BIBLIOTHEQUE DU CERIST

Claude Kirchner (Ed.)
 A- &S0
Ce”s

Rewriting Techniques
and Applications

5th International Conference, RTA-93
Montreal, Canada, June 16-18, 1993

Proceedings

Springer-Verlag
Bertin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest



BIBLIOTHEQUE DU CERIST

Series Hditors

Terhard Goos husis Harimanis

Universital Karisiuhe C‘,__(_:lmcu University

Postfach 69 80 Depariment of Computer Science
Vincenz-Priessnitz-Strafe | 4130 Upson Hall

W-75(} Karlsruhe, FRG Tthaca, NY 14833, USA

Volume Editor

Clande Kirchoer

INRIA Lorraine and CRIN
615 Rue dv Jardin Botanique, F-54602 Villers les Nancy Cedex, Prance

CR Subject Classification (1921 D3, B32 F4, L1 12.2-3

[SBN 3-340-36368-9 Sprnger-Vertag Berlin Heildelberg New York
ISBNM (-387-56868-% Springer-Verlag New York Berlin Heidelberg

a ™

£ -_-.”3;
Lem I
" b il

This work is subject to copyright. A3 rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of iflusrations, recitation, broadeasting, reproduction on microfilms or in sy other
way, and storage in data banks. Duplication of this pubiication or paris thareof is
permgitted only under the provisions of the Serman Copyright Law of September ¢,
1963, in its current version, and permission for use must always be oblaited from
Springer-Verlag. Violations are labie for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelbarg 1923
Printed in Germany

Typesetting: Carmera ready by avthor .
Frintng and binding: Drockhans Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed o acid-free paper



BIBLIOTHEQUE DU CERIST

Preface

This volurie contains the proceedings of RTA-93, the Fifth International Con-
fercnce on Rewriting ‘Fechniques and Applications held June 16-18, 1993, in
Montreal, Canada.

There were 91 submissions to RTA-93 authored by researchers from coun-
tries including Canada, France, Germany, Italy, India, Japan, the Netherlands,
the People’s Republic of China, Russia, Spain, Umied Kingdom, and the United
States of America. Papers covered many topics: tern rewriting; termisation;
graph rewriting; constraint solving; semantic unification, disunification and com-
bination; higher-order logics and theorem proving, with several papers on dis-
tributed theorem proving, theorem proving with constraints, and completion.

Each submigsion was reviewed hy at lcast three program committee mera-
bers or their outside referees. All the members of the program committee met
on February 1993 in Nancy and selected 29 papers and 6 system descriptions
demonstrated during the conference and documented in this volume.

As for the proceedings of the previous conference, 1 welcomed the idea of
presenting in the proceedings a list of cpen problems in the field and an update
of the previous list of such open problems, showing altogether the strong activity
of the term rewriting community in the large,

Three invited speakers gave a talk on their recent works related to the topics
of RTA. Sergel Adian presented his work on algorithmic problems for groups and
semigroups, Leo Bachmair the impact of rewriting techniques on theorem proving
and Jean Gallier a general method for proving propertics of typed lambda terms.

I amn very grateful to the program commmittec for their efforts and cooperation
in deciding the program and other related matters to RTA-93; to Mitsuhiro
Okada for taking great care of the local arrangements for the conference; to the
invited spcakers Sergel Adian, Leo Bachmair and Jean Gallier, and lastly to
Marian Vitiek for doing everything that necded 1o-be done to facilitate my task
in organizing the program committee.

RTA-93 was sponsored by INRIA (France), the Centre de Recherche en In-
formatique de Nancy (France), Concordia University (Canada), the Center for
Patticrn Recognition and Machine Intelligence, Montreal {Canada), the Natural
Science and Engineering Research Council (Canada), le Fonds pour la Forma-
tion de Chercheurs et ’Ajde & la Recherche ((Quebec) and the National Science
Foundation (USA), and was held under the auspices of the European Associa-
tion for Theoretical Compuler Science.

Nancy, April 1993

Claude Kirchner
Chair, RTA-93



BIBLIOTHEQUE DU CERIST

W

Programn comutiitee

Hubery Comoa {Orsay}

Srino Courcelle {Bordeauix;
Harald Ganzinger (Saarbriicken!
Jich Hslang {Stony Broek)
Claude Kirchner (Nancy)

Jan Willem Kiop {Amsterdam)
Klaus Madlener (Kaiserslautern)
Paliath Narendran (Albany)
Mike O’Donnell (Chicago)
Mitsuhiro Okada (Montreal}
Leszek Pacholski (Wroclaw)
Michael Rusinowitch (Naney)
Mark Stickel (Menlo Park)

Organlzing comm!ities

Ronald Book (Santa Barbara}
Nachum Dershowitz {(Urbana)
Jean Gallier (Philadelphia)
Deepak Kapur (Albany)

Claude Kirchner (Nancy)

Klaus Madlener {Kziserslautern)
Pierre Lescanne {Nancy)

David Plaisted (Chapel Hill)

Local arrangements

Mitsuhiro Okada {Montreal)



BIBLIOTHEQUE DU CERIST

A Arnold
H.-J. Biirckert
D. Basin

F. de Boer

A. Boudet

W. Charatonik
E.A. Cichon
B. Delsart

D. Dougherty
D. Fehrer

R. Feftig

G. Gonthier
M. Hanus

M. Huber
Johann
Kiihler
Kisielewicz
. Kutylowski
Lynch
MeCloskey
Middeldorp
Nipkow

. Orlowska.
M. Piotrow

L. Puel

P. Rao

P. Rety

W. Sadfi

BOE M

o

Wil

Referees

P. Audebaud
L. Bachmair
H. Baumeister
M.P. Bonacina
W. Bousdira
T. Chen

E. Contejean
J. Denzinger
F. Fages

M. Fernindez
A. Geser

B. Gramlich
D. Hofbaner
U. Hustadt
J.-P. Jouananaud
R. Keunaway
H.-J. Kreowski
S. Lange

F. Miiller

W. McCune
B. Mu

D. Niwinski

F. Otto

D. Plaisted

D. Rémy

S.A. Rebelsky
M.M. Richter
G. Salzer

M. Schmidt-Schauss K. Schulz

D.J. Sherman
W. Snyder

J. Steinbach
5. Tison

Y. Toyama
. Waldmahn
C.P. Wirth

A. Skowron

R. Socher-Ambrosius

J.-M. Steyaert
J. Tiuryn

P. Urzyczyn

I. Walukicwicz
H. Zantema

J. Avenhaus

S. Bailey

A. Bockmayr

A M. Borzyszkowski
P. Casteran

C. Choffrut

T, Deiss

E. Domenjoud
M. Falaschi
M.C.F. Ferrcira
R. Gilleron

S. Holldobler

J. Hong

P. Jacquet

T. Jurdzinski
D. Kesner

D. Krob

D. Lugiez

. Marché

. McNaughton
. Nieuwenhuis
. van Oostrom
M. Parigot

E. Poll

C.R. Ramakrishnan
B. Reinert

C. Ringeissen
A, Sattler-Kiein
H. Seidl

G, Smolka

Z. Splawski

J. Stuber

X. Toenne

S. Vorobyov

R. Wichagen

H. Zhang

“EEG



BIBLIOTHEQUE DU CERIST

Table of Confents

INVITED TALK:
Rewritte Terhnigques in Theoremnr Proving
i.. Bachmair (Untversily of New York ot Stony Brook) . . . . . . . ..

Redundancy Criteria for Constrained Completion
C. Lynch and W. Snyder {Boston Universtly). . . . . . . ... . ...

Bi-rewriting, a Yerm Rewriting Technique for Monotonic Order
R.elations
J. Levy and J. Agusti {CSIC, Blanes} . . . . . .. .. .. .. ... ..

A Case Study of Completion Modunlo Distributivity and Abelian
Groups
H. Zhang (The University of Jowa City) . . . ... .. . . .

A Semantic Approach to Order-Sorted Rewriting
A Werner (Universily of Karlsrehe) . . . . ... .. .. .. ...

Distributing Equational Theorem Proving
J. Avenhaus and J. Denzinger {University of Kawserslantern) . . . . .

(n the Correctness of a Distributed Memory Grobner Basis
Algorithm
5. Chakrabarti and K. Yelick {University of Celifornin at Berkeley)

Improving Transformation Systems for General E-Unification
M. Moser {(Tecknical University of Munich} . . . . .. .. ... ...

Equational and Membership Constraints for Infinite Trees
J. Niehren (DFKI, Saarbricken), A. Podelski (DFC, Paris) and R.
Treinen (DFKI, Saerbricken) . . . .. ... ... .. ...

Regular Path Expresstons in Feature Logic
R. Backofen (DFKI, Searbracken) . .. . . ... ... ...

INVITED TALK:
Proving Propertics of Typed Lambda Terms: Realizability,
Covers, and Sheaves
J. Geallier (University of Pennsylvenia ol Philadelphia} . . . . . . ..

Some Lambda Calculi with Categorical Sums and Products
D.J. Dougherty {Wesleyan Universaty) . . . . . . .. ... ... ...

Paths, Computations and Labels in the M-Calculus
A. Asperti {Universily of Bologna) end C. Lancve (INRIA Sophia-
Antipolis) . . . . L

Confilucnee and Superdevelopments
F. van Raaemsdonk (CWI, Amsterdem) . . .. . ... .. ... ..



BIBLIOTHEQUE DU CERIST

Relating Graph and Term Rewriting via Béhm Modeis
Z.M. Aricle (Universily of Ovegon at Eugene}) . . . . .. . . . .. 183

Topies in Termination
N. Dershouniz and C. Hoot (University of [llinots at Urbanas} . . . . 198

Total Termination of Term Rewriting
M.C.F. Ferreire and H. Zuntema [Universiiy of Utrechi} . . . . . .. 213

Simple Termination is Diffcult
A. Middeldorp {University of Tsukuba) and B. Gramlichk {Universiiy
of Kaiserslawdera) . . . . . 0 ... L L 228

Optimal Normalization in Orthogonal Term Rewriting Systems
Z. Ehasidashvili (INRIA Rocguencouri) . . . . . ... .. .. . .... 243

A Graph Reduction Approach to Incremental Term Rewriting
J. Field (IBM T.J. Watson Research Center) . . . .. .. .. ... .. 259

Gencrating Tables for Bottom-up Matching
E. Lippe (Softwarc Engineering Rescavch Centye, Utrecht) . . . . . . . 274

INVITED TALK:
On Some Algoritthmic Problems for Groups and Monoids
8. I Adian (Steklov Mathematical Institule, Moscow) . .. . . . . .. 289

Combination Techniques and Decision Problems for
isunification
F. Baader {DFKI Searbrécken) and K. Schulz (University of Munich) 301

The Negation Elimination from Syntactic Equational Formula is
Decidable
M. Tajine {University Louis Paslewr, Strasbourg} . . . . .. . . ... . 316

Encompassment Properties and Automata with Constraints
A.-C. Caron and J.-L. Cogquide and M. Dauchet {Universily of Lille} 328

Recursively Defined Tree Transductions

J.-C. Raewlt [IRISA, Rennes) . . .. .. ... ... ... .. ..., 343
AC-Coraplement Problems: Satisfiability and Negation

Elimination

M. Fernandez (LRI, Orsay} . . . . . ... ... ... ... .. ... .. 338

A Precedence-Based Total AC-Compatible Ordering
A. Rubio and R, Nieuwenhuts (Universily of Barcelona) . . . . . . . kYL

Extension of the Associative Path Ordering to a Chain of
Associative Commutative Symbols
O Delor and L. Puel (LRI, Orsag) ... ... . 0 00 0L, 389

Polynomia! Time Termination and Constraint Satisfaction Tests
DA, Plaisted {University of North Careling, Chapef Hill) . . . . . . . 405

T T SRR T T e S e T R S RIS T I T ¢ T G e R e e



BIBLIOTHEQUE DU CERIST

Xt

Linear Interpretations by Counting Patterns

U. Martin (Universely of St Andrews, Fife) . . . ... .. ... ... 421
Some Undecidable Termination Problems for Semi-Thue

Svstems

G. Sénizergues (LABRI, Bordeauws} . . . . . ... .. ... ... ... 434

SYSTEM DESCRIPTIONS

Saturation of First-Order (Constrained) Clauses with the Saturatec
System

P. Nivela and R. Niewwenhuis {University of Barcelona) . . . . . . 436
MERILL: An Equational Reasoning System in Standard ML

B Matthews (Unsversity of Glasgew) . . . . .. .. ... . ... 441]
Reduce the Redex — ReDuX

R. Bindgen (Universily of Tubingen) .. . . .. . . ... ... 448
AGG — An Implementation of Algebraic Graph Rewriting

M. Léwe and M. Beyer {Technical Universily of Berlin} . . . . . . .. 451
Smaran: A Congruence-Closure Based System for Equational

Computations

R. M. Verma (University of Houston) . . . . . . ... ... ... ... 457
LAMBDALG: Higher Order Algebraic Specification Language

Y. Gui and M. Okada {Concordia University, Montreal} . . . . . . . . 462

QOPEN PROBLEMS

More Problems in Rewriting
N. Dershowtlz (Untversity of Illinots et Urbana), J.-P. Jouennaud _
(LRI, Orsay} and I.W. Klop (CWI, Amsterdam). . . .. ... .. .. 468

Authors Index . . . . . .. .. .. . .. .o 488



BIBLIOTHEQUE DU CERIST

Intimate Computing and the
Memory Prosthesis:
A Challenge for Computer

Systems Research?

(Abstract)

Michael G. Lamming
Rank Xerox EuroPARC
Cambridge, England

At EuroPARC we are trying to build a human memory prosthesis — a portable device
to help individuals remember things. It will automatically capture and organise prede-
fined classes of information and provide easy ways to recall it when needed, perhaps
without even being asked. We call this device a memory prosthesis because it augments
normal human memory. It differs from most other information systems in that it focuses
on helping the user recall things they once knew. Our objective for the memory prosthe-
sis is to assist users with everyday memory problems, Target tasks for the memory aid
include: recalling names of people, places, and procedures, finding files, papers and
notes, in whatever medium they are expressed, and remembering to perform tasks.

The memory prosthesis is an example of a new class of interactive system we en-
visage will be made possible by forthcoming advances in micro-electronics, Using cel-
lular radio and infrared technology computers are able to communicate with each other
without wires. This new development heralds the dawn of mobile computing. At
present radio transceivers are large and power hungry, so much so that the machines to
which the transceivers are attached are fairly large. We are looking a short while into
the future when mobile computers will be somewhat smaller, indeed small enough to
be worn rather than carried — perhaps resembling a watch or piece of jewellery. We
look o a time when people don’t have to remember to take their computer with them,
they wear it and take it everywhere,

Such systems will have several fundamental capabilities not previously available on
such a wide scale. They will dynamically connect and communicate, not only with each
other, but with office equipment, domestic appliances and much of the other business
and consumer electronic equipment that surrounds us,

The wireless communication technology used by these systems will be cellular —
perhaps based upon the new digital cellular telephone standards. The low-power re-
quirements of a tiny wearable computer will limit the range to a few meters and so com-
munication cells will be small. The consequence of relying on small cells for commu-
nication is simple yet profound, mobile computers will know where they are. To find
out their location they simply ask the nearest non-mobile object.



BIBLIOTHEQUE DU CERIST

So to summarise; compaters will be small enough 1w wear and izke sverywhere;
they will be embedded in domestic appliences, office and consumer equiprnent; they
will talk to each other using ceilular wireless communications; and they will know
where they are.

Taken together these facilities provide us with another view of mobile computing.
Popitlar views of mobile computing regard it as a too! providing access to information
and computation whilst the owner is away from his or hier desk. We view it the other
way round. Our computers can now gain conlinuous access to us and our immediate en-
vironment, wherever we are. In consequence, our personal cornputer will be able 1o find
out much more about us, and like any other personal assistant, the more it knows the
more useful it can be. To distinguish this style of system from personal computisg, we
have coined a new phrase: intimate compuiing.

Carrying a computer around everywhere offers almost limitless opportunities to
capture useful information. Wherever we go, whatever we do, our tiny computer can
antomaticaily liaise with the equipment we use to do our work, with the portable com-
puters belenging to the people we meet, and with the devices embedded in the building
where we work, to construct a detailed personal cross-reference to much of the infor-
mation with which we come into contact. Indged, one of the most likely down-sides for
intimate computing is the ease with which we may drown in the incoming tide of un-
structured data — wunless it is filtered and orgarnised awomatically too.

Most personal informarion systems, paper-based or computer-based, require some
help from the user to construct a useful database. Typically the user s to recognise
that ae ilem of information might be required in the future; he or she must then make
the effort to capture it; and lestly, and perhaps most importantly, he or she has to organ-
ise the information in a manner that makes it easy to find it again. But to de this, the
user must be able to predict the situaticn in which the information will he needed and
think up some indexing terms which he or she guesses might plausibly spring to mind
the next time the information is sought, A common problem is o guess incorrestly! For
example, Mary may cheose to file a uzeful journal article by author or title, yet subse-
quently only manage to recal! that it was the one her boss gave to her.

This example highlights 2 well esiablished feature of the human memory systein —
people are particularly good at recalling activities from their own lves. Psychologises
cail this mechanism episodic or autobiographical memory, Experiments have shown
that humans are not particularly good at remernbering the fime of an episode in their life,
but they are much better at remembering where the episode occurred, whe they were
with, or whar they were doing. We call this the context.

Oc: the other hiand, computers are excellent at recording the exact time an item of
information was created, stored, cotnmunicated or processed in some way. For exam-
ple, if Mary chooses to write g note about the journal article on her portable computer,
the computer will aimost certainly timestamyp the note for her, In fact almost every com-
vuger transaction is timestamped in some way alrcady. Elecironic files are timestamped,
telephone call-times are recorded for billing, faxes have the arrival time printed on
thern, and even each frame of a video seguence contains a time code. Morecver, com-
puters are very good at searching through large bodies of data for itemms with a particular



BIBLIOTHEQUE DU CERIST

timestamp. So if we can give a computer system an exact timestamp it won’t take very
long to find all the items that are tagged with the same date and time. Yet as we have
stressed already, context is fairly casy for humans to remember while exact timestamps
are not. If only the context that gave rise to an item of useful information could be used
by the computer to find the same item later on...

Previous work at EuroPARC has shown how this might be achieved with mobile
technology. For example, Newman and his colleagues have demonstrated a technigue
called episede recognition [2]. Location data obtained from Active Badges can be used
to construct automatically, a diary of an individual’s life expressed in terms of their lo-
cation and enceounters with other members of staff and visitors. Experimentis have
shown that these chronicles are a powerful aid to recall, and can be vsed both to index,
and retrieve other less memorable data collected antomatically at about the same time.
As aresult it has been suggested that a more comprehensive diary containing richer de-
scriptions of the user’s activities might provide a useful indexing mechanism for navi-
gating through a huge database of personal information [1]. We now believe it is possi-
ble to design a computer system in which imprecise informal yet personal memories we
have for past events can be used as keys to recover detailed information about the event
itself.

Clearly our primary motivation for building this system is to previde more effective
support for human memeory. But in doing so, we are encountering all sorts of technical
problems for which we have no convenient solution. Nevertheless, our prograrmme of
work proceeds in anticipation of acceptable solutions becoming available shortly. By
trying to build this demanding application we hope to create another small focus for re-
search in computer science and engineering and highlight some of the technical chal-
lenges that lie ahead for all of us.

References

{11 Lamming, M. G., & Newman, W. M. (1992). Activiry-based Information Retrieval; Tech-
nology in Support of Personcl Memory. In F, H. Vogt (Ed.), Information Processing "92.
Proccedings of the 12th World Computer Congress, Vol. IIEpp. pp 68-81. Madrid: Elsevier
Science Publishers (North-Holland).

2] Newman, W., Eldridge, M., & Lammming, M. (1991). Pepys: Generating Autobiographies
by Automatic Tracking. In Proceedings of the second European conference on compuler
supported cooperative work. Amsterdar,



BIBLIOTHEQUE DU CERIST

Active Programming Strategies in Retse

Mary Beth Rosson and John M. Carroll

IBM T. 1. Watson Research Center
Yorktown Heights, New York 10598, USA

Abstract. In order 10 capitaiize on the potential for software reuse in
object-oriented programming, we must beter understand the processes in-
volved in software reuse. Our work addresses this peed, amalyzing four
sxperienced Smalltalk programmers as they enhanced applications by re-
asing new classes. These were acrive programmers: rather than suspending
programuing activity to refiect on how to use the new components, ihey
began work inunediately, tecruiting code from example usage contexis and
relying heavily on the systern debngger to guide them in applying the bor-
rowed context, We discuss the implications of these findings for rense
documentation, programming instruction and tools to support Teuse.

1 introduction

A key attraciion of ocbject-oriented programming languages is the potential thicy offer
for the reuse of softwars componeats. A well-designed object class defines a tightly
encapsulated bundle of state and behavior that can be “plugged into™ a target appli-
cation to fill some functional need — hence the popular metaphor of a “software
17 [4,5]. And while most of this potential has been asserted rather than demon-
strated, empirical evidence documenting the advantages of an object-criented Ian-
zuage for code rense is beginning to emerge [17]. At this peint, however, we know
very little sbout the process of componeit reuse and thus how we might best support
reuse aclivities.

A programmer attempting to recruit existing software components for his or her
current project must carty out two basic tasks. First, the candidate component(s)
must be identified. This may be trivial in cases where the component was self-
generaied or is already familiar o the programmer (see, e.g., [0.16]). However,
much of the missed potential in software reuse artses in situations where the pro-
grammer knows little or nothing about the component in advance. As componcat
libraries increasc in size, the difficulty of localing novel functionality increases
commensurately.  Not surprisingly, researchers have begun to apply 2 variety of
classification and information-retrieval techniques to address the difficult problem
of locating unknown functionality within large class libraries [12,21].

Once a candidate component has been ideniified, the programmer must incor-
porate the component into the ongoing project.  Again, if the component is self-
generated or already familiar, this process is simplified: the programmer already
knows what it does and how it is used, and merely muost apply this koowledge to the
new situation. But for unfamiliar componcnts, the programmer must engage in at



BIBLIOTHEQUE DU CERIST

least some form of analysis, determining what the component docs and how it can
contribute to current needs, and then designing and implementing the code needed
to extract the desired functionality [2, 10]. Researchers are only beginning to explore
how one might document code intended for reuse (see, e.g., [14]). But from the
perspective of a programmer considering reuse, one requirement is clear: under-
standing how (0 use a component must take less time and effort than (re)building the
component itself. Indeed, given programmers' general preference for self-generated
code, the cost of reusing a component should be considerably less than that of cre-
ating it.

This paper seeks to elaborate the requirements for rense decumentation and tooi
support through analysis of experts carrying out a reuse task. We observed Smalltalk
programmers enhancing an application through the reuse of classes we provided.
Most generally, our goal was to characterize the strategies and concerns of the pro-
grammers as they attempted to reuse the novel classes — by understanding what
does and does not work well in the current reuse situation, we can begin (0 reason
about possible modifications or enhancements. More specifically, however, we were
interested in the role that examples might play in documenting reusable components.
We have been rescurching example-based programming environmenis for learning
and for reuse [3,13,20,22], and this empirical setting provides an opportunity to ex-
amine experts' natural strategies for finding and applying example information,

2 The Reuse Situation

Four expericnced Smalltalk programmers participated in the study. Al had been
programming in Smalltalk/V® PM [8] for over two vears, and had over 10 vears of
general programming experience. All had worked on user interface development in
Smalltalk, largely on building components for advanced user interfaces (e.g., multi-
media ohjects, direct manipulation techniques, visual programming).

Each programmer completed two reuse projects, in two separate sessions. The
reuse situation approximated the application prototyping activitics these programmers
carry out in their normal work environment, in that both projects involved an en-
hancement to the vser inerface of an already-written interactive application. The
applications were simple but non-trivial examples of Smalltalk projects; in debriefing
sessions after the experiment, all of the programmers judged that these were repre-
sentative reuse programming tasks. The order of the projects was counterbalanced
— one project served as the first project for two of the programmers, the other as
the first for the other two. During their sccond sessions, programmers were intro-
duced to the Reuse View Matcher [22] and were allowed to use this tool while
completing the project. Due to space limitations, this paper will not discuss the
sccond set of sessions involving the Reuse View Matcher.

The programmers were read brief instructions at the beginning of each session,
describing the application they were to enhance, and identifving the class they were
to reuse in making this enhancement. They were told that they were not expected
to spend “more than a couple of hours” on the project and that they should not worry



BIBLIOTHEQUE DU CERIST

if they did not complete it in this amount of time. Finally, the programmers were
atked to “think afoud” while they wosked, o vocalize their plans and concerns as
they worked as much as possible without interfering with their activities f91.

After hearing these instructions, the programmers were given an extended in-
troguction (approximately 20 minutes) to the application to be enbanced; this in-
voived going over a hierarchical view of the major application classes, a design
diagram of applicaiion objects and their connections, descriptions of typical inter-
action scenarios, as well as a comprehensive walk-through of the code. The intent
was to familiarize them with the application encugh so that their problem-solving
efforts would focus on the reuse of the new class rather than on understanding how
the existing application worked. No information other than the name was providad
about the class to be reused.

During the reuse task, programmers worked at their own pace in a standard
Smailalk/V PM snvironment. The experimenters took notes and made videotapes
of the programming activity on the display. occasionally prompting the programmer
to comunent on a plan or concera.  All projects were completed within gne and a half
0 tWo hours.

%1 The Color-Mixer Project

One of the prajecis consisted of an enhancement to a color-mixer. The color-mixer
converts rgh values input by the user to create custom colors; these colors are stored
in and retrieved from za database of named colors. The original application has three
buttons for red, green and blue (see Figure 1); clicking one of these butions brings
up a dialeg box in which the user types an integer {0 manipulate a eclor compoenent,
The color being edited is displayed as a “swatch”, and is flanked by the st of saved
colors. Users can select colors from the list, as well as adding and deleting colors.

Becanse everything in Smallialk s an object, and because objects typically in-
herit 2 good deal of their functionality, & is difficult to charactenize the “size” of
applications. However, the most important objects in the coler-mixer are instances
of gix classes (see Figure 1) ColorMixer, ColorMixWindow, ButionPane, ListPane,
GraphPane and Dictionary. The last four classes in the list are components of the
standard library. The number of methods in these six classes ranges from six to 54,
with an additional 118 to 338 inherited methods.

The programimer's éask was to replace the buitons-dialog bex input style with
horizontal sliders, Mo informaiion was provided conceming he appearance or
functicnality of the slider, only that they were to use the new class HorizSliderPane,
A typicel solution involves the editing of the existing opercn: method (this is the
method that creates and initializes the windows and subpanes, and the bution creation
code must be replaced with analogaus code for the shiders), and the addition of four
new mothods (to handle activity in each of the sliders, and to draw any given slider).



o oa i
File Edt Smattalk

BarGraphPane
Hariz Stiderf*ana
UstPane

A it i T % 2 i o it

Figure 1. The Color-mixer Project: Oun the left is a listing of the major classes involved in
the color-mixer and foothall analyst applications; indentation in the list signifies superclass-
subclass relationships. In the upper right is the original color-mixer; beneath it is the appli-
cation cnhanced to use shiders as input devices.

The class library included am example application already making use of
HorizSliderPane. The example usage was a foothall analysis program, in which five
sliders are used to manipulate defensive player characteristics (e.g., speed, age,
height}, and the predicted consequences of the characteristics (e.g., sacks, inter-
ceptions, tackles) are graphed in a separate pane. This application uses five main
classes (FootballAnalyst, HorizSliderPane, BarGraphPane, AnalysisWindow, and
Dictionary; only Dictionary is part of the standard library; see Figure 1); method
count ranges from five to 33, with from 118 to 363 inherited methods. Because one
of our rcscarch goals was to examine experts' strategics for discovering and em-
ploying example usage information, the programmers were not told of the cxample
application in advance.



BIBLIOTHEQUE DU CERIST

Fie Library

Eleclrica?
Aprogpate

IndexadColieciion
SraeredCollect on
Hebanrk
Herarchy
Library
Gyl
RebwarkConnesficn
NHabwrkHode
Window
Appbcatanyfindow
LibraryWlndow :
Redwarswindome f @; " iy
siatarctyndon puterpplcations>
Grgthaddindow
SubPane
EraphPaee
SHetwarkPane : —
Hterarchyiane ghea i Humanitieg
LisiPanc “““—'— ‘—"')

\ ‘H‘-‘h\-\‘
% &Iuctle/ \;ﬂos cP E @

= 3 X

Fipure 2. The Library Project: On the left is & Hsting of the major classes involved in the
tibrary and organization chart applications; indentation in the list signifies superclass-subclass
relationshtips. In the apper right is the original library application; benezth it is the application
snhanced to use a graphical hicrarchy.,

2.2 The Library Project

The second project consisted of enhancements to & library acquisitions application.
This application manages 2 hierarchical collection of baok categories {(e.g., Computer
Applications broken into Eiecurical Engincering, Aerospace Enginecring, eic.); cate-
gories are annotated with information about acquisitions {e.g., number of books, ti-
iles). Hierarchicai structure is conveyed via an indenred list (see Figure 2), and users
manipulate the categores by selecting a list item and making menu selections. In
this way, they can add and delete categories, rename catzgories, and browse and edit
the acquisiticns information.

The library project uses five main classes (Library, MetworkNode, ListPane,
NetworkConnection and LibraryWindow: only ListPane is part of the standard hier-
archy, and the Library class inherits from two novel superclasses, Network and Hi-
erarchy; scc Figure 2), The method count for these five classes ranges from 4 to
54, with from 118 to 319 inkerited methods.

Programmers were asked to enhance this project by using the new class
HicrarchyPane; again, they were wid nothing of the appearance or functionality of



BIBLIOTHEQUE DU CERIST

the target class. An instance of this class is able to graph a hierarchical network of
nodes (see Figure 2). It also can identify nodes or connections selected via a mouse
click. Finally, the subpane allows users to name nodes by lyping directly onto the
graphed elements.

HierarchyPane differs from HonzSliderPane, in (hat much of its functionality
is inherited from its superclass NetworkPane, Further, it was designed to work in
concert with a number of other novel classes (HierarchyWindow, Node,
NetworkNode and NetworkConncction), whereas HorizSliderPane is a relatively
“standalone” componcnt. A typical solution for rcusing HierarchyPane in the library
application involves creation of a new LibraryWindow class as a subclass of
HierarchyWindow (thereby inheriting the ability to draw, select, and name nodes in
the graph), and the updating of five methods from the original LibraryWindow ¢lass
{the methods for adding, removing and showing acquisitions for a sclected category,
the method defining the menu, and the openon: method).

As for the color-mixer project, the class hierarchy included an example usage
of HierarchyPane — an organization chart, in which the nodes correspond to em-
ployees, and in which employees of various job descriptions (e.g., staff member,
secretary, visitor) can be added to the hierarchy, given names, reassigned, and given
preject  descriptions. The example uvses seven main classes (OrgChart,
OrgChantWindow, HierarchyPare, Nede NetworkNode, NetworkConnection, and
TextField; none of these are part of the standard hierarchy, and both
OrgChantWindow and HierarchyPane inherit from novel superclasses; see Figure 2).
The method count for these clussces runges from 1 to 37, with inheritcd methods
ranging from 118 to 442, Programmers were not told in advance about the
HierarchyPane usage example.,

3 Reuse of Uses

In most discussions of component reuse in object-oriented systems, the focus has
been on the class or classes rcused. Design methodologies attempt to articulate
characteristics of reusable classes {15,18] and tool builders develop techniques for
classifying and retrieving useful classes [12,21] The dominant metaphor is “con-
struction” — the programmer finds parts that can be reused, modifies them as nec-
essary amnd connects them together {see, c.g., [4,5]).

Our observations suggest that this focus on components may be over-simplitied.
To develop the knowledge needed to reuse the components directly, the programmers
would have had to stop work on their overarching goal — enhancing the project they
had been given — and spend time analyzing and reflecting on the target class.
These programmers were too focussed on their end goal to engage in protracted
analysis. Instead, they made active use of all resources available in the environment,
and began programming immediately. This led them to reuse the components only
indirectly, through the rcuse of “uses”. That is, the main entity participating in the
reuse programming was not the target class but rather the example application of that
class. The programming consisted of finding and reusing the patterns of component



BIBLIOTHEQUE DU CERIST

10

reuse reifled in the example applicadon. As one prograrmmer et i, on siscovering
rhe example application, “so there's 2 solution in the system!”

The extensive reuse of the example occurred despite mixed feelings sxprassed
by the programmers. There was a sense that this wasn't the “right” way to reuse a
class, that it was somehow cheating or taking the casy way ovi. One programmer
said that he would lock at the example only i all ¢clse failed, but ther immediately
began to work with it.  Another viewcd the example as 2 mixed blessing, because
aithough it offered information on how 10 use the target class, it now required anak-
ysis itself: “Whenever you provide help, you provide trouble, now I have to under-
stand this!” However, when probed about these feclings at the closc of the
experiment, the programmers indicated that the strategy of borrowing heavily from
examples is one they use frequently in prototyping Smalltalk applications, and that
thetr reservations were due to a perceived demand to use more conservative methods
in this experimental situation.

Smalltalk provides explicit support for the identification and reuse of example
asage context through its “senders” query which refurns a list of methods in which
a target message is sent.  An experienced programmer can browse this list and make
reasonable guesses as o which other classes if any are already using the class of
interpst; if motivated, they can then explore these other classes to discover why and
how the target class is being used. All of the programmers made early and repeated
use of the senders query; further, they showed an ability to discriminate ameng the
various messages defined for the target class, asking for senders only oo the nore
important methods {e.g., 2 method providing the contents for the svbpane):
“AnalysisWindow seems {o be figuring prominently as a sender of interesting mes-
sages”.

3.3} Reusing Picces of an Example

The most commoen reuse of the exampie applications consisted of horrowing cods
used as the interface to the target class, both blocks of code copied out of methods
and entirz methods. For instance, all of the programmers borrowed code from the
example applications' openfn: methods; by convention this Is & message sent (o
a window which instactistes the varicus subpases, defining their graphical and be-
havicral characteristics. The instantiation of subpancs in Smalltalk/V is ofien com-
plex, and typically includes the definition of events that the subpane will handle,
Thus copving an instantiation code snippet {€-15 lines of code) can save considerable
time in working out exactly how z new kind of subpane neads to be initialized.
Sometimes the borrowed code was not ditecty reusable itsel, but rather was
used more as a functional specification. In working out slider event handling for the
color-mixer project, the programmers copied over the slideraective: method
from the foothalt program. This methed does three things: first, the affected slider
processes the mouse activity; second, the relevant plaver characteristic is updated;
and third, predicted plaver performance is graphed. Ously the first of these events
maps directly o {and thus could be reused in) the color-mixer project. Nonatheless,



BIBLIOTHEQUE DU CERIST

11

the programmers were able to understand the code in sliderActive: as a spec-
ification of what they needed to do in their own version: process slider activity,
re-set the model data (in this casc, the color settings), and display the results (the
new color swatch),

On a few occasions, the borrowed code came from work the programmers had
just completed themselves (as in the “new code reuse” situation described in [6]).
For example, both programmers working on the color-mixer first developed the code
for one slider, then worked from that code to implement the other two. In these
cases, the programmers knew exactly what needed to be changed, and the “pro-
gramming” consisted simply of the physical edits.

In general, the copy/edit strategy worked quite welf (see also [16]). It reduced
the amount of typing required of the programmer, and helped to insure that the de-
tails of the code {e.g., placement of linc scparatorsy would bc correct. Morc impor-
tantly, it removed the burden of analyzing the target class encugh to generate the
correct protecel for a particular usage situation, enabling a rapid programming
progress. For many parts of the borrowed protocol (e.g., the event definitions in the
openon: method), the programmers knew what parts of the code needed to be ed-
ited and how to do this.

However, the copy/edit strategy did lead to some problems stemuning from the
novel parts of the target class’ protocol, in that the programmers were now able to
copy and “use” protocol that they didn't fully understand. A good example comes
from one programmer’s work on the color-mixer. In the football analyst example,
each slider is instantiated with a different starting value. Because the slider
instantiation code was copied from the football openor:, instantiation of the value
variable also became part of the color-mixer cpenon. The value attribute 15 not
generic to subpanes, so the programmer did not know off-hand whether it was pre-
requisite to slider fuonctioning, and if so, what a reasonable starting value would be
for the color-mixer. The programmer did not know enough about the protocol for
sliders to answer these questions, so he simply made a guess. Later on, this guess
caused problems, as the initial positions of the sliders did not match the starting color
(white). Subsequently, the programmer solved the problem not by going back and
correcting the imtialization code, but rather by adding code at a later point that
simulated the selection of white in the color Hst pane.

In some cases there was a conflict between the component interface suggested
by the example, and the current design of the project. In the football program, the
activity of all the sliders is handled by a single method slideractive:. Modeling
on the example, one of the programmers began by copying over the method and
modifying it to refer to color-muxer objects. However, in the course of doing this,
he recognized that there would be 4 problem in discriminating among the different
slider instances. Despite the suggestion by the football example that multiplc sliders
could be managed by one method, he decided to change his approach and work from
the more familiar model of the buttons used by the original user interface. Noting
that three separate methods had been wrilten to handle button activity, he developed
an analogous set of three slider activity methods.



BIBLIOTHEQUE DU CERIST

12

The Smaiitaik cnvironment is very suppoitive of the copying/ediiing of exampla
usage code. Programmers can open as many code browsers as they Hke, and can
freely select and pasie text among them. In this study, the programmers almost al-
ways had at least two browsers open (onc for the example and one for the project)
and often used more when the code involved a number of embedded messages. In
thig way, they could preserve their top-level context while going off tc answer a
question or to find additionat refevant code in cther classcs or methods.

3.2 Reusing an Applicatien Framework

All of the programmers initini efforis 10 reuse the example application invoived
bringing methods or pieces of methods from the exampic application into the project.
However, the two programimers working on the librasy project ultimately decided to
create a new kind of library windov, one that was a sibling of OrgChartWindow (i.e.,
had HierarchyWindow as a superclass, this was in fact the solution requiring least
programming effort). In doing this, they were deciding to inherir rather than borrow
from the exampie vsage context. After this decision, their activity shifted, as they
began bringing code from the original fibrary window into the new window. This
was in marked contrast to the programmers working on the color-mixer project, who
appeared to never even consider inheriting functionality from the football example.

The decision to subclass reflects a desire to reuse more than just the snippets
of cods involving the target class; in this case, the programmers elected to adopt the
entive application context of the example. In Smalltallk/V PM, this context is
normally nemaged by a window,; the window communicates with the underlying
application objects {(e.g., a hierarchical collection of employees) and with the
subpanss used to display application information. Thus reuse of the context can be
accomplished by subclassing the application window; reuse of this sort is often re-
ferred to as reuse of an “application framework” [7]. Framework reuse brings along
the component of interest “for free” in some sense, in that it is zlready a component
of the framework, and the example window already has the code needed to interface
hetween the component and other application objects.

Deciding to reuse the example’'s application framework had a remarkable effect
on the programmers’ reusc ¢fforts, ' What had st first been s rather complex process
of tracking down individual mcthods and instance variables distnbuted across
Network Window, HierarchyWindow and OrgChartWindow, and copying and editing
methods or picces of methods, now became o straightforward process of copying
over and updating the menu functions from the original LibraryWindow class. One
of the programmers spent over an hour reaching the decizion to snbclass; once he
did, he was rather frustrated at the thought of throwing away all the work he bad
done so far, but even so was able to complete the project in fifteen minutes,

The probleins of tracking down fonceionality distributed throughout an
inkieritance hierarchy have been noted before; Taenzer, Gant and Podar [23] refer
to this as the “yoyo” preblem. The Smalltalk/V class hierarchy browser offers little
sepport for dealing with hievarchically distributed function, as programmers must



BIBLIOTHEQUE DU CERIST

13

navigatc from superclass to superclass in search of methods. Taenzer ¢t al. [23] point
to this problem as an argument against reuse via inheritance, suggesting that under-
standing how to subclass an extensive hierarchy requires much more distributed code
analysis than simply reusing a component. Qur situation offers a new twist on
considering whether to rcuse functionality directly or through inheritance: when a
componegnt has already been incorporated into a rich application framework, pro-
gramimers may find that indirect inheritance of the component's functionality (i.e.,
through subclassing the framework) will simplify encrmously the task of reusing the
component.

Several factors scemed to contribute to the programmers' decision to reuse the
application framework for graphical hierarchies. One was simply the difficulties in
tracking down, borrowing and imegrating function. There seemed to be a sense that
the process was more complicaled than it should be, e.g., “I should probably be
trying to inherit some of this...”. When asked later, one of the programmers indicated
that it was his realization of how many of his borrowed methods were inherited from
superclasses of OrgChartWindow that made him decide to move the library window.
For the other programumer, a critical incident was bis effort to compile a key method
(the one allowing selection of nodes in the graph), and discovering a instance vari-
able of the example window that had no analog in the library application. Up to that
point, he had seemed willing to work with the complexity of tracking down and
borrowing example protocol, but adding a new (and mysterious) piece of state in-
formation was too much.

Another factor may have been the similarity between the ecxample usage and the
project.  On first discovering the HierarchyWindow class, one programmer tried a
simple expcriment while voicing his belief that it would never work; he (ried
opening a HicrarchyWindow “on™ the library object (an instance of Library, part of
the Collection hierarchy). To his (and our!) surprise, this experiment was successful.
Of course, the LibraryWindow functionality was not present, but at least the book
collection was displayed in a nice graphical hierarchy, This experiment may scem
extreme, in that it has a rather low probability of pay-off. However, it was simple
to do, and it provided the programmer with considerable insight imo the cxamplc
application that he was able to apply to his later efforts.

The subclassing strategy did simplify the reuse programming project. However,
it also introduced some rather subile problems. There was considerable overlap in
the functionality of the example and of the library {e.g., both had facilities for adding
and removing elements in a hierarchy, for renaming these elements). One of the
programmers, having decided to subclass, wanted to inherit as much functionality
as he could. So, when updating the menu selections, rather than copying over the
methods from the original library window and editing them to work in this new
context, he first tried simply inheriting the methods defined in the superclasses. On
the surface, this strategy seemed to work — he was now able to add and delete 1i-
brary categories and rename them. He never realized that the underlying library
structure was not being manipulated correctly (the relationships among categories
weren't being specified). It may be that programmers following a subclassing strat-



BIBLIOTHEQUE DU CERIST

14

egy are more likely {o satisfice, aceepting gencric inherited functionality that is al-
most bt oot grite right simply heczuse it is there and is. already worldng.

4 The Reuse Programming Process

The programmers were opportunisiic in the objects of reuse — extensive recrudtment
of the example contexts reduced considerably the amount they needed to learn about
the target class. But they were also opportunistic in how they wernt about doing the
reuse task, They spent little lime in deliberated analvsis of the example, in under-
standing how it was going to help or interfere with their enhancement efforts. Rather
they began using the code of the example immediately to make progress on their
goal, These were gciive users of Smalltalk [1]: as has often boen observed for hu-
man problem-solving [1i{ the process we observed was very locally driven, with
specific features of the environment and the evolving solufion dotermining each
succeeding step.

4.1 Getiing Something to Work With

Axn early goal for ail of the programmess was 1o get an instance of the targei class
up and running, so that they could see what it looked like. One of the programmers
working on the library project was able to use the organization chart example to do
s, After discovering the example, he imgnediately tock on the goal of starting it
up. He found an OrgChart class method fromUTIData, the name of which signalied
to him that 1t was a gpecial “set-up” method, and that he could use it to creaie an
appronriate OrgChart object and start up the application. By doing this, he was able
to see what a HierarchyPane looked Like, as well as to experiment with e interaction
technigues it supported.

With respect to programming activities, the focus of initial efforts for all of the
nrogrammers was on modifying the project's openon: method to include the new
class: “I want to get one of these things as a subpuane”. However, while there was
some browsing of the target class methods W see how to do this, the browsing tended
0 yield inferences about class functionality rather than usage protocol;, as we noted
sarlier, the programmers Seemed to resist carrying out an analysis of the targef class
comprehensive enough 1o allow them to write code to instantiate it for their project.
Instead, they sometimes Jooked for clues in the code they were replacing. Thus the

-two programmers working on the color-mixer examined the code used to create the

huttons, ihinking about how they might modify it for shiders {e.g.. what events a
sifder might handle in contrast to a button).

One programmer working on the color-mixer tried to take advantage of other
code in the openon: methed as well, Noting that HorizSHderPane is a subclass
of GraphPane, he examincd the code instantiating the color swatch (an instance of
GraphPane), thinking that he might be able 1« build a slider definition from it. This
led to a variety of problenis, as he began to hypothesize that the slider functionality
was somehow built from the scrall bars present in every subpane, and that the pro-



BIBLIOTHEQUE DU CERIST

15

tocol controlling these scroll bars for GraphPanes must be critical in creating sliders.
This was ceriainly a reasonable hypothesis on functional grounds, but in fact was
quite misleading.

The programmers seemed to fecl that successfully instantiating the target class
within the project context was & momentous cvent. 1t appeared that this was con-
sidered to be the major hurdle of the project, and now they could get on with busi-
ness as usual, adding the remainder of the component's functionality (i.e., its event
handling). One explanation for this is that the programmers could “see their end
goalin sight” — a new and improved view of their project data. But another equally
important factor is that by instantiating the new component as part of the project, the
programmers could now rcly much more on the environment to guide their pro-
gramming. In a Smalltalk application, objects arc created and code references are
established only when the application is run, making the code alone inherently am-
biguous and mental simulation of it difficult. In contrast, if the programmer is able
to start up an application, all ambiguities in the code are resolved, and the pro-
grammer can use Smalitalk's sophisticated interactive debugging tools to analyze and
modify the code.

4.2 Debugging into Existence

We have seen that the programmers rclied heavily on code alrcady in the ¢nviron-
ment in attacking the reuse projects. Bul they also rclied heavily on the tools of the
environment to locate and make sense of the relevant code. In particular, they re-
peatedly started up the application they were working on, and looked to sce where
it “broke” to plan their next move.

Smalltalk is particularly supportive of this debugging-centered style of program
construction. The language is nen-typed and compiled incrementally, which permits
rapid and repeated cxperimentation with the code used to run an application. The
debugger and inspector tools support such experimentation directly, providing flexi-
ble access to and manipulation of the runtime context for an application (i.e., objectls
and their state, messages in progress),

In some cases, the programmers knew something of the steps they would need
to take, but used the debugger (o help them in cartying these out.  Thus, once they
had copied the instantiation code from the example application's openon:, they
knew that certain modifications would be necessary: instance variable names needed
to be changed, the menu name necded to be changed, the project would need a
drawing methed, ¢t¢. Some of the programmers even carried out some anticipatory
activity, perhaps creating a method that they knew they would need, but that they
also knew was not yet functional. However, for thc most part, they relied on the
system to detect the absence of methods or the inappropriate states of objects. In a
typical scenario, the programmer would start up the project application, receive a
“message not understood” error, return to the example in search of a method with
that name, copy the method, perhaps making a few changes, try again and see how
far it got, make some changes and iry again. This sort of cycle might be repeated



BIBLIOTHEQUE DU CERIST

16

many rimes, but the programmers seemed comforiable with i, and seemed confident
that they were making progress.

In other cases, the debugger was used w untangle more subtle problems, So,
for example, the superclass HierarchyWindow uses the network imstance variable
to point to the main application ohject, whereas the origingl LibraryWindow class
uses library. A thorough analysis of the example would have revealed the refe-
vant mapping between these two variables. However, the two programmers working
on this project simply borrowed the example code as-is and used the debugger o
ascertain what rele the network variable was playing and how to provide this in-
formation within their project.

The compiler was used in this opportunistic fashion as well. Whenr dealing with
complex pieces of borrowed code. the programmers often would attempt to compile
the code hefore they had completed editing it. The sysiem would flag variable names
not defined for the class (e.g., the HierarchyWindow code refers 10 graphPene,
while the LibraryWindow uses pane)}, and the programmers would then replace the
unknown name with the name of the apalogous variable. This minimized the amonnt
to which they needed to read through and analyze the unfamiliar code.

5 Summary and Tmplications

Our observations describe a process of component reuse in which the component is
reused only indirectly, through the reuse of its *uses” — bits of pretocol or even
gntire application frameworks. The programmers we studied pursued this style of
reusc piecemeal and opportunistically; they locused initially on getting a runnable
albeit skeletal result which they could exercise and improve inercmentally, relving
heavily on interactive debugging. We have characterized these as “active” pro-
gramuming strategics, an orientation in which programmers direcily and immediately
cnlist and iransiorm their software materials in favor of withdrawing from such ag-
tivity to analyze and plan.

5.1 Scepe of Active Reuse

This work was expioratory smpirical research in its scope and scaie. I{ addressed a
partictlar programming sifuation, application profotyping, which may differ signif-
icantly from other situations. However, at lzast some of our observations are con-
sistent with studies of other reuse simations. Lange and Mcher {16} observed that
an experienced programmer extending a library of softwarc components was quite
likcly to use existing componrents with related functionality as semplates or models
for the new components. Detienne [6] found that programmers designing and im-
plementing ncew applications somtimes reused their own code as they worked.
Interestingly, the programmmers in this study chose not 'o borrow code from other
applications, perhaps because the other applications available were only peripherelly
related (o the problems being sclved.



BIBLIOTHEQUE DU CERIST

17

Further research is needed to assess the generality of the morc specific strategics
we observed. All four programmers relied extensively on the system tools (o or-
ganize their work, using multiple browsers to maintain their context across different
parts of the hierarchy, and using the debugger and inspector to track down and
modify missing or inappropriate pieces of borrowed code. It is not clear though what
the boundary conditions for such an approach might be — it may be that they are
only likely to occur in a tool-rich interpreted cnvironmeni like Smalltalk.

Some strategies were unique to a particular programmer. For example, only
one programmer made the effort to “run” the example application before borrowing
code from it. He felt that this gave him a chance to preview the functionality he
would be incorporating; il may be that across a wider variety of reuse projects, per-
haps involving more complex components, such a sirategy would be more prevalent.
In another case, one programmer experimented with opening a graphical
HierarchyWindew “on” his application data. The success of this experiment con-
veyed a great deal to him about what the graphical network framework expected in
terms of data structures. It is important to understand the generality of such tech-
niques and stralegies.

5.2 Consequences of Active Reuse

Beyond the question of generality, we can ask about the consequences of the active
programming strategies we observed. For example, two of the programmers did not
produce a perfectly correct result, and it is not clear whether or how their problems
would have been detecied and corrected given unlimited time, or given instructions
that emphasized the accuracy of the result. Indeed, the active programming we ob-
served may be inadvisable from a softwarc engineering perspective, if the small er-
rors or inefficiencies introduced by reliance on example code are very difficult to
unearth subsequently. Further research is needed to determine what if any strategies
experts have developed for minimizing this downside inherent in reuse by example.

It is important not to lose sight of the main benefit of this style of software re-
usc: these active strategies reflect a creative and effective resolution of the inherent
tension between the need to distance oneself from one's own project to study some-
one else's code, and continuing 1o make concrete progress toward a desired result.
Elsewhere we have characterized such a tension as the “production paradox™ [1],
wherein users are too focussed on the product they are creating to acquire the skills
that will facilitate its creation. In this Smalltalk reuse setting, the programrers'
borrowing of example code allowed them to quickly incorporate at least some ap-
proximation of the new functionality into their own project; they could then work
within their own project context to “learn” the minimum necessary for successful
reuse.



BIBLIOTHEQUE DU CERIST

18

5.3 Training and Tools for Active Bense

Our work has a varety of implications for how objected-oriented nprogramming
should be conceptualized, taught and supported. Most generally, it suggests the de-
sirability of a broader view of compopent reuse; the pluggable “software IC” met-
aphor [4,3] is not the only way reuse has been conceptualized, but it is a dominant
image in talking snd thinking about reuse. Both of our target objects (the slider and
the graphical hierarchy) could be used as pluggable components; the slider, in par-
dicudar, 18 an interface widget and eminently pluggable. However, all four pro-
gramuing projects described here reused lbe target classes through use of some or
all of thetr example usage contexts, This suggests a more situational view of reuse
in which pluggable, contexi-free rease is the simple and ideal case.

The progranwners we studied invented the strategies we observed or learned
them informslly from colleagues. As we noted, they occasionally expressed some
embarrassment at their own reluctance to fully znalyze code they wanted to reuse
and their predilection for “stealing” usage protocol. If these practices survive -~
indeed emierge from — the natural sclection pressures of professional programming,
we should at least consider that perhaps they should be the topic of instruction in
(Smallatk) programming.

This implication for insttuction entrajns a related implication for the docnmen-
ration of software components. Our four programmers were able to find example
uses of the target classes, hut in many situations this would not be true, and hence
an example-oriented reuse sirategy wounld be thwarted Of course, imagining
example-based documentation on a large scale raises many consequent issues. Who
will build the examples? One resource is the test programs built in the cowrse of
development, and often discarded afierward. Delivering these along with software
components would provide some support for the example-oriented strategy at virtu-
ally no cost. Another question is what makes a good example. There is a literature
on cencept formation in cognitive psychology that addresses the issue of how ex-
amples arc abstracted in compechension [19]). It is ar interesting and open question
whether and how similar characteristics bear on reuse,

Finaily, this work embodies three themes for ton! support: the sequence of ac-
Hvities in reuse programuning, recinitment of example usage code, and the use of the
system debugger. Our four programmers seemed to foliow a loose script;  first they
instuntiated the component in the project comtext, then they successively elaborated
it function by function. Throughout this process they made extensive use of example
usage contexts and of the debugger. An obvious implication is to provide tools that
more explicitly integrate and coordinate the information needed at each point along
the way. Thus tool support might gride reuse activities through a reuse script (for
axample, a list of target class behaviors to instantiate in the profect context), using
this script to coordinate the programmer’s work with the example usage code, the
project code, and the interactive debugging facilities.





