BIBLIOTHEQUE DU CERIST

H. Dieter Rombach Victor R. Basili .
Richard W. Selby (Eds) Ceol-70%

Experimental Software
Engineering Issues:

Critical Assessment and Future Directions

International Workshop
Dagstuhl Castle, Germany, September 14-18, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Editors

Gerhard Goos Turis Harumanis

Universitit Karlsruhs Zornell University

Postiach 69 80 Departreent of Compater Science
Vincenz-Priessnitz-5Strade ! 4130 Upson Hali

D-76131 Karisruhe, Germany ‘thaca, NY 14853, USA

Volume Editors

M. Dieter Rombach
Fachbercich Informatik, Universiidt Kalsersianiern
Postfach 3049, D-67633 Kaiserslautem. Germany

Vicior R. Basili
Departrment of Comaputer Science, University of Maryiand
College Park, Marvland 20742, USA

Richard W. Selby

Department of Information & Conmputer Science, University of Caiifornia
Irvine, CA 92717, TUSA

CR Subiect Classification (19911 D.2, XK.6

ISBN 3-540-57092-6 Springer-Verlag Berlin Heidelberg New York
1SBN (-387-5192-6 Springer-Verlag New York Berlin Heidelbery

This work is snhject to copyright. Al rights are reserved, whather the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations. recitation, brozdeasting, reproduction on microfilms oy in any other
way, and storage in data banks. Duplication of this publicaticn or parts thersof i3
permitted only under thc provisions of the German Copyright Law of Seplember 9,
1965, in itz currenl version, and permmission for use must always be obtained from
Springer-Verlag. Yiolations are liable for prosecution under the German Copyright

Law.

© Springer-Verlag Berlin Heidelbarg 1993
Printed in Germany

Typesclting: Camera ready by author
45/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

Experimental Software Engineering Issues:
Critical Assessment and Future Directions

Context

Since its inception in 1968, software engineering has struggled to find its identity.
Today, we can identify three different approaches to study of the discipline of scftware
engineering in the research community: the mathematical or formal methods approach,
the system building approach, and the empirical studies group. Within the mathemati-
cal or formal methods group, the emphasts is on finding better formal methods and lan-
guages and software development is viewed as a mathematical transformation process.
Within the system building group, the emphasis is on finding better methods for struc-
turing large systems and software development is viewed as a creative task which can-
not be controlled other than through rigid constraints on the resulting product. Within
the empirical studies group, the emphasis is on understanding the sirengths and weak-
nesses of methods and tools in order to 1ailor them (o the specific goals of a particular
software project.

The purposc of this workshop was to gather those members of the software engi-
neering communily who support an engineering approach, based wpon empirical stud-
ies, to provide an interchange of ideas and paradigms for research. .

Software engineering based upon empirical studies is made difficult when one
observes that in practical software organizations, project contexts (i.c., project goals
and environmental characteristics) vary from project to project. Thus, no single tech-
nology or method can be expected to work well in all contexts, and observing software
phenomena out of context seems ta be doomed to fail. As part of the leaming process,
we need to characterize and understand the project context and understand the various
phenomena relative to that context and learn in an increment(al and evolutionary man-
ner. We need to replicate experiments in different contexts ¢ fully understand the
nature of the various phenomena and be able 10 build models to facilitate learning,

Improvement oriented approaches that take into account the evolutionary and
experimental nature of software have recently been suggested as a frameworck for stud-
ying the relationships between product and knowledge enginecring. This framework
bears the potential of integrating the efforts ol the formal methods, system building,
and empirical studics approaches in a promising way. These improvement approaches
are bascd on the use of empirical wehnology for building models. Formal methods as
well as system building technology can be clevated to the level of useful technology
from an engineering perspective if augmented with knowledge of their effectiveness
based on empirical evidence, Other frameworks with similar objectives have been sug-
gested too.

Alter twenty-five years of software engineering it seemed appropriate o rethink its
scientific and engineering basis. Based on the increasing demands imposed on our fietd
by the ever-increasing complexity and criticality of sofiware related applications, a

vV

BIBLIOTHEQUE DU CERIST

move towards an enginecring view of gur ficld is needed. Such a move must not be
construed as a competition between the mathematical, system building, and empirical
studies approaches. Instead, il suggests that alf three are necessary, but that we cannot
ignore the neture of our field, which requires more than devising new languages and
techniques and more than just building systems which can be judged at the end. We
need to do all of this in a framework which enables us 1o understand ail existing and
new technologics, and use them in a controlied fashion to develop the sysiems required
by our cuslomers.

Objectives

We have only begun to understand the experimental nature of software engincering,
the role of empirical studies and measurement within software engineering, and the
mechanisms needed to apply them successfully, Workshop discussion was focused on
assessing past accomplishments within the experimenta! software engineering commu-
nity and proposing necessary future steps. The topics of discassion included several of
the most eminent chatlenges within experimental software engineering:

{1) Identifying the appropriatc paradigm for software engincering:
Should we adapt the mathematical approach or the experimenta! approaches
used in physical or social sciences? For what purpoaes do we need empirical
studics in experimental software enginearing? What are software.-specific
constraints or requirements for empirical studies?

2) Undersianding the range of differeni contexls for empirical studies in soft-
" wale enRginesTing: ’
Why do we measuwre? What is it we want 10 know? How do the changing
project contexts affect our ability (o measure?

{3} Devising the appropriate procedures and mechanisms for empirical studics:
How shouid we perform empirical studies? How should we specify the
objectives and context of studies? How should we determine the appropriate
measures for a given chjective? How should we design the appropriate
cxperiments or case studies? How should we collect and validate product
and process data?

{4) Guiding the use of smpirical data 6 build or improve existing sofiware
models:
What are the approprizate analysis procedures for software engineering dat?
How can 1hese procedures help us create models of software processes and
oroducts? What altermatives exist to model building based on empirical
data?

(8) identifying appropriate concepts snd mechanisms for packaging existing
" models for reuse across projects;
What makes models rensable? How do we determine the needs for reuse?
How should we organize and build up reusable model librares? What
mechanisms are needed 1o support reuse of models across projects?

W

BIBLIOTHEQUE DU CERIST

(6) Proposing appropriate means of distributing experimental ideas to pracli-
tioners and students:
How do we make improvement happen in practice? What organizational
stroctures are needed 10 support technology transfer, especially what roles
can universities and industry play? How can we change our university cur-
ricula in order to instill ideas of empirical studies inte students early on?
How can we train practitioners in the experimental paradigm of software
engineering?

Session Organization

In order to address all these challenges, an international workshop on the topic "Exper-
imental Software Engineering Issues” was organized and held at the International Con-
ference and Research Center for Computer Science (IBFI) at Dagstuhl Castle in the
Federal Republic of Germany., The motivation for this workshop was to provide a
forum for a relatively small but representative group of leading experts in experimental
software engincering with an emphasis on empirical studies from both yniversities and
industry to mect and reflect on past successes and failures, assess the current state-of-
the practice and research, identify problems, and define future directions. An organiz-
ing committee identified key topics and key people 1o participate in the workshop. The
six challenges above were chosen for discussion along with people to present keynote
presentations and chair those sessions. A final session was aimed at devising an agenda
for the future.

After the selection of discussion topics, keynoters and session chairs was made,
approximately thirty more participants were invited to submit position papers cn one
of the selected topics. The participants came from Europe, the United States and Can-
ada, Asia and Australia. During cach session, a keynote prescntation was followed by
a number of position statcments and extensive discussion. The maicrials consained in
this velume include for each session the keynote address, position papers, and a dis-
cussion summary.

This workshop was scheduled to run from Monday, September 14, through noon
on Friday, September 18. Six half-day sessions (Monday, Tuesday, Thursday) were
devoted 10 the topics listed. Each session was organized by a session chalr, and intro-
duced by a keynote presentation intended to provide a crilical assessment of the topic
at hand and to make provocative statements to stimulate discussion. The keynote was
complemented by 2 number of position statements. The major portion of each session
was reserved for lively discussion. Wednesday was reserved for sightseeing in the city
of Trier. The wrap-up session on Friday moming was intended to synthesize the results
of a week-long discussion into a statcment of where we stand as a field (i.e., what we
agree on, what we don't agree on) and devise an agenda for future progress in our field,

Results

The results of the workshop can be summarized in terms of what has been achieved in
the past in terms of measurable benefits from the software practitioner's perspective,
what lessons have been learned regarding experimental software engineerng in gen-

Vil

BIBLIOTHEQUE DU CERIST

eral and smpirical studies in specific, what are remaining key points of dissent, and
what are the important topics for future work. The following summaries reflect the
consensus achieved in the discossion sessions compiemented by the written opinions
collected from the workshop attendecs via a questionnaire.

{A) Past Achievements (Practitioners’ Perspective):

Each workshop atienidee was in a position to report about empirical studies and/
or measurement programs and subjective results ranging frem increased nnder-
standing of certain software engincering phenomena or the improvements of
real-world software processes. Most of these achievements are not well docu-
mented or documentation is company-confidential. Most of the achicvements
are based on empirical studies in very specific contexts and cannot be general-
tzed due o the vaniability in contexts acrgss different organizations,

The workshop attendees felt that in order to live up to the theme of the work-
shop, we needed to come up with documented results which could be analyzed
by others and could be used to convey the patential value of empirical work in
terms of measurable benefits. One outstanding example was reported by Frank
McGarry from the Software Engineering Laboratory at NAS A's Goddard Space
Flight Center and will be mentioned here as an example. Frank McGarry
reported the following practical SEL achievements which had becn achieved
throngh and demonstrated via empirical studies:

» People orienied technologies are most effeciive (e.g., inspections, Clean-
roomy) as opposed 10 autcmated 1ools

+ Commonly accepted complexity measures are not very meaningful in our
domain

o Ada software costs more to develop; less to deliver because of reuse (multi-
ple experiments)

« Inspections by stepwisc abstraction reading arc the mest effective and most
cost effective testing method

« Modcis/relationships developed are incorporated into management process
{e.g., manager's hangbook) and supported (¢.g., SME)

« The error rates in development projects were reduced sigrificantly through
the use of Cleanroom (e.g., 33% on 2 series of 3 projects)

= Environmenial heritage/contexiflegacy is the dominant impact on processes
and products (e.g., vse of Ada cver time)

= Productive reuse is driven by process reuse and packaging of design - not by
code packaging (¢.g., Ada/OOD experiments)

= Some commonly accepted processes assumed 10 be heneficizl are ingppro-
priale for the SEL {(e.g., IVEY) ’

jall

BIBLIOTHEQUE DU CERIST

« Personnel variation in productivity are tremendous {factors of 3 or 4 for
large systems; factors of up to 15 in small systems)

« Design strucwure (strength/coupling) is an excellent predictor of modvle
defects

Examples from other local environments have been provided but cannot be
reported in this brief summary.

(B) Past Achievements (Rescarchers’ Perspective):

The most important lessons learned about empirical stdics and measurement
include a broad agreement regarding the experimental nature of software engi-
neering., This experimental nature requires empirical studies as a driver for
leaming and improvement. Eropirical studics need to be performed with a goal
and hypothesis in mind and the context characteristics necd to be taken into
account when interpreting mcasurcment data. A varicty of approaches for
improvement and goal orientation were surveyed in Vic Basili's keynote
address.

The meost frequently occurring themes during the discussion and on the ques-
tionnaires were:

+ Software cngineering research needs to be driven by empirical studies
« Meirics and data in isolation (i.e., without context) are useless

« No single set of metrics is universally best

= Sound empirical approaches are essential

= Empirical studies have produced results in local contexis; but we have not
been able to generalize local results

As an example, Vic Basili and Frank McGarry from the Software Engineering
Laboratory at NASA's Goddard Space Flight Center reported the following
research lessons they had learned about the application of empirical studies and
measurement over the past fifteen years:

« The purpose of experimentation is for self-improvement and self-under-
standing rather than inter-organization and inter-country comparison

= Expectation/provision of N to 1 improvement in productivity over finite
time (3 to 10 ycars) is bascless and won't happen!!!

« We are most effective when using multiple processes based on context (e.g.,
we are using Fortran/Functional-Decomposition-based design/reuse-ori-
ented waterfall, ADA/OOD/reuse-oriented waterfail, and Cleanroom)

= Each of the above technologies and processes had 1o be tailored to our envi-
ronment

» Understanding (baselining) is absolutely mandatory as a first step (before
planning/controlling, technology transfer}

iX

BIBLIOTHEQUE DU CERIST

Process definition/lariiication of the empirical process is mandaiory for
successful experimentation/measyrement {.e., Doctor heal thyself)

The procese improveinenl paradigm is cqually important for the software
development task and the experimentation/data collection task

The process for empirical studies bas 10 be well defined and improved
There must be a goal/rationale for data collection

Data by itself provides minimal, most likely erroneous or detrimental
meights

The measurement data has fntringic imprecision, inconsistency, and incom-
pletely represented context and it always will, This drives the need to study
wends not absolute facts.

Packaging of experience is key to success - but is rarely done cffcclively

Packaging (i.e., development of local standards) needs to be experience
driven (e.g, 2167 A is an incompiete approach

Effective cookbooks can be developed for particular domains fe.g., SEL
measurement handbook, SEL management handbook)

More data does not necessarily mean better resulis (i.e., national databases
for measurement data are a waste of timie and rcsources)

Experimentation requires two identifiable, separate {but cooperating) orgarn-
izational infrastructure components, which both invelve cost

- overhead o project (noise -- < 2%)

- analysis and synthesis of data (8-10%)

- support {quality assurance, databases, ...)

Developers treat data collection/experimentation as an annoyance only, not
as significant impact

Infusion of significant process change {(e.g., Ada, Cleanroom, OOD)
requires 5 to 10 years

{C) Key Points of Dissent:

Although, all workshop participants agreed on the need for employing cmpiri-
cal studies and measurement in order to introduce engineering discipline mnto
the field of software engincering, several points of dissent remained,

Exampiles of dissent explicitly voiced by paritcipants included:

Are large-scale, reai-world experiments feasible from a scientific point of
view? The majority opinion was that large-scale experiments {better: case
studies) are feasible. They serve the purposcs of observing trends rather
than absolute facts and are needed lor scaling up statistically significamt
observaticns from conwolled experiments. In any enginecring discipling

BIBLIOTHEQUE DU CERIST

such large-scale experiments are a useful and necessary. The minority opin-
ion was that large-scale experiments can never be sound from a pure scien-
tific perspective and, therefore, are not helpful.

+ What are the right kinds of goals for measurcment and empirical studies to
begin with? The majority opinion was that there is no general answer to this
question. The only rule of thumb is 10 start with goals oriented (owards
understanding, {o continue with goals oriented towards betier management
and prediction, and ultimately address goals aimed at change/improvement.
The specific goals depend on the needs and characteristics of the organiza-
tion at hand. The minority opinion was that one should always start with
micro-level goals (c.g., understand a testing process) before moving
towards macro-level goals (¢.g., understand the entire development proc-
ess).

+ It the Hawthome effect crucial? Some viewed the impact of the Hawthorme
effect as so crucial that they concluded measurement of people could/should
not be performed at all; others viewed it as non-critical. Again, there
secemed to be a difference of opinion depending on the purpose of empirical
studies and measurement. The majority opinion was that the Hawthome
effect can be tamed using appropriate statistical designs/analyses.

» How can empirical studies and measurement be introduced in teaching cur-
ricula? The majority viewed it as essential 10 train students from the begin-
ning in evaluating the effects of methods and tools. A minority suggested
postponing the topic to advanced software engineering classes,

(D) Important Topics for Future Work:

Future work needs to cmphasize both the development and assessment of better
infrastructure technology (i.c., principles, methods, tools) for experimentation
and measurement, the application of that infrastructure for empirically invest-
gating existing software evolulion aspects in order to build better models of the
basic building blocks of our discipline, and the infusion of empirical studies
ideas into the educalional system (i.e., teaching and training) and the real world.

As far as the development and assessment of infrastructure technology for
experimentation and measurement is concerned, there was widespread agree-
ment that the most significant need for research exists in technologies for mod-
cling software engineering aspects, feeding back empirical data o improve
those models, and organizing models for reuse, as well as in the availability of
more laboratory cnvironments for empirical studies. Specific suggestions
included:

« Better approaches for scaling up empirical results from small, conirolled
environments to large, real-world environments

« Infrastructure for software measurement, spanning metrics specification,
collection, analysis, visualization and predictive guidance

Xl

BIBLIOTHEQUE DU CERIST

Alicrate approaches for validaiing software models based on small sets of
data points

A saxonomy of study types depending on the purpose of study
Formal approachss for hypothesis formulation
Proccsses for creating baselines for different domains and environments

An cxpanded notion of study context 1o include different processes and
organizational struciures in different business domaing

Investigation of ths use of better graghical, animated methods for presenting
and analyzing experience models

Demonstration of practical benefits of measurement and risk {based on data)

More real laboratorics for conducting empirical research (Existing exam-
ples include the Software Engineering Laboratory at NASA's Geddard
Space Flight Center and the Software Technology Transfer Initiative Kai-
serslawtern {STTI-KL}) at the Umiversity of Kaiserslautern.)

Communication networks enabling individual rescarch groups and compa-
nics (o cooperaie in the scnse that empirical studies are being replicated
across environment boundarics to improve the believability of local findings
or understand the impact of different contexis (An existing example ig the
International Software Engineering Research Network (ISERM) founded by
Prof. Basili, USA, Prof, Cantone, ltaly, Dr. Oivo, Finlend, Prof. Rombach,
Germany, Prof. Selby, USA, and Prof. Torii, Japan.}

As far as the empirical investigation of existing software evolution aspects are
concerned, major efforts ave needed in the following arcas:

L]

a

Characterization of naturally occurring sofiware artifacts
Anelysis of process-product relationships
Measurement of (Derivation of measures for) the evolution of software

deasurement of (Derivation of measures for) integration aspects of soft-
ware

Documentation and publishing of results and achievements in objective
terms (see the SEL example under (A) and (B))

Promotion of existing knowledge via software engingering handbooks
(! Don't be afraid of incompleteness at this stage 1)

Development of social and economic models for software evoiution

Ag far as the infusion of empirical studies ideas into education and practice are
voncerned, major efforts are nesded in the following areas:

Xl

BIBLIOTHEQUE DU CERIST

« Development of undergraduate software engineering courses stressing engi-
neering aspects (e.g., problem solving vsing heuristics) supported by appro-
priate textbooks

» Development of graduate software engincering courses stressing the basic
principles, methods and tools for measurement and empirical studies sup-
ported by apprapriate texthooks

+ Development of technology transfer programs based on measurement (i.e.,
first, quantitative baselines of the state of affairs need to be developed; sec-
ond, changes for the purpose of improvement can be introduced})

In summary, the workshop served as an important event in continuing to strengthen
empirical sofiware engineering as a major subdiscipline of software engineering. The
deep interactions and important accomplishments from the meeting documented in this
proceedings have helped identify key issues in moving software engineering as a
whole towards a true engineering discipline. By the end of the workshop, most of the
attendecs acknowledged that they feel part of a true community of empirically orienied
software engineers. In order o foster that sense of community, the empirical software
engineering community intends to hold a continuing series of conferences and meet-
ings that build on this workshop. Furthermore, an e-mail list for communication and
exchange of information among people interested in empirical software engineering
research was suggested.

NOTE: Such an e-mail list "empirical-se@informatik.uni-kl.de” now exists!
Requests to join should be sent to "empirical-se-request@informatik,uni-kl.de".

Acknowledgements

It would have been difficult t0 organize a workshop like this without help and financial
support from a variety of organizations. First, we would like to thank all the workshop
participants for their effort in submitting position papers and participating in the dis-
cussions. Next, the session chairs and keynoters deserve a special thanks for their con-
tributions to the success of the workshap.

Clearly, an effort such as this could not have been successful without financial sup-
port. We would like to acknowledge and sincerely thank the IBFI for supporting lodg-
ing and providing excellent meeting facilities, and the University of Kaiserslautern for
additional general purpose funds. Our special thanks go to Alfred Brickers, Chris Lott,
and Martin Verlage from the University of Kaiserslautern for having taken notes of all
discussion sessions and to Mrs. Kilgore from the University of Kaiserslautern who did
a splendid job in providing sccretarial support and arranging the social events. Last but
not least, we acknowledge the tremendous amount of work by Mr. Martin Verlage in
editing these Qroceedings.

Kaiserstautern H. Dieter Rombach
May 1993 Victor R, Basili
Richard W. Selby

A

1S1430 NA INO3IHLOITdId

N

BIBLIOTHEQUE DU CERIST

Contents

Session 1: The Experimental Paradigm in Software Engineering

Keynote: The Experimental Paradigm in Software Engineerning......ouu i cvnsnininn

Victor R. Basili

Profile of an Artifact Assessment Capability c...ccoveii e criennrer s v e

William W, Agresti

Experiments and Measurements for Systems INEEration...... . verrrcecrnscrvreverresnans

Les A. Belady

Software Engineering Still on the Way 10 an Enginecring Discipling..........ccoeinns

Norbert Fuchs

Problems in Modeling the Software Development Process as an Adventure
GAIMS ... ittt et e e ss i
Jochen Ludewig

Qualitative Techniques and Tools for Measuring, Analyzing, and Simulating

D W AIE PlOCESSES. .o iviiircier it crrrissterrriasssstasamssnnes st ssss s ssnvrssssbeostossensenss asts snstsesnnsnt sass bin

Walt Scacchi

On Experimental Computer SCIBNCE. ... v csceermr et sems s sss i sssrrsss s e

Walter F. Tichy

DiSCUSSION SUIMITEATY 1..vciuinrrmvrrsssrirorrtesrisrssisrsrsrssasses eressssrersresserss st fesrssesssersnraseares

William Agresti

Session 2: Objectives and Context of
Measurement/Experimentation

Keynote: Objectives and Context of Software Measurement, Analysis and
CONtrol ...cci v,
Michae! A, Cusumano

POSIHOM PADET oottt ettt e tvraessee e reerara et acrm resbras secerrer e raaas e sesvarrassasnan

Norman Fenton

Software Engineering as an Qrganisational Challenge.......cooeveieeeiecercveseneceiiennn,

Giinter R. Koch

Quantitative Measurements Based on Process and Context Models.......cocvvevvisninne.

Nazim H. Madhavji, John Botsford, Tilman F.W. Bruckhaus, and
Khaled El Emam

XV

13

17

.19

w23

27

30

KX

.41

62

67

BIBLIOTHEQUE DU CERIST

Selecting, Implementing, and Measuring Methads to Improve the 3oftware

Dev el OPIMENT PIOCESS 11 it tisis et ters e ssins e etee e sa bt e et b s ea e e sb e svbrg et b et bbb e rnns e basb et ras

Kari-Heinrich Méller

Reshinking Measoremens 10 Support Incremental Process Improvement .

Adam A. Porter

DHSCUSSION SUIMIMATY 1ocoitventieerierseseecerrnteis e s bes s seasesesbebessarass erast s sseseabansssessnssabeansen

Norman Fenton

Session 3: Procedures and Mechanisms for
Mesasurement/Experimentation

Keynote: Software Measurement and Experimentation Frameworks,

Mechanisms, 20 TNITASHUCIUIT c.uuvereirairessrisssess srarsssrrssassseasasracs sens seas susassstassressssssran

Richard W. Selby

Towards Well-Defined, Shareable Product Data.....coee v s ccvnravrnessan

Warren Harrison

A View on the Use of Three Kesearch Philosophies to Address Empirically

Deiermined Weaknesses of the Software Engineering Protess i snvvasisiotmneiees
&

Ross Jeffery

Bridging the Gap Between Research and Praciice in Software Engineering
Management: Reflections on the Siafling Factors Paradox ...
Chris F. Kemerer

A Meihodology for Evaluating Software Engineering

Methods ANt TOOLS ... icceree v cerrrtrrsnes e rerrreresbe s rrmtes rtr s aen sesrastrrsmnas sheer t4nebssas sheatonnasbns

Barbara Kitchenhan

Experimental Software Engineering Shoold Concentrate on Software

EVOMILIOM it v srerirscossrremserarsss crnstsnssesebesseanses cosennssasnse sreintesrrmnses surasen sssascsssnmsasasressesnses

Hausi A. Milfer

Yet Arother Laboratory for Software Engineering......cooeiveenrericsnr e sentattocneens

Eric Sumner, Jr.

An Axiomatic Modcl for Program COmplexity .o e cecreremreresneremsecmseeonna e

Marvin V. Zetkowitz

Support of Ezperimentation by Measuremen! ThCOTY v wvrmnmerrmmisimss s sesnns

Horst Zuse

DISCUSSION SUMMIMEBLY 1rovviieriiviecsicreneserersireasrerarssasssssrson riassiasasscarsssasssasiessanvarssrrssnsson

Barbara Kitchenham

Xl

73

77

82

89

107

111

. 116

21

125

129

133

137

14}

BIBLIOTHEQUE DU CERIST

Session 4: [Measurement-Based] Modeling

Keynoitc: Task-Specific Utility Assessment Models and their Role in the
Dcevelopment of Software Engincering Handbooks ...c...coovivviiece i
Stephen M. Thebaut, and Vincent Y. Shen

Quantitative Empirical Modeling for Managing Sofiware Development:
Constraints, Needs and SOILONS wiiiiiiienir e e
Lionel C. Briand

Software Business, Concurrent Engineering and Experience Factory
R LA IO S DS ucveti et it rea et ceree et et s eaae e e e eseeerd e me et ansbesesenssss s emmsrasars
Giovanni Cantone

Establishing the Fundamentals of Software ERZINECTING .ovevvevemviievineirmenceeecesearne s
Daniel Hoffman

Measurement-Based Modelling Issucs - The Problem of Assuring Ulira-High
DependabiliLy co.eoiiiirenr e e e e etrre s s eossras e e e e nrg e e am e e s e b e
Bev Littlewood

The Role of Simulation in Soltware Engineering Experimenlationcoumiwnin
Anneliese von Muyrhauser

Multiple Viewpoints of Softwarc Models.........o e et v e
Markku Qiva

DISCUSSION SUIMMTEATY _.cuuiirrvvrricniecessbisrmnnsr coessts st s v et b sstd s aas e bbb s s sn b smaes s hasnbes
Anneliese von Mayrhauser

Session 5: Packaging for Reuse / Reuse of Models

Keynole: Software Engineering Models, Using and Reusifgccooovvvvevccecciicrnennne
Kevin D. Wenizel

Model Rense and Technology Transfer .. e
Albert Endres

Packaging [or Reuse and Rense of Models ..
Stuart I. Feldman

A Rcuse Culture for Software CORSITUCLION .v.c.cceveecte e ceeeeer et eemestmecrss e enreeas
Claus Lewerentz

Experimental Software Engincering; Packaging {or Reuse....ooiicniicnnnnne
Frank McGarry

xXvil

151

158

164

171

173

177

180

183

191

202

206

210

213

BIBLIOTHEQUE DU CERIST

Expertmenial Designs for Vaiidaurg Metrics and Applying them Across
sultiple Projects... e rL LA Ee R ban e R AR en s e e
Morman F. Sc}metdewmd

i
[
[#1}

DHECUSSION SUIMIMATY ooecieietriee e st e en e crnssessere s ere e se v s essesasmsassem sy g sesrensass B L
Frank McGarry

Session 6: Technology Transfer, Teaching and Training

Keynole; POSIHON PARSE... o ceereercveret i rissscitre e seetess e stabe s smsmbessssssessstatempmsnsossas sans 220
wanny M. Leiman

Technology TTABSTET ..o e iirresssirer s e s e ses s s sesssssssnesmssns resssas sossnsscenss sre 2360
John J, Marciniak

Systematic Software Technology TRANSIET .vcn s srerran 239
H. Dieter Rombach

Effective Use of Measurement and Experimentation in
Computing CITICULA oo e et se e e sercommensonssvasnes SN T
Stu Zweben

DHSCUSSION SUMHIIATY ..eoveteieeecrrninec i ctim e spes st emess et an e s s somneas s s s ransiaes 200
H. Dieter Rombach

st OFf ParticiDantS ... e 237

pANTH:

BIBLIOTHEQUE DU CERIST

Session 1:

The Experimental Paradigm in
Software Engineering

Session Chair: William W. Agresti
Keynote: Victor R. Basili

Position Papers: William W. Agresti
Les Belady
Norbert Fuchs
Jochen Ludewig
Walt Scacchi
Walter E. Tichy

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

The Experimental Paradigm in Software Engineering

Victor R. Basili

Instinute for Advanced Computer Studies
and
Department of Computer Science
University of Maryland

What is software and software engineering?

Software can be viewed as a part of a system solution that can be encoded to execute
on a computer as a set of instructions; it includes all the associated documentation nec-
essary to understand, transform and use that solution. Software engineering can be
defined as the disciplined development and evelution of software systems based upon
a set of principles, technologies, and processes.

We will concentrate on three primary characteristics of softwarc and software engi-
neering; its inherent complexity, the lack of well defined primitives or components of
the discipline, and the fact that software is developed, not produced. This combination
makes software something quite different than anything we have dealt with before.

One important characteristic about software is that it can be complex; complex to
build and complex to understand. There are a variety of reasons for this. For example,
we often choose software for a part of the solution, rather than hardware, because it is
the part of the solution we least understand, or it is something new, or there is a
requirement for change and evolution of the function or structure. In all of these cases
complexity is introduced, the development becomes error pronc, estimation is difficult,
and there is a lack of undesstanding of implications of change.

However, the primary reason software is complex is probably the Iack of models,
especially traciable models of the product, process and any other forms of knowledge
required to build or understand software solutions as well as the the interaction of
these models. Software is not very visible, i.e., we do not have satisfactory models of
the various aspects of the software, e.g., the functionality, the quality, the structure. In
fact we do niot even have intuitive models in many cases. This leaves us with a poor
understanding of processes, reguirements, and products.

Lastly, software is created via a development process, not a manufacturing process.
This really means software is engineered. We have learned a great deal about quality
manufacturing in the past few decades but we have not learned much about quality
development/engineering.

So given the nature of this discipline, how does one begin 1o analyze the software
product and process.

