
Claude Kirchner (Ed.)

Rewriting Techniques
and Applications

5th International Conference, RTA-93
Montreal, Canada, June 16-18, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series E<litors

Gerhard Goos
Universitat Karlsrube
Postfach 69 80
Vincenz-Priessnitz-StraBe l
W-7500 Karlsruhe, FRG

Volume Editor

Claude Kirchner
INRIA Lorraine and CRIN

Juns Hartmanis
Cornell University
Departrnent of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

615 Rue du Jardin Botanique, F-54602 Viliers les Nancy Cedex, France

CR Subject Classification (1991): D.3, F,3.2, F.4, I.1, I.2.2-3

ISBN 3-540-56868-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56868-9 Spnnger-Verlag New York Berlin Heidelberg

Tbis work ls subject to copyright. Al! rights are reserved, whether the whole or part
ofthe materiai is concemed, specificaily the rights of translation, reprinting, re-use
oHllustrations, recitation, broadcasting, reproduction on mÏcrbfilmsor in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in ils CUITent version, and permission for use must always be obtained from
Springer-Verlag. Violations are liabie for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by auli'1or
Printing and binding: Dmckhaus Beltz, HemsbachlBergstr.
45/3140-543210 - Punte<! on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

This volume contains the proceedings of RTA-93, the Fifth International Con
ference on Rewriting Techniques and Applications held June 16-18, 1993, in
Montreal, Canada.

There were 91 submissions to RTA-93 authored by researchers from coun
tries including Canada, France, Germany, Italy, India, Japan, the Netherlands,
the People's Republic of China, Russia, Spain, United Kingdom, and the United
States of America. Papers covered many topics: term rewriting; termination;
graph rewriting; constraint solving; semantic unification, disunification and com
bination; higher-order logics and theorem proving, with several papers on dis
tributed theorem proving, theorem proving with constraints, and completion.

Each submission was reviewed by at least three program committee mem
bers or their outside referees. Al! the members of the program committee met
on February 1993 in Nancy and selected 29 papers and 6 system descriptions
demonstrated during the conference and documented in this volume.

As for the proceedings of the previous conference, I welcomed the idea of
presenting in the proceedings a list of open problems in the field and an update
of the previous list of such open problems, showing altogether the strong activity
of the term rewriting community in the large.

Three invited speakers gave a talk on their recent works related to the topics
of RTA. Sergei Adian presented his work on algorithmic problems for groups and
semigroups, Leo Bachmair the impact of rewriting techniques on theorem proving
and Jean Gallier a general method for proving properties of typed lambda terms.

1 am very grateful to the pro gram committee for their efforts and cooperation
in deciding the program and other related matters to RTA-93; to Mitsuhiro
Okada for taking great care of the local arrangements for the conference; to the
invited speakers Sergei Adian, Leo Bachmair and Jean Gallier, and lastly to
Marian Vittek for doing everything that needed to' be done to facilitate my task
in organizing the program committee.

RTA-93 was sponsored by INRIA (France), the Centre de Recherche en In
formatique de Nancy (France), Concordia University (Canada), the Center for
Pattern Recognition and Machine Intelligence, Montreal (Canada), the Natural
Science and Engineering Research Council (Canada), le Fonds pour la Forma
tion de Chercheurs et l'Aide à la Recherche (Quebec) and the National Science
Foundation (USA), and was held under the auspices of the European Associa
tion for Theoretical Computer Science.

Nancy, April 1993

Claude Kirchner
Chair, RTA-93

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

PrograrLi committee

Hubert Carnon (Orsay)
Bruno Courcelle (Bordeaux)
Harald Ganzinger (Saarbrücken)
Jieh Hsiang (Stony Brook)
Claude Kirchner (Nancy)
Jan Willem Klop (Amsterdam)
l'Jaus Madlener (Kaiserslautern)
Paliath Narendran (Albany)
Mike O'Donnell (Chicago)
Mitsuhiro Okada (Montreal)
Leszek Pacholski (Wroclaw)
Michael Rusinowitch (Nancy)
Mark Stickel (Menlo Park)

Organizing committee

Ronald Book (Santa Barbara)
Nachum Dershowitz (Urbana)
Jean Gallier (Philadelphia)
Deepak Kapur (Albany)
Claude Kirchner (Nancy)
Klaus Madlener (Kaiserslautern)
P" L (N \ "letre escanne _ ancy 1

David Plaisted (Chape! Hill)

Local arrangements

Mitsuhiro Okacia (Montreal)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

A. Arnold
H.-J. Bürckert
D. Basin
F. de Boer
A. Boudet
W. Charatonik
E.A. Cichon
B. Delsart
D. Dougherty
D. Fehrer
R. Fettig
G. Gonthier
M. Hanus
M. Huber
P. Johann
X. Kühler
A. Kisielewicz
M. Kutylowski
C. Lynch
li. McCloskey
A. Middeldorp
T. Nipkow
E.Orlowska
M. Piotrôw
L. Puel
P. Rao
P. Rety
W. Sadfi

VII

Referees

P. Audebaud
L. Bachmair
H. Baumeister
M.P. Bonacina
W. Bousdira
T. Chen
E. Conte jean
J. Denzinger
F. Fages
M. Fernândez
A. Geser
B. Gramlich
D. Hofbauer
U. Hustadt
J .-P. Jouannaud
li. Kennaway
H.-J. Kreowski
S. Lange
F. Müller
W. McCune
B.Mu
D. Niwinski
F. Otto
D. Plaisted
D. Rémy
S.A. Rebelsky
M.M. Richter
G. Salzer

J. Avenhaus
S. Bailey
A. Bockmayr
A.M. Borzyszkowski
P. Casteran
C. Choffrut
T. Deiss
E. Domenjoud
M. Falaschi
M.C.F. Ferreira
li. Gilleron
S. Hiilldobler
J. Hong
P. Jacquet
T. J urdzinski
D. Kesner
D. Krob
D. Lugiez
C. Marché
R. McNaughton
li. Nieuwenhuis
V. van Oostrom
M. Parigot
E. Poli
C.R. Ramakrishnan
B. Reinert

M. Schmidt-Schauss K. Schulz

C. Ringeissen
A. Sattler-Klein
H. Seidl

D.J. Sherman
W. Snyder
J. Steinbach
S. Tison
Y. Toyama
U. Waldmann
C.P. Wirth

A. Skowron G. Smolka
R. Socher-Ambrosius Z. Splawski
J.-M. Steyaert J. Stuber
J. Tiuryn X. Toenne
P. Urzyczyn S. Vorobyov
1. Walukiewicz R. Wiehagen
H. Zantema H. Zhang

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

INVITED TALK:
Rewrite Techniques in Theorem Proving
L. Bachmair (University of New York at Stony Brook) .

Redundancy Criteria for Constrained Completion
C. Lynch and W. Snyder (Boston University)

Bi-rewriting, a Term Rewriting Technique for Monotonic Order
Relations

1

2

J. Levy and J. Agusti (CSIC, Blanes) 17

A Case Study of Complet ion Modulo Distributivity and Abelian
Groups
H. Zhang (The University of Iowa City) 32

A Semantic Approach to Order-Sorted Rewriting
A. Werner (University of Karlsruhe) 47

Distributing Equational Theorem Proving
J. Avenhaus and J. Denzinger (University of Kaiserslautern) 62

On the Correctness of a Distributed Memory Grobner Basis
Aigorithm
S. Chakrabarti and K. Yelick (University of California ai Berkeley) 77

Improving Transformation Systems for General E-Unification
M. Moser (Technical University of Munich) 92

Equational and Membership Constraints for Infinite Trees
J. Niehren (DFKI, Saarbrücken), A. Pode/ski (DEC, Paris) and R.
Treinen (DFKI, Saarbrücken) . 106

Regular Path Expressions in Feature Logic
R. Backofen (DFKI, Saarbrücken)

INVITED TALK:
Proving Properties of Typed Lambda Terms: RealizabiIity,
Covers, and Sheaves

121

J. Gallier (University of Pennsylvania at Philadelphia) 136

Sorne Lambda Calculi with Categorical Sums and Products
D. J. Dougherty (Wesleyan University) ' 137

Paths, Computations and Labels in the À-Calculus
A. Asperti (University of Balogna) and C. Laneve (INRIA Sophia
Antipolis) .. 152

Confluence and Superdevelopments
F. van Raamsdonk (CWI, Amsterdam) 168

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

Relating Graph and Term Rewriting via Bohm !\tIodels
Z.M. Ariola (University of Oregon at Eugene) 183

Topics in Termination
N. Derskowitz and C. Haat (University of Illinois at Urbana) 198

Total Termination of Term Rewriting
M. C.F. Ferreira and H. Zantema (University of Utrecht) 213

Simple Termination lS Difficult
A. Middeldorp (University of Tsukuba) and B. Gramlich (University
of Kaiserslautern) . 228

Optimal Normalization in Orthogonal Term Rewriting Systems
Z. Khasidashvili (INRIA Rocquencourt) " 243

A Graph Reduction Approach to IncrementaI Term Rewriting
1. Field (IBM TJ Watson Research Center) 259

Generating Tables for BoHom-up Matching
E. Lippe (Software Engineering Research Centre, Utrecht) . . . 274

INVITED TALK:
On Some Algorithmic Problems for Groups and Monoids
S. 1. Adian (Steklov M athemaiical Instituie, M oscow) 289

Combinat ion Techniques and Decision Problems for
Disunification
F. Baader (DFKI, Saarbriicken) and K. Schulz (University of j)funich) 301

The Negation Elimination from Syntactic Equational Formula is
Decidable
M. Tajine (University Louis Pasteur, Strasbourg) 316

Encompassment Properties and Automata with Constraints
A.-C. Caron and J.-L. Coguide and M. Dauchei (University of Lille) 3!t8

Recursively Defined Tree Transd.uctions
J.-C. Raoult (IR.ISA, Rennes)

AC-Complement Problems: Satisfiability and Negation
Elimination
M. Fernàndez (LR.I, Orsay)

A Precedence-Based Total AC-Compatible Ordering

343

358

A. Rubio and R. Nieuwenhuis (University of Baree/ona) . 374

Extension of the Associative Path Ordering to a Chain of
Associative Commutative Symbols
C. De/or and L. Puel (LRI, Orsay) 389

Polynomial Time Termination and Constraint Satisfaction Tests
D.A. Plaisted (University of North Carolina, Chapel Hill) 405

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

Linear Interpretations by Counting Patterns
U. Martin (University of 5t Andrews, Fife) 421

Sorne Undecidable Termination Problems for Semi-Thue
Systems
G. 5énizergues (LABRI, Bordeaux) 434

SYSTEM DESCRIPTIONS

Saturation of First-Order (Constrained) Clauses with the 5 aturate
System
P. Nivela and R. Nieuwenhuis (University of Bareelona) 436

MERILL: An Equational Reasoning System in Standard ML
B. M atthews (University of Glasgow) 441

Reduce the Redex -+ ReDuX
R. Bündgen (University of Tübingen) 446

AGG - An Implementation of Algebraic Graph Rewriting
M. Lowe and M. Beyer (Technical University of Berlin) 451

Smaran: A Congruence-Closure Based
Computations
R. M. Verma (University of Houston) ..

System for Equational

LAMBDALG: Higher Order Algebraic Specification Language

457

Y. Gui and M. Okada (Concordia University, Montreal) 462

OPEN PROBLEMS

More Problems in Rewriting
N. Dershowitz (University of Illinois at Urbana), J.-P. Jouannaud
(LRI, Orsay) and J. W. Klop (CWI, Amsterdam) . 468

Authors Index 488 B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Intimate Computing and the

Memory Prosthesis:

A Challenge for Computer

Systems Research?

(Abstract)

Michael G. Lamming

Rank Xerox EuroP ARC

Cambridge, England

At EuroP ARC we are trying to build a human memory prosthesis - a portable device
to help individuals remember things. It will automatically capture and organise prede
fined classes of information and provide easy ways to recall it when needed, perhaps
without even being asked. We calll this device a memory prosthesis because it augments
normal human memory. It differs from most other information systems in that it focuses
on helping the user recall things they once knew. Our objective for the memory prosthe
sis is to assist users with everyday memory problems. Target tasks for the memory aid
include: recalling names of people, places, and procedures, finding files, papers and
notes, in whatever medium they are expressed, and remembering to perform tasks.

The memory prosthesis is an example of a new class of interactive system we en
visage will be made possible by forthcoming advances in micro-electronics. Using cel
lular radio and infrared technology computers are able to communicate with each other
without wires. This new development heralds the dawn of mobile computing. At
present radio transceivers are large and power hungry, so much so that the machines to
which the transceivers are attached are fairly large. We are looking a short while into
the future when mobile computers will be somewhat smaller, indeed small enough to
be wom rather than carried - perhaps resembling a watch or piece of jewellery. We
look to a time when people don't have to remember to take their computer with them,
they wear it and take it everywhere.

Such systems will have several fundamental capabilities not previously available on
such a wide scale. They will dynamically connect and communicate, not only with each
other, but with office equipment, domestic appliances and much of the other business
and consumer electronic equipment that surrounds us.

The wireless communication technology used by these systems will be cellular
perhaps based upon the new digital cellular telephone standards. The low-power re
quirements of a tiny wearable computer willlimit the range to a few meters and so com
munication cells will be small. The consequence of relying on small cells for commu
nication is simple yet profound, mobile computers will know where they are. To find
out their location they simply ask the nearest non-mobile object.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

So to summarise: comp\lters will be sm"lI enough to wear and take everywhere;
they will be embedded in domestic applir.fices, office and consumer equiprnent; they
will talk to each other using cellular wireless communications; and Ihey will know
where they are.

Taken together these facilities provide us with another vie'.." of mobile computing.
Popular views of mobile computing regard il as a tool providing access to information
and computation whilst the owner is away from his or her desk. We view it the other
way round. Our computers can now gain continuous access to us and our immediate en
vironment, wherever we are. In consequence, our personal computer will be able to find
out much more about us, and like any other personal assistant, the more it knows the
more useful it can be. To distinguish this style of system from personal computing, we
have coined a new phrase: intimate computing.

Carrying a computer around everywhere offers almost limitless opportunities to
capture useful information. Wherever we go, whatever we do, our tiny computer can
automatically !iaise with the equipment we use to do our work, with the portable com
puters belonging to the people we mee!, and with the devices embedded in the building
where we work, to construct a detailed personal cross·reference to much of the infor
mation with wbich we come into contact. Indeed, one of the mos! Iikely down-sides for
intimate computing is the ease with whieh we may drown in the incoming tide of un
structured data - unless it is filtered and organised automatically too.

Most personal information systems, paper-based or computer-based, require sorne
help from the user to construet a useful database. Typically the user has to recognise
Ihat an item of information might be required in the future; he or sile must then make
the effort 10 capture il; and lastly, and perhaps mos! importantly, he or she has to organ
ise the information in a manner that makes il easy to find il again. But to do this, the
user must be able to predict the situation in whieh the information will be needed and
think up some indexing terms which he or she guesses might plausibly spring to mind
the next lime the information i8 sought. A cornmon problem is to guess incorrectly l For
example, Mary may choose to file a.useful joumal article by author or title, yet subse
quently only manage to recall that il was the one her boss gave to her.

This example highlights a wel! established feature of the human memory system
people are particularly good at recalling activities from their own lives. Psychologists
cal! this mechanism episodic or autobiographical memory. Experiments have shown
that humans are not particularly good al remembering the time of an episode in their life,
but they are muehbetter at remembering where the episode occurred, who they were
with, Of what they were doing. We calI this the context.

Or, the other hand, computers are excellent al recording the exact time an item of
information was created, stored,. eommunicated or processed in sorne way. For exam
pIe, if Mary ehooses 10 write a note about the journal article on her portable computer,
the computer will almost certainly timestamp the note for her. In faet almos! every.com
puter transaction is timestamped in sorne way already. EIectronic files are timestamped,
telephone call-times are recorded for billing, faxes have the arrival time printed on
them, and even each frame of a video sequence contains a time code. Moreover, com
puters are very good al searching through large bodies of data for items wilh a particular

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

timestamp. So if we can give a computer system an exact timestamp it won't take very
long to find ail the items that are tagged with the same date and time. Yet as we have
stressed already, context is fairly easy for humans to remember while exact timestamps
are not. If only the context that gave rise to an item of useful information could be used
by the computer to find the same item later on ...

Previous work at EuroPARC has shown how this might be achieved with mobile
technology. For example, Newman and his colleagues have demonstrated a technique
called episode recognition [2]. Location data obtained from Actiye Badges can be used
to construct automatically, a diary of an individual's life expressed in terms oftheir lo
cation and encounters with other members of staff and visitors. Experiments have
shown that these chronicles are a powerful aid to recall, and can be used both to index,
and retrieve other less memorable data collected automatically at about the same time.
As a result it has been suggested that a more comprehensive diary containing richer de
scriptions of the user's activities might provide a useful indexing mechanism for navi
gating through a huge database ofpersonal information [1]. We now believe it is possi
ble to design a computer system in which imprecise informaI yet personal memories we
have for past events can be used as keys to recover detailed information about the event
itself.

Clearly our primary motivation for building this system is to provide more effective
support for human memory. But in doing so, we are encountering ail sorts of technical
problems for which we have no convenient solution. Nevertheless, our programme of
work proceeds in anticipation of acceptable solutions becoming available shortly. By
trying to build this demanding application we hope to create another small focus for re
search in computer science and engineering and highlight sorne of the technical chal
lenges that lie ahead for ail of us.

References

[1] Lamming, M. G., & Newman, W. M. (1992). Aetivity-based Information Retrieva!: Teeh
no!ogy in Support of Persona! Memory. In F. H. Vogt (Ed.), Infonnation Processing '92.
Proceedings of the 12th World Computer Congress, Vol. III pp. pp 68-81. Madrid: Elsevier
Science Publishers (North-Holland).

[2] Newman, W., Eldridge, M., & Lamming, M. (1991). Pepys: Generating Autobiographies
by Au/omatie Tracking. In proceedings of the second European conference on computer
supported cooperative work. Amsterdam.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Active Programming Strategies in Reuse

Mary Beth Rosson and John M. Carroll

mM T. J. Watson Research Center
Yorktown Heights, New York 10598, USA

Abstract. In order to capita'ize on the potential for software reuse in
object-oriented programming, we must better understand the processes in
volved in software reuse. Our work addresses thi. need, analyzing four
experienced Smalltalk progranliners as fuey enhanced applications by re
using new classes. These were active programmers: rather than suspending
programming activity 10 refiee! on how ta use the new components, they
began work immediately, recrniting code from example usage contexts and
relying heavily on the system debugger ta guide them in applyiug the bor
rowed contex!. We discuss the implications of these findings for reuse
documentation, programlmng instruction and too!s to support reuse.

1 Introduction

A key attraction of object -oriented programming languages is the potentia! they offeT
for the reuse of software components. A well-designed object c!ass defines a tightly
encapsùlated bundle of state and behavior that can be "plugged into" a target appli
cation to fiU sorne functional need - hence the popular metaphor of a "software
le" [4,5]. And whi!e most of fuis potential has been asserted rather than demon
strated, empirical evidence documenting the advantages of an object-oriented lan
guage for code reuse is beginning to emerge [17]. At this point, however, we know
very Iittle about the process of component rense and thus how we might best support
reuse activities.

A programmer attempting to recruit existing software components for his or her
CUITent project must carry out two basic tasks. First, the candidate component(s)
must be identified. This may be trivial in cases where the component was self
generated or is already familiar to the programmer (see, e.g., [6,16]). However,
much of the missed potential in software reuse arises in situations where the pro
grammer knows little or nothing about the component in advance. As component
libraries increase in size, the difficulty of locating nove! functionality increases
commensurately. Not surprisingly, researchers have begun to apply a variety of
classification and information-retrieval techniques to address the difficult problem
of locating unknown functionality witbin large class libraries [12,21].

Once a candidate component has been identified, the programmer must incor
porate the component into the ongoing project. Again, if the component is self
generated or already familiar, this process is simplified: the programmer already
knows what it does and hmv it is used, and merely must apply this knowledge to the
new situation. But for unfamiliar components, the programmer must engage in al

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

least sorne form of analysis, determining what the component does and how it can
contribute to current needs, and then designing and implementing the code needed
to extract the desired functionalilcy [2, 10]. Researchers are only beginning to explore
how one might document code intended for reuse (see, e.g., [14]). But from the
perspective of a programmer considering reuse, one requirement is clear: under
standing how to use a component must take less time and effort than (re)building the
component itself. Indeed, given programmers' general preference for self-generated
code, the cost of reusing a component should be considerably less than that of cre
ating it.

This paper seeks to elaborate the requirements for reuse documentation and tool
support through analysis of experts carrying out a reuse task. We observed Smalltalk
programmers enhancing an application through the reuse of classes we provided.
Most generally, our goal was to characterize the strategies and concerns of the pro
grammers as they attempted to reuse the novel classes - by understanding what
does and does not work weil in the current reuse situation, we can begin to reason
about possible modifications or enhancements. More specifically, however, we were
interested in the role that examples might play in documenting reusable components.
We have been researching example-based programming environments for learning
and for reuse [3,13,20,22], and this empirical setting provides an opportunity to ex
amine experts' natural strategies for finding and applying example information.

2 The Reuse Situation

Four experienced Smalltalk programmers participated in the study. Ali had been
programming in SmailtalkJV® PM [8] for over two years, and had over 10 years of
general programming experience. Ali had worked on user interface development in
Smalltalk, largely on building components for advanced user interfaces (e.g., multi
media objects, direct manipulation techniques, visual programming).

Each programmer completed two reuse projects, in two separate sessions. The
reuse situation approximated the application prototyping activities these programmers
carry out in their normal work environment, in that both projects involved an en
hancement to the user interface of an already-written interactive application. The
applications were simple but non-trivial examples of Smalltalk projects; in debriefing
sessions after the experiment, ail of the programmers judged that these were repre
sentative reuse programming tasks. The order of the projects was counterbalanced
- one project served as the first project for two of the programmers, the other as
the first for the other two. During their second sessions, programmers were intro
duced to the Reuse View Matcher [22] and were allowed to use this tool while
completing the project. Due to space limitations, this paper will not discuss the
second set of sessions involving the Reuse View Matcher.

The programmers were read brief instructions at the beginning of each session,
describing the application they were to enhance, and identifying the class they were
to reuse in making this enhancement. They were told that they were not expected
to spend "more than a couple of hours" on the project and that they should not worry

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

ô

if they did flot complete it in this illIIount of time. Finally, the programmers were
asked to "think aloud" while they worked, to vocalize their pllLns and concems as
L1:tey worked as much as possible WW10Ut interfering with their activities [9].

After hearing these instructions, the programmers were given an extended in
troduction (approximately 20 minutes) to the application to be enhanced; this in
volved going over a hierarchical view of the major application classes, a design
diagram of application objects and their connections, descriptions of typical inter
action scena.'ios. as wel! as a comprehensive walk-through of the code. The intent
was to familiarize them with the application enough so that their problem-solving
efforts would focus on the reuse of the new class rather than on understanding how
the existing application worked. No infonnation other than the name was provided
about the class to be reused.

During the reuse task, programmers worked al their own pace in a standard
SmalltalkN PM environment. The experimenters took notes and made videotapes
of the program111jng activity on the display, occasionally prompting the programmer
to comment on a plan or concem. AlI projects were completed wifr,in one and a half
to two hours.

2.1 The CoIOl··Mixer Project

One of the projects consisted of an elh'lancement to a color-mixer. The color-mixer
converts rgb values input by the user to create custom colors; these colors are stored
in and retrieved from a database of named colors. The original application has three
buttons for red, green and blue (see Figure 1); clicking one of these buttons brings
up a dialog box in which the user types an integer 10 manipulate a color component.
The color being edited is displayed as a "swatch", and is flanked by the list of saved
colors. U sers can select colors from the List, as weIl as adding and deleting colors.

Because everything in Smalltalk is an object, and because objects typically in
herit a good deal of their functionality, it is difficult to characterize the "size" of
applications. However, the mos! important objects in the color-mixer are instances
of six classes (see Figure 1): ColorMixer, ColorMixWindow, ButtonPane, ListPane,
GraphPane and Diction!Lry. The last four classes in the list are components of the
standard libr<!fY. The number of methods in these six classes ranges from six to 54,
with an additional 118 to 338 inherited methods.

The programmer's task was to replace the button+dialog box input style with
horizontal sliders. No infonnation was provided conceming the appearance or
functionality of the slider, ouly that they were ID use the new class HorizSliderPane.
A typical solution involves the editing of the existing openOn: method (this is the
method that creates and initializes the windows and subpanes, and the button creation
code must be replaced with analogous code for the sliders), and the addition of four
new methods (tû handle activity in each of the sliders, and to <!raw any given slider).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Set
DlcUonary

ColorMbcer
FootbailAnalyst
Wlndow

ApplicationWindow
AnatyslsWinctow
CoJorMixWindow

SubPane
COlltrolPane

BuHonPane
GraphPanê

BarGraphPane
HorizSliderPane

UstPane

7

Figure 1. The Color-mixer Project: On the left is a listing of the major classes involved in
the color-mixer and football analyst applications; indentation in the list signifies snperclass
subclass relationships. In the upper right is the original color-mixer; beneath it is the appli
cation enbanced to use sliders as input devices.

The ciass library inciuded an example application already making use of
HorizSliderPane. The example usage was a football analysis program, in which five
sliders are used to manipulate defensive player characteristics (e.g., speed, age,
height), and the predicted consequences of the characteristics (e.g., sacks, inter
ceptions, tackles) are graphed in a separate pane. This application uses five main
classes (FootbailAnalyst, HorizSliderPane, BarGraphPane, AnalysisWindow, and
Dictionary; only Dictionary is part of the standard library; see Figure 1); method
count ranges from five to 33, with from 118 to 363 inherited methods. Because one
of our research goals was to examine experts' strategies for discovering and em
ploying example usage information, the programmers were not told of the example
application in advance.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Orderêdç.~nl9ct!on

Net>IiQrk
If<erarchy

Ubrary
OrgChart

NeÏW'Ork Conneclion
HetworkNode
Wmdow

Apfllical3anWlMC1'#
Ubra!yWlndO\t:.1
HeiwotkVtindow

HierarcflyWind<cw
Qrg01art"Jlndow

SubPane
Graphl'llM

NehovorkPme
tlierarchyPane

UstPane

8

Figure 2. The Library Project: On the left is a listing of the major classes involved in the
library and orgaruzation char! applications; indentation in the lis! signifies supercIass-subcIass
relationships. In the upper right is the originallibrary application; beneath il is the application
enhanced to use a graphical hierarchy.

2.2 The Librnry Project

The second project consisted of enhancements to a library acquisitions application.
This application manages a hierarchical collection of book categories Ce.g., Computer
Applications broken into Electrical Engineering, Aerospace Engineering, etc.); cate
gories are annotated with information about acquisitions (e.g., number of books, ti
tIes). Hierarchical structure is conveyed via an indented list (see Figure 2), and users
manipulate the categories by selecting a lis! item and making menu selections. In
thisway, they can add and delete categories, rename categories, and browse and edit
the acquisitions information.

The library project uses five main classes (Library, NetworlLl\!ode, ListPane,
NetworkConnection and LibraryWindow; only ListPane is part of the standard hier
archy, and the Libl"al)' class inherits from two novel superclasses, Network and Hi
erarchy; see Figure 2). The method count for these five classes ranges from 4 to
54, with from 118 to 319 inherited methods.

Programmers were asked to enhance this project by using the new class
HierarchyPane; again, they were told nothing of L'le appearance or functionality of

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

the target class. An instance ofthis class is able to graph a hierarchical network of
nodes (see Figure 2). It also can identify nodes or connections selected via a mouse
click. Finally, the subpane allows users to name nodes by typing directly onto the
graphed elements.

HierarchyPane differs from HorizSliderPane, in that much of its functionality
is inherited from its superclass NetworkPane. Further, it was designed to work in
concert with a number of other novel classes (HierarchyWindow, Node,
NetworkNode and NetworkConnection), whereas HorizSliderPane is a relatively
"standalone" component. A typical solution for reusing HierarchyPane in the library
application involves creation of a new LibraryWindow class as a subèlass of
HierarchyWindow (thereby inheriting the ability to draw, select, and name nodes in
the graph), and the updating of five methods from the original LibraryWindow class
(the methods for adding, removing a.tld showing acquisitions for a selected category,
the method defining the menu, and the openOn: method).

As for the color-mixer project, the class hierarchy included an example usage
of HierarchyPane - an organization chart, in which the nodes correspond to em
ployees, and in which employees of various job descriptions (e.g., staff member,
secretary, visitor) can be added to the hierarchy, given names, reassigned, and given
project descriptions. The example uses seven main classes (OrgChart,
OrgChartWindow, HierarchyPane, Node NetworkNode, NetworkComlection, and
TextField; none of these are part of the standard hierarchy, and bath
OrgChartWindow and HierarchyPane inherit from novel superclasses; see Figure 2).
The method count for these classes ranges from 1 to 37, with inherited methods
ranging from 118 to 442. Progranuners were not told in advance about the
HierarchyPane usage example.

3 Reuse of Uses

In most discussions of component reuse in objt',ct-oriented systems, the focus has
been on the class or classes reused. Design methodologies attempt to articulate
characteristics of reusable classes [15,18] and tool builders develop techniques for
classifying and retrieving usefull classes [12,21] The dominant metaphor is "con
struction" - the progranuner finds parts that cau be reused, modifies them as nec
essary and COmlects them together (see, e.g., [4,5]).

Our observations suggest that this focus on components may be over-simplified.
To develop the knowledge needed to reuse the components directly, the progranuners
would have had to stop work on 1heir overarching goal - enhancing the project they
had been given - and spend time analyzing and reflecting on the target class.
These progranuners were too focussed on their end goal to engage in protracted
analysis. Instead, they made active use of all resources available in the environment,
and began programming immediately. This led them to reuse the components only
indirectly, through me reuse of "uses". That is, the main entity participating in the
reuse programming was not the target class but rather the example application of that
class. The programming consisted of finding and reusing the patterns of component

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

10

reuse reified in the example application. As one programmer put it, on discovering
the example application, "so there's a solution in the system!"

The extensive reuse of the exanlple occurred despite mixed feelings expressed
by the programmers. There l'las a sense tha! this wasn't the "right" l'lay to reuse a
dass, that it was somehow cheating or taking the easy l'lay out. One programmer
said that he would look at the example only if aIl e!se failed, but then immediately
began to work with it. Another viewed the example as a mixed blessing, because
although it offered information on how to use the target class, it now required anal
ysis ilself: "Whenever you provide help, you provide trouble, now l have to under
stand this!" However, when probed about these feelings at the close of the
experiment, the prograrnmers indicated that the strategy of borrowing heavily from
examples is one they use frequently in prototyping SmalltaIk applications, and that
their reservations were due to a perceived demand to use more conservative methods
inthis experimental situation.

SmaIltaIk provides ex.plicit support for the identification and reuse of example
usage context through its "senders" query which returns a list of methods in which
a target message is sent An experienced programmer can. browse this list and make
reasonable guesses as to wlùch other classes if any are aIready using the class of
interest; if motivated, they can then explore these other classes to discover why and
how the target class is being used. AIl of the programmers made early and repeated
use of the senders query; further, they showed an ability to discriminate among the
various messages defined for the target class, asking for senders only on the more
important methods (e.g., a method providing the contents for the subpane):
"AnaIysisWindow seems to be figuring prominently as a sender of interesting mes
sages".

3.1 Reusing Pieœs of an Example

The most common reuse of the exaillple applications consisted of borrowing code
used as the interface to the target dass, both bJocks of code copied out oÎ methods
and entire methods. For instance, ail of t.~e programmers bOITowed code from the
exampte applications' openOn: met.~ods; by convention fuis is a message sent to
a window which instantiates the vlLnous subpanes, defining their graphical and be
havioral characteristics. The instantiation of subpane8 in SmaIltalklV i8 often com
plex, and typically includes the definition of events that tlle subpane will handle.
Thus copying an instantiation code snippet (8-15 hnes of code) can save considerable
time in working out exactly how a new kind of subpane needs to he initialized.

Sometimes the borrowed code was not direcdy reusable itself, but raL.'1er was
used more as a functional specification. In working out slider event handling for the
colOT-mixer project, the programmers copied over the sliderActive: method
from the football program. This method does three things: first, the affected slider
processes li'1e mouse activity; second, the relevant player characteristic is updated;
and third, predicted player performance is graphed. Only the first of tbese events
maps directly to (and thus could be reused in) the color-mixer project. Nonetheless,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

11

the programmers were able to understand the code in sliderActive: as a spec
ification of what they needed to do in their own version: process slider activity,
re-set the model data (in this case, the color settings), and display the results (the
new color swatch).

On a few occasions, the borrowed code came from work the programmers had
just completed themselves (as in the "new code reuse" situation described in [6]).
For example, both programmers working on the color-mixer first developed the code
for one slider, then worked frorn that code to implement the other two. In these
cases, the programmers knew exactly what needed to he changed, and the "pro
gramming" consisted simply of the physical edits.

In general, the copy/edit strategy worked quite well (see also [16]). It reduced
the amount of typing required of the programmer, and helped to insure that the de
tails of the code (e.g., placement of line separators) would be correct. More impor
tantly, it removed the burden of analyzing the target class enough to generate the
correct protocol for a particular usage situation, enabling a rapid programming
progress. For many parts of the borrowed protocol (e.g., the event definitions in the
openOn: method), the programmers knew what parts of the code needed to be ed
ited and how to do this.

However, the copy/edit strategy did lead to sorne problems stemming from the
nover parts of the target class' protocol, in that the programmers were now able to
copy and "use" protocol that they didn't fully understand. A good example cornes
from one programmer's work on the color-mixer. In the football analyst example,
each slider is instantiated with a different starting value. Because the slider
instantiation code was copied from the football openOn:, instantiation of the value

variable also became part of the color-mixer openOn. The value attribute is not
generic to subpanes, so the programmer did not know off-hand whether it was pre
requisite to slider functioning, and if so, what a reasonable starting value would be
for the color-mixer. The prograrmner did not know enough about the protocol for
sliders to answer these questions, so he simply made a guess. Later on, tbis guess
caused problems, as the initial positions of the sliders did not match the starting color
(white). Subsequently, the programmer solved the problem not by going back and
correcting the initialization code, but rather by adding code at a later point that
simulated the selection of white in the color list pane.

In sorne cases there was a conflict between the component interface suggested
by the example, and the current design of the project. In the football program, the
activity of all the sliders is handled by a single method sliderActive:. Modeling
on the example, one of the programmers began by copying over the method and
modifying it to refer to color-mixer objects. However, in the course of doing this,
he recognized that there would be a problem in discriminating among the different
slider instances. Despite the suggestion by the football example that multiple sliders
could he managed by one method, he decided to change bis approach and work from
the more farniliar model of the buttons used by the original user interface. Noting
that three separate methods had been written to handle button activity, he developed
an analogous set of three slider activity methods.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

12

The Smalltalk environment is very supportive of the copyinglediting of example
usage code. Programmers can open as many code browsers as they like, and can
freely select and paste text among them. In this study, the programmers almost aI
ways had at least two browsers open (one for the example and one for the project)
and often used more when the code involved a nmnber of embedded messages. In
this way, they could preserve their top-Ievel context while going off to answer a
question or to find additional relevant code in other classes or methods.

3.2 Reusing an Application Framework

Al! of the programmers' initial efforts to reuse the example application involved
bringing methods or pieces of met.!J.ods from the example application into the project.
However, the two programmers working on the library project ultimately decided to
create a new kind of library window, one that was a sibling of OrgChartWindow (i.e.,
had HierarchyWindow as a superclass, this was in fact the solution requiring least
programming effort). In doing this, they were deciding to inherit rat.l}er than borrow
from the example usage context. After this decision, their activity shifted, as they
began bringing code from the original library window into the new window. This
was in marked contrast to the programmers working on tbe color-mixer project, who
appeared to never even consider inheriting fnnctionality from the football example.

The decision to subclass reflects a desire to rense more than just the snippets
of code involving the targe! class; il) tms case, the programmers elected to adopt the
entire application context of the example. In SmailtaIkIV PM, this context is
nonnally managed by a window; tbe window communicates with the underlying
application objects (e.g., a hierarchical collection of employees) and with the
subpanes used to display application infonnation. Thus reuse of the context can be
accomplished by subclassing the application window; reuse of this sort is often re
ferred ta as ceuse of an "application framework" [7J, Pramework rense brings a10ng
the component of interest "for free" in sorne sense, in that il is aIready a component
of the framework, and the example window already has the code needed to interface
between the component and other application abjects.

Deciding to reuse the example's application framework had a remarkable effect
on the programmers' reuse efforts. What had al firs! been a rather complex process
of tracking down individual methods and instance variables distributed across
NetworkWindow, HierarchyWindow and OrgChartWindow, and copying and editing
methods or pieces of methods, now became a straightforward process of copying
over and updating the menu functions from tbe original LibraryWindow class. One
of the programmers spent over an hour reaching the decision to subdass; once he
did, he was ratber frustrated at the tbought of tbrowing away ail the work he had
doue so far, but even so was able to complete the project in fifteen minutes.

The problems of tracking dO\vn functionality distributed throughout an
inheritance hierarchy have been notOO before; Taenzer, Ganti and Podar [23] refer
to this as the "yoyo" problem. The SmaIltalkN class hierarchy browser offers little
support for dealing with hierarchically distributed function, as progr8-T!)1Jlers must

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

13

navigate from superclass to superclass in search of methods. Taenzer et al. [23] point
to this problem as an argument against reuse via inheritance, suggesting that under
standing how to subclass an extensive hierarchy requires much more distributed code
analysis than simply reusing a component. Our situation offers a new twist on
considering whether to reuse functionality directly or through inheritance: when a
component has already been incorporated into a rich application framework, pro
grammers may find that indirect inheritance of the component's functionality (i.e.,
through subclassing the framework) .will simplify enormously the task of reusing the
component.

Several factors seemed to contribute to the programmers' decision to reuse the
application framework for graphical hierarchies. One was simply the difficulties in
tracking down, borrowing and integrating function. There seemed to be a sense that
the process was more complicated than it should be, e.g., "1 should probably be
trying to inherit sorne of this ... ". When asked later, one of the programmers indicated
that it was his realization of how many of his borrowed methods were inherited from
superclasses of OrgChartWindow that made him decide to move the library window.
For the other programmer, a critical incident was his effort to compile a key method
(the one allowing selection of nodes in the graph), and discovering a instance vari
able of the example window that had no analog in the library application. Up to that
point, he had seemed willing to work with the complexity of tracking down and
borrowing example protocol, bUit adding a new (and mysterious) piece of state in
formation was too much.

Another factor may have been the similarity between the example usage and the
project. On first discovering the HierarchyWindow class, one programmer tried a
simple expeIiment while voicing his belief that it would never work: he tried
opening a HierarchyWindow "on" the library object (an instance of Library, part of
the Collection hierarchy). To his (and our!) surprise, this experiment was successful.
Of course, the LibraryWindow functionality was not present, but at least the book
collection was displayed in a nice graphical hierarchy. This experiment may seem
extreme, in that it has a rather llow probability of pay-off. However, it was simple
to do, and it provided the programmer with considerable insight into the example
application that he was able to apply to his later efforts.

The subclassing strategy did simplify the reuse programming project. However,
it also introduced sorne rather subtle problems. There was considerable overlap in
the functionality of the example and of the library (e.g., both had facilities for adding
and removing elements in a hierarchy, for renarning these elements). One of the
programmers, having decided to subclass, wanted to inherit as much functionality
as he could. So, when updating the menu selections, rather than copying over the
methods from the original library window and editing them to work in this new
context, he first tried simply inheriting the methods defined in the superclasses. On
the surface, this strategy seemed ta work - he was now able to add and delete li
brary categories and rename them. He never realized that the underlying library
structure was not being manipulated correctly (the relationships among categories
weren't being specified). It may be that programmers following a subclassing strat-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

14

egy are more likely to satisfice, accepting generic inherited functionality tha! is al
most but not quite right simply because il is there and is already working.

4 Tbe Reuse Programming Proœss

The progmmmers were opportunistic in the objects of reuse - extensive recruitment
of the example contexts reduced considerably the amoun! they needed to learn about
the target class. But they were also opportunistic in how they wenl about doing the
reuse task. They spent Uttle time in deliberated analysis of the example, in under
standing how it was going to help or interfere with their enhancement efforts. Rather
they begaII using the code of the exa.1Jlple immediately to make progress on their
goal. These were active users of Smalltalk [1]: as has often been observed for hu
man problem-solving [Il[the pracess we observed was very locally driven, with
specifie features of the enviromnent and the evolving solution determining each
succeeding step.

4.1 Getting Something to WOlCk With

An early goal for all of the programmers was to get an instance of the target cIass
up and running, 80 that they could see what it looked like. One oÏ the programmers
working on the library project was able to use the organization chatt example to do
this. Mter discovering the example, he irnmediately. took on the goal of starting it
up. He found an OrgChart class method fromUIIData., the name of which signalled
to him that it was a special "set-up" method, and that he could use it to create an
appropriate OrgChart object and star! up the application. By doing this, he was able
to see what a HierarchyPane looked like, as well as to experiment with the interaction
techniques it supported.

With respect to programming activities, the focus of initial efforts for all of the
programmers was on modifying the project's openOn: method to include the new
class: "1 want to get one of these things as a subpane". However, while there was
sorne browsing of the target class methods to see how to do this, the browsing tended
to yield inferences about class functionality rather than usage protocol; as we noted
earlier, the prograrnmers seemed to resist carrying out an analysis of li'le targe! class
comprehensive enough to allow them to write code to instantiate it for their project.
Instead, they sornetimes looked for clues in the code they were repiacing. Thus the
two prograrnmers working on the color-mixer examined the code used to create the
buttons, thinking about how they might modify it for sliders (e.g., what events a
sIlder might handle in contrast to a button).

One programmer working on the color-mixer tried to take advantage of other
code in the openOn, method as weIl. Noting that HonzSliderParle is a subclass
of GraphPane, he examined the code instantiating the color swatch (an instance of
GraphPane), thinking that he wight be able to build a slider definition from it. This
led to a variety of problems, as he began to hypothesize that the slider functionality
was somehow built from the seroll bars present in every stibpane, and that the pro-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

15

tocol controlling these scroU bars for GraphPanes must be critical in creating sliders.
This was certainly a reasonable hypothesis on functional grounds, but in fact was
quite misleading.

The programmers seemed to feel that successfully instantiating the target class
within the project context was a momentous event. Il appeared that this was con
sidered to be the major hurdle of the project, and now they could get on with busi
ness as usual, adding the remainder of the component's functionality (i.e., its event
handling). One explanation for this is that the programiTlers could "see their end
goalin sight" - a new and improved view of their project data. But another equally
important factor is that by instantiating the new component as part of the project, the
programmers could now rely much more on the environment to guide their pro
gramming. In a Smalltalk application, objects are created and code references are
established only when the application is run, making the code alone inherently am
biguous and mental simulation of it difficult. In contrast, if the programmer is able
to start up an application, ail ambiguities in the code are resolved, and the pro
grammer can use Smalltalk's sophisticated interactive debugging tools to analyze and
rnodify the code.

4.2 Debugging into Existence

We have seen that the programmers relied heavily on code already in the environ
ment in attacking the reuse projects. But they also relied heavily on the tools of the
environment to locate and make sense of the relevant code. In particular, they re
peatedly started up the application they were working on, and looked to see where
it "broke" to plan their next move.

Smalltalk is particularly supportive of this debugging-centered style of program
construction. The language is non-typed and compiled incrementally, which permits
rapid and repeated experimentation with the code used to run an application. The
debugger and inspector tools support such experimentation directly, providing flexi
ble access to and manipulation of the runtime context for an application (i.e., objects
and their state, messages in progress).

In sorne cases, the programmers knew something of the steps they would need
to take, but used the debugger to help them in carrying these out. Thus, once they
had copied the instantiation code from the example application's openOn:, they
knew that certain modifications would be necessary: instance variable names needed
to be changed, the menu name needed to be changed, the project would need a
drawing method, etc. Sorne of the programmers even carried out sorne anticipatory
activity, perhaps creating a method that they knew they would need, but that they
also knew was not yet functional. However, for the most part, they relied on the
system to detect the absence of methods or the inappropriate states of objects. In a
typical scenario, the programmer would start up the project application, receive a
"message not understood" errol', return to the example in search of a method with
that name, copy the method, perhaps making a few changes, try again and see how
far it got, make sorne changes and try again. This sort of cycle might be repeated

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

16

many times, but the programmers seemed comfortable with il, am! seemed confident
that they were making progress.

In other cases, the debugger was used to untangle more subtle problems. So,
for example, the superclass HierarchyWindow uses the network instance variable
to point to the main application object, whereas the original LibraryWindow dass
uses library. A thorough analysis of the example would have revealed the rele
vant mapping between these two variables. However, the two programmers working
on this project simply borrowed the example code as-is and used the debugger to
ascertain what role the network variable was playing and how to provide this in
formation within their project.

The compiler was used in this opportunistic fashion as weil. When dealing with
complex pieces of borrowed code, the programmers often wou!d attempt to compile
the code before they had completed editing it. The system would flag variable names
not defrned for the class (e.g., the HierarchyWindow code refers to graphPane,
while the LibraryWindow uses pane), and the programmers would then replace the
unknown name wiLl) the name of the analogous variable. This minimized the amount
to which they needed to read through and analyze the unfarniliar code.

5 Summary and Implications

Our observations describe a process of componenl rense in which t.l,.e component is
reused only indirectly, through the reuse of its "uses" - bits of protocol or even
entire application frameworks. The progra.îlITlers we studied pursued fuis style of
reuse piecemeal and opportunistically; they focused initially on getting a runnable
albeit skeletal resu!t which they could exercise and improve incrementaily, relying
heavily on interactive debuggiug. We have characterized these as "active" pro
gramming strategies, an orientation in which programmers directly and immediately
enlist and transform their software materials in favor of withdrawing from such ac
tivity to analyze and plan.

5.1 Seope of Active ReUlle

This work was exploratory empiricaI research in its scope and scaie. H addressed a
particular programming situation, application prototyping, which may differ signif
icantly from other situations. However, at least some of our observations are con
sistent with studies of other reuse situations. Lange and Moher [16] observed that
aIl experienced programmer extending a library of software components was quite
likely to use existing components with related functionality as templates or models
for the new components. Detienne [6J found that programmers designing and im
plementing new applications somtimes reused their own code as they worked.
Interestingly, the programmers in this study chose not to borrow code from other
applications, perhaps because the other applications available were onïy peripherally
related to the problems being solved.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

17

Further research is needed to assess the generality of the more specifie strategies
we observed. Ali four prograrnmers relied extensively on the system tools to or
ganize their work, using multiple browsers to maintain their context across different
parts of the hierarchy, and using the debugger and .inspector to track down and
modify missing or inappropriate pieces of borrowed code. It is not c1ear though what
the boundary conditions for such an approach might be - it may be that they are
only likely to occur in a tool-ric:h interpreted environment like Smalltalk.

Sorne strategies were unique to a particular programmer. For example, only
one programmer made the effort to "mn" the example application before borrowing
code from it. He felt that this gave him a chance to preview the functionality he
would be incorporating; it may be that across a wider variety of reuse projects, per
haps involving more complex components, such a strategy wou Id be more prevalent.
In another case, one programmer experimented with opening a graphical
HierarchyWindow "on" his application data. The success of this experiment con
veyed a great deal to him about what the graphical network framework expected in
terms of data structures. It is important to understand the generality of such tech
niques and strategies.

5.2 Consequences of Active Reuse

Beyond the question of generality, we can ask about the consequences of the active
programming strategies we observed. For example, two of the programmers did not
produce a perfectly correct result, and it is not c1ear whether or how their problems
would have been detected and corrected given unlimited time, or given instructions
that emphasized the accuracy of the result. Indeed, the active programming we ob
served may be inadvisable from a software engineering perspective, if the small er
rors or inefficiencies introduced by reliance on example code are very difficult to
unearth subsequently. Further research is needed to deterrnine what if any strategies
experts have developed for minimizing this downside inherent in reuse by example.

It is important not to lose sight of the main benefit of this style of software re
use: these active strategies reflect a creative and effective resolution of the inherent
tension between the need to distance oneself from one's own project to study some
one else's code, and continuing to make concrete progress toward a desired result.
Eisewhere we have characterized such a tension as the "production paradox" [Il,
wherein users are too focussed on the product they are creating to acquire the skills
that will facilitate its creation. In this Smalltalk reuse setting, the programmers'
borrowing of example code allowed them to quickly incorporate at least sorne ap
proximation of the new functionality into their own project; they could then work
within their own project context to "Iearn" the minimum necessary for successful
reuse.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

18

5.3 Training Iffid Tools for Active Reuse

Our work bas a vatiety of implications for how objected-oriented programming
should be conceptualized. taught and supported. Most generally, it suggests the de
sirability of a broader view of component reuse: the pluggable "software le" met
aphor [4,5] is not the only way reuse has been conceptualized, but it ls a dominant
image in talking and thinking about reuse. Both of our target objects (the slider and
the graphical hierarchy) could be used as pluggable components; the slider, in par
ticular, is an interface widget and eminently pluggable. However, all four pro
gramming projects described here reused the target classes through use of sorne or
all of their example usage contexts. This suggests a more situational view of reuse
in which pluggable, context-free reuse is the simple and ideal case.

The programmers we studied invented the strategies we observed or leamed
them informally from colleagues. As we noted, they occasionally expressed sorne
embarrassment at their own reluctance to fully analyze code they wanted to reuse
and their predilection for "stealing" usage protocol. If these practices survive -
indeed emerge from - the natural selection pressures of professional prograrnming,
we should at least consider that perhaps they should be the topic of instruction in
(Smalltalk) programming.

This implication for instruction entrains a related implication for the documen
tation of software components. Our four programmers were able to find example
uses of the target classes, but in many situations tnis would not be true, and hence
an example-oriented reuse strategy would he thwarted. Of course, imagining
example,based documentation on a large scale mises many consequent issues. Who
will build the examples? One resource is the test programs built in the course of
development, and often discarded aften'lard. Delivering these along with software
components would provide sorne support for the example-oriented strategy at virtu
ally no cost. Another question is what makes a good example. There is a Iiterature
on concept formation in cognitive psychology that addresses the issue of how ex,
amples are abstracted in comprehension [19]. If is an interesting and open question
whether and how similar characteristics bear on reuse.

Finally, this work embodies three themes for tool support: the sequence of ac
tivities in reuse programming, recruitrnent of example usage code, 3.l1d the use of the
system debugger. Our four prograrn.'lIers seemed to follow a loose script: first they
instantiated the component in the project context, then they successively e!aborated
it fuuction by function. Tbroughout this process they made extensive use of example
usage contexts and of the debugger. An obvious implication is to provide tools that
more explicitly integrate and coordinate. the information needed at each point along
the way. Thus tool support migllt guide reuse activities through a reuse script (for
example, a Iist of target class behaviors to instantiate in the project context), using
this script to coordinate the programmer's wOTk with the example usage code, the
project code, and the interactive debugging facilities.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

