enjoys an additional property, namely to 
be monotonie: 

1.8 Definition A proof predicate is called monotone Hf Prf(n, k) implies n ~ k 
for ail n, kEN. An arithmetical interpretation 0" = (PrfC .), 4» is called monotone 
iff Prf(·,·) is a monotonie proof predicate. 

A logic 'PF M containing ail those formulas which are true under ail interpretations 
based on any fixed functional and monotonie proof predicate has been established in 
[1], too. Thereby, 'PFM is the logic of the standard Godel proof predicate Prf(·, .). 
'PFM will not be presented in this paper. 

In section 2 the soundness and ooompleteness for 'P is proved, in section 3 the same is 
done for 'PF and section 4 is devoted to uniform proof predieates. 

2 Arithmetical soundness and completeness of P 

The aim of this section is to prove soundness and completeness of the modal system 
'P with respect to arithmetical interpretations. 

2.1 Theorem Let A be a modal formula. Then 

'PI-A V": TI- A" 
{=} V": A" is true 

Proof of the soundness of 'P: Let (.)" be some arithmetical interpretation. One has 
to show that T 1- A". Induction on the complexity of the proof of A: 

(Al) and (RI) straightforward. 

(A2) 1"' case: T 1- Prf(p", rA"'). It follows that TI- A", 
hence T 1- Prf(p", rA"') -t A". 

• 

2,d case: Tif Prf(p", r A"-'). As Prf(·,·) is recursive T 1- ~Prf(p", rA"'), 
hence T 1- Prf(p", rA"') -t A" . 

The next task is to prove the arithmetieal completeness of 'P. 
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