
H. Dieter Rombach Victor R. Basili
Richard W. Selby (Eds.)

Experimental Software
Engineering Issues:
Critical Assessment and Future Directions

International Workshop
Dagstuhl Castle, Germany, September 14-18, 1992
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitl!t Karlsruhe
Postfach 6980
Vincem:-Priessnitz-StraBe !
D-76131 Karlsruhe, Germany

Volume Editors

H. Dieter Rombach

Juris Hartmanis
Comell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Fachbereich Informatik, Universitiit Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany

Victor R. Basili
Department of Computer Science, University of Maryland
CollegePark, Maryland 20742, USA

Richard W. Selby
Department of Information & Computer Science, University of California
IrviIle, CA 92717, USA

CRSubject Classification (1991): D.2, K.6

ISBN 3-540-57092-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57092-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. AH rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data balLKs. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its CUITent version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by aurhor
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

Experimental Software Engineering Issues:
Critical Assessment and Future Directions

Context

Since its inception in 1968, software engineering has struggled to find its identity.
Today, we can identify three different approaches to study of the discipline of software
engineering in the research corn munit y: the mathematical or formal methods approach,
the system building approach, and the empirical studies group. Within the mathemati
cal or formai methods group, the emphasis is on finding better formal methods and lan
guages and software development is viewed as a mathematical transformation process.
Within the system building group, the emphasis is on finding better methods for struc
turing large systems and software development is viewed as a creative task which can
not be controlled other than through rigid constraints on the resuIting producl Within
the empirical studies group, the emphasis is on understanding the strengths and weak
nesses of methods and tools in order to tailor them to the specific goals of a particuiar
software project.

The purpose of this workshop was to gather those members of the software engi
neering corn munit y who support an engineering approach, based upon empirical stud
ies, to provide an interchange of ideas and paradigms for research.

Software engineering based upon empirical studies is made difficult when one
observes that in practical software organizations, project contexts (i.e., project goals
and environ mental characteristics) vary from project to project. Thus, no single tech
nology or method can be expected to work weIl in all contexts, and observing software
phenomena out of context seems to be doomed to fail. As part of the learning process,
we need te characterize and understand the project context and understand the various
phenomena relative to that context and learn in an incremental and evolutionary man
ner. We need to replicate experiments in different contexts to full y understand the
nature of the various phenomena and be able to build models to facilitate learning.

Improvement oriented approaches that take into account the evolutionary and
experimental nature of software have recently been suggested as a framework for stud
ying the relationships between product and knowledge engineering. This framework
bears the potential of integrating the efforts of the formal methods, system building,
and empirical studies approaches in a promising way. These improvement approaches
are based on the use of empirical technology for building models. Formal methods as
weIl as system building technology can be elevated to the level of useful technology
from an engineering perspective if augmented with knowledge of their effectiveness
based on empirical evidence. Other frameworks with similar objectives have been sug
gested too.

After twenty-five years of software engineering it seemed appropriate to rethink its
scientific and engineering basis. Based on the increasing demands imposed on our field
by the ever-increasing complexity and criticality of software related applications, a

v

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

move towards an engineering view of our field is needed. Suell a move must not he
construed as a competition between ù'le mathematical, system building, and empirical
studies approaches. Instead, it suggests that all three are necessary, but that we cannot
ignore the nature of our field, which requires more than devising new languages and
techniques aild more than just building systems which can be judged al the end. We
need to do ail ofthis in a framework which enables us to understand al! existing and
new~teclmologies, and use them in a controlled fashion to develop the systems required
by our customers.

Objectives

We have only begun to understand the experimental nature of software engineering,
the tole of empirical studies and measurement within software engineering, and the
mechanisms needed to apply them successfully. Workshop discussion was focused on
assessing past accomplishments within t.'Je experimental software engineering commu
nit y and proposing neeessary future steps. The topies of discussioll includedseveral of
the most eminent challenges within experimental software engineering:

(1) Identifying the appropriate paradigm for software engineering:
Should we adapt the mathematical approach or the experimental approaches
used in physical or social sciences? For what purposesdo we need empirical
studies in experimental software engineering? What are software-specifie
constraints or requirements for empirieal studies?

(2) Understanding the range of different contexts for empirical studies in soft
ware engineering:
Why do we measure? What is il we wan! 10 know? How do the changing
project contexts affeet our ability 10 measure?

(3) Devising the appropriate procedures and mechanisms for empirical studies:
How should we perform empirical studies? How should we specify the
objectives and contex! of studies? How should we determine the appropriate
measures for a given objective? How should we design the appropriate
experiments or case studies? How should wé colleet and validate product
and process data?

(4) Guiding the use of empirical data 10 build or improve existing software
models:
What are the appropriate analysis procedures for software engineering data?
How can these procedures help us create models of softwareprocesses and
products? What alternatives exist to model building based on empirical
data?

(5) Identifying appropriate concepts and meehanisms for packaging existing
models for reuse acros~ projeets:
What makes models rensable? How do we determine the needs for reuse?
How should we organize and build up reusable model libraries? What
mechanisms are needed to support reuse of models across projects?

V1

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

(6) Proposing appropriate means of distributing experimental ideas to practi
tioners and students:
How do we make improvement happen in practice? What organizational
structures are needed to support technology transfer, especially what roles
can universities and industry play? How can we change our university CUT

ricula in order to instiIl ideas of empirical studies into students early on?
How can we train practitioners in the experimental paradigrn of software
engineering?

Session Organization

In order to address aIl these challenges, an international workshop on the topie "Exper
imental Software Engineering Issues" was organized and held at the International Con
ference and Research Center for Computer Science (IBPI) at Dagstuhl CastIe in the
Federal Republic of Germany. The motivation for this workshop was to provide a
forum for a relalively small but representative group of leading experts in experirnental
software engineering with an emphasis on empirical studies from both universities and
industry to meet and reflect on past successes and failures, assess the current state-of
the practice and research, identify problems, and define future directions. An organiz
ing committee identified key topics and key people to participate in the workshop. The
six challenges above were chosen for discussion along with people to present keynote
presentations and chair those sessions. A final session was aimed at devising an agenda
for the future.

After the selection of discussion topics, keynoters and session chairs was made,
approximately thirty more participants were invited to submit position papers on one
of the selected topics. The participants came from Europe, the United States and Can
ada, Asia and Australia. During each session, a keynote presentation was followed by
a number of position statements and extensive discussion. The materials contained in
this volume include for each session the keynote address, position papers, and a dis
cussion summary.

This workshop was scheduled to run from Monday, September 14, through noon
on Friday, September 18. Six half-day sessions (Monday, Tuesday, Thursday) were
devoted to the topies listed. Each session was organized by a session chair, and intro
duced by a keynote presentation intended to provide a critical assessment of the topic
at hand and to make provocative statements to stimulate discussion. The keynote was
complemented by a number of position statements. The major portion of each session
was reserved for lively discussion. Wednesday was reserved for sightseeing in the city
of Trier. The wrap-up session on Friday morning was intended to synthesize the results
of a week-long discussion into a statement of where we stand as a field (i.e., what we
agree on, what we don't agree on) and devise an agenda for future progress in our field.

Results

The resuIts of the workshop can be summarized in terms of what has been achieved in
the past in terms of measurable benefits from the software practitioner's perspective,
what lessons have been learned regarding experimental software engineering in gen-

VII

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

eral and empirica! studies ln specifie, what are remaining key points of dissent, and
what are the important topies for future work. The following summancs rcHect the
consensus achieved in the discussion sessions complemented by the written opinions
collected from the workshop attendees via a questionnaire.

(A) Past Acbievements (practitioners' Perspective):

Each workshop attendee was in a position to report abOut empirical studies and!
or measurement programs and subjettive results ranging from increased under
standing of certain software engineering phenomena or the improvements of
real-world software processes. Most of these achievements are not well docu
mented or documentation i8 company-confidential. Most of the achievements
are based on empirical studies in very specifie contexts and cannot be general
ized due to the variability in contexts across different organizations.

The workshop attendeesJelt that in order to live up to the theme of the work
shop, we needed to come up with documented results whieh could be analyzed
by others and could be used to con vey the potential value of empirical work in
terms· of measurable benefits. One outstanding example was reported by Frank
McGarry from the Software Engineering Laboratory at NASA's Goddard Space
Flight Center and will be mentioned here as an example. Frank McGarry
reported the following practical SEL achievements which had been achieved
through and demonstrated via empirical studies:

People oriented technologies are most effective (e.g., inspections, Clean
room) as opposed to automated tools

Commonly accepted complexity measures are not very meaningful in our
domain

Ada software costs more to develop; less to deliver because of reuse (multi
ple experiments)

Inspections by stepwise abstraction reading are the mest effective and most
cost effective testing method

Models/relationships developed are incorporated into management process
Ce.g., manager's handbook) and supported (e.g., SME)

The error rates in development projects were reduced significantly through
the use of Cleanroom Ce.g., 33% on a series of 3 projects)

Environmental heritage/context,lJegacy is the dominant impact on processes
and products (e.g., use of Ada over lime)

Productive reuse is driven by process reuse and packaging of design -n.ot by
code packaging (e.g., Ada/OQD experiments)

Sorne commonly accepted processes assumed t.o be beneficiai are inappro
priate for the SEL (e.g., IV &V)

VIII

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Personnel variation in productivity are tremendous (factors of 3 or 4 for
large systems; factors of up to 15 in small systems)

Design structure (strength/coupling) is an excellent predictor of module
defects

Examples from other local environments have been provided but cannot be
reported in this brief summary.

(B) Past Achievements (Researchers' Perspective):

The most important les sons leamed about empirical studies and measurement
include a broad agreement regarding the experimental nature of software engi
neering. This experimentaI nature requires empirical studies as a driver for
leaming and improvement. Empirical studies need to he performed with a goal
and hypothesis in mind and the context characteristics need to be taken into
account when interpreting measurement data. A variety of approaches for
improvement and goal orientation were surveyed in Vic Basili's keynote
address.

The most frequently occurring themes during the discussion and on the ques
tionnaires were:

Software engineering research needs to be driven by empirical studies

Metrics and data in isolation (i.e., without context) are useJess

No single set of metrics is universally best

Sound empirical approaches are essential

Empirical studies have produced results in local contexts; but we have not
been able to generalize local results

As an example, Vic Basili and Frank McGarry from the Software Engineering
Laboratory at NASA's Goddard Space F1ight Center reported the following
research lessons they had leamed about the application of empirical studies and
measurement over the past fifteen years:

The purpose of experimentation is for self-improvement and self-under
standing rather than inter-organization and inter-country comparison

Expectation/provision of N to 1 improvement in producti vit y over finite
time (5 to JO years) is baseless and won't happen!!!

We are most effective when using multiple processes based on context (e.g.,
we are using Fortran/Functional-Decomposition-based design/reuse-ori
ented waterfall, ADNOOD/reuse-oriented waterfall, and Cleanroom)

Each of the above technologies and processes had to be tailored to our envi
ronment

Understanding (baselining) is absolutely mandatory as a first step (before
planning/controlling, technology transfer)

IX

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Process definition/clarification of the empirical process is mandatory for
successful experi.mentation/measuremenl (i.e., Doctor l'leal thyself)

The process improvement paradigm is equally impor+.ant for the software
developmem task and the experimentation/data collection task

• The process for empirical studies has to be weil defined and improved

There must he a goaVrationale for data collection

Data by itself provides minimal, most likely erroneous or detrimental
insights

, The measurement data l'las intrinsic Imprecision, inconsistency, and incom
pletely represented context and il always will. This drives the need to study
trends not absolute facts.

• Packagingof experience is Key IDsuccess - but is rarely done effectively

• Packaging (Le., development of local standards) needs to be experience
driven (e.g, 2167A is anincomp1ete approach)

Effective cookbooks can be developed for particular domains Ce.g., SEL
measurement handbook, SEL management handbook)

More data does not necessarily mean better results (i.e., national databases
for measurement data are il waste of time and resources)

Experimentation requires two identifiable, separate (but cooperating) organ
izationa! infrastructure components, which both involve cost
- overhead to project (noise -- < 2%)
- analysis and synthesis of data (8-10%)
- support (quality assurance, databases, ...)

Developers treat datacoHection/experimentation as an annoyance only, not
as significant impact

Infusion of significant process change (e.g., Ada, Cleanroom, OOD)
requires 5 ID 10 years

(C) Key Points of Dissent:

Although, ail workshop participants agreed on the need for employing empiri
cal studies and measurement in order ID introduce engineering discipline into
the field of software engineering, severa! points of dissent remained.

Examples of dissentexplicitly voiced by participants included:

Are large-scaIe, real-world experiments feasible from a scientific point of
view? The majority opinion was that large-scale experiments (better: case
studies) are feasible. They serve the purposes of observing trends rather
than absolute facts and are needed for scaling up statistically significant
observations from controlled experiments. In· any engineering discipline

x

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

such large-scale experiments are a useful and necessary. The minority opin
ion was that large-scale experiments can never be sound from a pure scien
tific perspective and, therefore, are not helpful.

What are the right kinds of goals for measurement and empirical studies to
begin with? The majority opinion was that there is no general answer ta this
question. The only rule of thumb is to start with goals oriented towards
understanding, to continue with goals oriented towards bener management
and prediction, and ultimately address goals aimed at changefimprovement.
The specific goals depend on the needs and characteristics of the organiza
tion at hand. The minority opinion was that one should always start with
micro-level goals (e.g., understand a testing process) before moving
tawards macro-level goals (e.g., understand the entire development proc
ess).

Is the Hawthorne effect crucial? Sorne viewed the impact of the Hawthorne
effect as so crucial that they concluded measurement of people could/should
not be performed at aIl; others viewed it as non-critical. Again, there
seemed to be a difference of opinion depending on the purpose of empirical
studies and measurement. The majority opinion was that the Hawthorne
effect can be tamed using appropriate statistical designs/analyses.

How can empirical studies and measurement be introduced in teaching cur
ricula? The majority viewed it as essential to train students from the begin
ning in evaluating the effects of methods and tools. A minority suggested
postponing the tapic ta advanced software engineering classes.

(D) Important Topies for Future Work:

Future work needs to emphasize both the development and assessment of better
infrastructure technology (i.e., principles, methods, tools) for experimentation
and measurement, the application of that infrastructure for empirically investi
gating existing software evolution aspects in arder ta build better models of the
basic building blocks of our discipline, and the infusion of empirical studies
ideas into the educational system (i.e., teaching and training) and the real world.

As far as the development and assessment of infrastructure technology for
experimentation and measurement is concerned, there was widespread agree
ment that the most significant need for research exists in technologies for mod
eling software engineering aspects, feeding back empirical data ta improve
those models, and organizing models for reuse, as weil as in the availability of
more laboratory environments for empirical studies. Specific suggestions
included:

Better approaches for scaling up empirical results from small, controlled
environments to large, real-world environments

Infrastructure for software measurement, spanning metrics specification,
collection, analysis, visualization and predictive guidance

XI

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Alternate approaches for validating software models based on small sets of
data points

A taxonomy of study types depending OR the purpose of study

• Forma! approaches for hypothesis formulation

• Processes for creating baselines for different domains and environments

An expanded notion of study context to include different processes and
organizational structures in different business domains

Investigation of the use of better graphical, animated methods forpresenting
and analyzing experience models

Demonstration of practical benefits of measurement and risk (based on data)

More real laboratories for conducting empirical research (ExÎsting exam
pies indude the Software Engineering Laboratory al NASA's Goddard
Space Right Center and the Software Technology Transfer Initiative Kai
serslautern (STII-KL) al the University of Kaiserslautern.)

• Communication networks enabling individual research groups and compa
nies to cooperate in the sense that empirical studies are being replicated
across environment boundaries to improve the believability of local findings
or understand the impact of different contexts (An existing example is the
International Software Engineering Research Network (ISERN) founded by
Prof. Basili, USA, Prof. Cantone, Italy, Dr. Oivo, Finland, Prof. Rombach,
Germany, Prof. Selby, USA, and Prof. Torii, Japan.)

As far as the empirical investigation of existing software evolution aspects are
concerned, major efforts are needed in the following areas:

Characterization of naturally occurring software artifacts

Analysis of process-product relationships

Measurement of (Derivation of measures for) the evolution of software

Measurement of (Derivation of measures for) integration aspects of soft
ware

Documentation and publishing of results and achievements in objective
tenus (see the SEL example under (A) and (B»

Promotion of existing knowledge via software engineering handbooks
(l! Don't be afraid of incompleteness at this stage! 1)

Development of social and economic models for software evolution

As far as the infusion of empirica! studies ideas into education and practice are
concerned, major efforts are needed in the following areas:

xu

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Development of undergraduate software engineering courses stressing engi
neering aspects (e.g., problem solving using heuristics) supported by appro
priate textbooks

Development of graduate software engineering courses stressing the basic
principles, methods and tools for measurement and empirical studies sup
ported by appropriate textbooks

Development of technology transfer prograrns based on measurement (i.e.,
first, quantitative baselines of the state of affairs need to be developed; sec
ond, changes for the purpose of improvement can be introduced)

In summary, the workshop served as an important event in continuing to strengthen
empirical software engineering as a major subdiscipline of software engineering. The
deep interactions and important accomplishments from the meeting documented in this
proceedings have helped identify key issues in moving software engineering as a
whole towards a true engineering discipline. B y the end of the workshop, most of the
attendees acknowledged that they feel part of a true corn munit y of empirically oriented
software engineers. In order to foster that sense of corn munit y, the empirical software
engineering community intends to hold a continuing series of conferences and meet
ings that build on this workshop. Furthermore, an e-mail list for communication and
exchange of information among people interested in empirical software engineering
research was suggested.
NOTE: Such an e-mail Iist .. empirical-se@informatik.uni-kl.de .. now exists!
Requests to join should be sent to "empirical-se-request@informatik.uni-kl.de".

Acknowledgements

It would have been difficult to organize a workshop like this without help and financial
support from a variety of organizations. First, we would like to thank ail the workshop
participants for their effort in submitting position papers and participating in the dis
cussions. Next, the session chairs and keynoters deserve a special thanks for their con
tributions to the success of the workshop.

Clearly, an effort such as this could not have beensuccessful without financial sup
port. We would Iike to acknowledge and sincerely thank the IEFI for supporting lodg
ing and providing excellent meeting facilities, and the University of Kaiserslautern for
additional general purpose funds. Our special thanks go to Alfred Br6ckers, Chris Lott,
and Martin Verlage from the University of Kaiserslautern for having taken notes of ail
discussion sessions and to Mrs. Kilgore from the University of Kaiserslautern who did
a splendid job in providing secretarial support and arranging the social events. Last but
not least, we acknowledge the tremendous arnount of work by Mr. Martin Verlage in
editing these proceedings . .
Kaiserslautern
May 1993

XIII

H. Dieter Rombach
Victor R. Basili

Richard W. Selby

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Session 1: The Experimental Paradigm in Software Engineering

Keynote: The Experimental Paradigm in Software Engineering 3
Victor R. Basili

Profile of an Artifact Assessment Capability .. 13
William W. Agresti

Experiments and Measurements for Systems Integration ... 17
Les A. Belady

Software Engineering Still on the Way to an Engineering Discipline 19
Norbert Fuchs

Problems in Modeling the Software Development Process as an Adventure
Game ... 23
Jochen Ludewig

Qualitative Techniques and Tools for Measuring, Analyzing, and Simulating
Software Processes .. 27
Walt Scacchi

On Experimental Computer Science ... 30
Walter F. Ttchy

Discussion Summary .. 33
William Agresti

Session 2: Objectives and Context of
MeasurementlExperimentation

Keynote: Objectives and Context of Software Measurement, Analysis and
Control .. 41
Michael A. Cusumano

Position Paper ... 60
Norman Fenton

Software Engineering as an Organisational Challenge ... 62
Günter R. Koch

Quantitative Measurements Based on Process and Context Models 67
Nazim H. Madhavji. John Botsford. Ti/man F.w. Bruckhaus. and
Khaled El Emam

xv

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Selecting, Implementing, and Measuring Methods ta Improve the Software
Development Process .. 73
Karl-Heinrich Mailer

Rethinking Measurement to Support Incrementai Process Improvement 77
Adam A. Porter

Discussion Summary .. 82
Norman Fenton

Session 3: Procedures and Mechanisms for
Measurement/Experimentation

Keynote: Software Measurementand Experimentation Frameworks,
Mechanisms, and Infrastructure .. 89
Richard W. Selby

Towards Well-Defined, Shareable Product Data , 107
Warren Harrison

A Viewon the Use of Three Research Philosophies to Address Empirically
Determined Weaknesses of the Software Engineering Process 111
Ross Ieffery

Bridging the Gap Between Research and Practice in Software Engineering
Management: Reflections on the Staffing Factors Paradox 116
Chris F. Kemerer

A Methodology for Evaluating Software Engineering
Methods and Toois .. 121
Barbara Kilchenham

Experimental Software Engineering Should Concentrate on Software
Evolution .. , 125
Hausi A. Müller

Yet Another Laboratory for Software Engineering ... 129
Eric Sumner, Ir.

An Axiomatic Model for Program Complexity .. l33
Marvin V. Zelkowitz

Support of Experimentation by Measurement Theory .. l37
Horst Zuse

Discussion Summary ~ .. 141
Barbara Kilchenham

XVI

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Session 4: [Measurement-Based] Modeling

Keynote: Task-Specific Utility Assessment Models and their Role in the
Development of Software Engineering Handbooks ... 151
Stephen M. Thebaut. and Vincent Y. Shen

Quantitative Empirical Modeling for Managing Software Development:
Constraints, Needs and Solutions ... 158
Lionel C. Briand

Software Business, Concurrent Engineering and Experience Factory
Relationships ... 164
Giovanni Can/one

Establishing the Fundamentals of Software Engineering ... 171
Daniel Hoffman

Measurement-Based Modelling Issues - The Problem of Assuring Ultra-High
Dependability .. 173
Bev Littlewood

The Role of Simulation in Software Engineering Experimentation 177
Anneliese von Mayrhauser

Multiple Viewpoints of Software Models ... 180
Markku Oivo

Discussion Summary .. 183
Anneliese von Mayrhauser

Session 5: Packaging for Reuse / Reuse of Models

Keynote: Software Engineering Models, Using and Reusing 191
Kevin D. Wentzel

Mode! Reuse and Technology Transfcr .. 202
Albert Endres

Packaging [or Reuse and Reuse of Models ... 206
Stuart I. F eldman

A Reuse Culture for Software Construction ... 210
Claus Lewerentz

Experimental Software Engineering; Packaging for Reuse 213
Frank McGarry

XVII

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Experimemal Designs for Vaiidaüng Metrics and Applying them Across
Multiple Projects .. " 216
Norman F. Schneidewind

Discussion Summary .. 221
Frank McGarry

Session 6: Tedmology Tral1sfer, Teaching and Training

Keynote: Position Paper .. 229
Manny M. Lehman

Technology Transfer .. 234
John J. Marciniak

Systematic Software Technology Transfer ... 239
H. Dieter Rombach

Effective Use of Measurement and Experimentation in
Computing Curricula .. 247
StuZweben

Discussion Summary .. 252
H. Dieter Rombach

List of Pm"ticipants ... 257

XVIII

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Session 1:

The Experimental Paradigm in
Software Engineering

Session Chair:

Keynote:

Position Papers:

William W. Agresti

Victor R. Basili

William W. Agresti
Les Be1ady
Norbert Fuchs
Jochen Ludewig
Walt Scacchi
Walter F. Tichy

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

The Experimental Paradigm in Software Engineering

Victor R. Basili

Instirute for Advanced Computer Srudies
and

Department of Computer Science
University of Maryland

What is software and software engineering?

Software can be viewed as a part of a system solution that can be encoded to execute
on a computer as a set of instructions; it includes all the associated documentation nec
essary to understand, transform and use that solution. Software engineering can be
defined as the disciplined development and evolution of software systems based upon
a set of principles, technologies, and processes.

We will concentrate on three primary characteristics of software and software engi
neering; its inherent complexity, the lack of weil defined primitives or components of
the discipline, and the fact that software is developed, not produced. This combination
makes software something quite difIerent than anything we have dealt with before.

One important characteristic about software is that it can be complex; complex to
build and complex to understand. There are a variety. of reasons for this. For example,
we often choose software for a part of the solution, rather than hardware, because it is
the part of the solution we least understand, or it is something new, or there is a
requirement for change and evolution of the function or structure. In all of these cases
complexity is introduced, the development becomes error prone, estimation is difficult,
and there is a lack of understanding of implications of change.

However, the primary reason software is complex is probably the lack of models,
especially tractable models of the product, process and any other forms of knowledge
required to build or understand software solutions as weil as the the interaction of
these models. Software is not very visible, i.e., we do not have satisfactory models of
the various aspects of the software, e.g., the functionality, the quality, the structure. In
fact we do riot even have intuitive models in many cases. This leaves us with a poor
understanding of processes, requirements, and products.

Lastly, software is created via a development process, not a manufacturing process.
This really means software is engineered.We have leamed a great deal about quality
manufacturing in the past few decades but we have not leamed much about quality
developmenl/engineering.

So given the nature of this discipline, how does one begin to analyze the software
product and process.

3

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

