BIBLIOTHEQUE DU CERIST

Frank Dehne Jorg-Ridiger Sack
Nicola Santoro Sue Whitesides (Eds.)

Algorithms and ,Cc""

493

Data Structures o

Third Workshop, WADS '93
Montréal, Canada, August 11-13, 1993
Proceedings .

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Editors

Gerhard Goos Turis farimanis

Universitit Karlsiuhs Comell University

Postfach 69 80 Department of Computer Science
Vincenz-Priessnitz-Strafle 1 4130 Upson Hall

D-76131 Karlsruhe, Germany Tthaca, NY 14853, USA

Volume Editors

Frank Dehne

Jorg-Riidiger Sack

Nicola Santero

School of Computer Science, Carleton University
1125 Colonel By Drive, Ottawa, Canada K18 586

Sue Whitesides
School of Computer 3cience, McGill University
3480 University Street, Montréal PQ, Canada H3A 247

: N
i

CR 3ubject Classification (1991 F1-2, 8.1, .2, 1.3.5, H.33

ISBN 3-540-37135-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57155-8 Springer-Verlag New York Berlin Hcidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, hroadeasting, reproduction on microfilms or inany other
way, and storage in data banks. Duplication of this publicaiion or parts thereof 1s
permitted only under the provisions of the German Copyright Law of September S,
1963, in its current version, and permission for use toust always be obtained from
Springsr-Veriag, Yiolations are liable for prosecution under the German Copyright

Eaw.
© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesciting: Camera-ready by author
Printing and hinding: Druckhats Beltz, Hemsbach/Bergsir.
45/3140-543210 - Prinled on acid-free paper

BIBLIOTHEQUE DU CERIST

PREFACE

The papers in this volume were presented as the Third Workshop on Algorithms and Data
Structures (WADS '93). The workshop took place August 11 - 13, 1993, in Montréal, Canada.
The workshop alternates with the Scandinavian Workshop on Algorithm Theory (SWAT),
continuing the tradition of SWAT B8, WADS '§89, SWAT 00, WADS '91, and SWAT '92.

In response to the program comenitiee’s call for papers, 165 papers were submitted, From
these submissions, the program committee selected 52 for presentation at the workshop, Each
paper was evaluated by at least threg program committee members, many of whom called upon
additional reviewers. In addition to selecting the papers for presentation, the program
committee invited the following people to give plenary lectures at the workshop: Mikhail
Atallah, Allan Borodin, Richard Cole, Richard Karp, Robert Tarjan, and Andrew Yao.

On behalf of the program comumittee, we would like 1o express our appreciation o the six
plenary lecturers who accepted our invitation to speak, to all the authors who submitted papers
to WADS '93, and to Rosemary Carter of Carleton University for her technical assistance to the
program committee. Finally, we would like to express our gratitude to all the people who
reviewed papers at the request of program committee members.

August 1993 Frank Dehne
Jorg-Riidiger Sack

Nicola Santoro

Sue Whitesides

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

vl

Conference Chair:
S. Whitesides (McGill U.)

Program Committee Chairs:

F. Dehne, J.-R. Sack, and N. Santoro
(Carleton U.)

Program Committee:

M.D. Atkinson (St. Andrew's 1.)
H. Attiya (The Technion)

G. Ausiello (U. of Rome)

P. Flajolet (INRIA, Les Chesnay)
Z. Galil {Columbia U.}

5. Hambrusch (Purdue U.)

D. Kirkpatrick (UBC)

M. Klawe (UBC)

R. Kosaraju (Johns Hopkins 1.}
J. van Lecuwen (U. of Utrccht)
F. Lombardi {Texas A&M 1.}

F. Luccio (U. of Pisa}

1. MatouSek (Charles U.)

Invited Speakers:

M. J. Atallah
A. Borodin
R. Cole

R. M. Karp
R. E. Tarjan
A. C. Yao

Sponsored by:

NSERC, Carlcton University, and McGill
University

I. Munro (U. of Waterloo)
O. Nurmi (U. of Helsinki)
L. Pagli (U. of Pisa)

J. Reif (Duke U.)

K. Seidel (U. of California, Berkeley)
R. Tamassia (Brown U.}
E. Tardos (Cornell U.)

I. Urrutia (U, of Ottawa)

J. Vitter (Duke U.)

D. Wagrer (TU Berlin)

§. Whitestdes (McGillU.)
P. Widmayer (ETH Ziirich)
F. Yao (Xerox PARCO)

BIBLIOTHEQUE DU CERIST

ADBITIONAL

P K. Agarwal
E. M. Arkin
. Avis

A. Bertossi

P, Callahan

R, Canetti

P, Charraresi
J. Chen

Yi.-J, Chiang
R. F. Cohen
L. Devroye

D). Dobkin

H. Edelsbrunner
G. Even

3. Fei

R. Fessler

5. Fogel

G, Frederickson
3. Gambosi
A, Qarg

D, Geiger

0. Gerstel

J. Gilbert

REFEREES

Will

L. Margara

R. H. Mihring
C. Montangzro
A Mond

3. Miher

E. Nuutila

P, Orponen

E. Otoo

M.C. Pinotti

X, Pollasi-Malmi
R. Ravi

H. Ripphausen-Lipa
¥. REomanik

T. Roos

M. Schiffier

P, Scheffler

A, Schuoster

Y. Shen

M. Smid

S. Subramanian
3. Sun

3. Tate

I G. Tollis

I Vilo

F. Wagner

X, Weihe

M., Wioka

BIBLIOTHEQUE DU CERIST

TABLE OF CONTENTS

Invited Presentations

Auallah, M.J. {Purdue U.} and Chen, D.Z. (U. of Notre Dame)
Computing the All-Pairs Longest Chains inthe Plane i

Boradin, A. { U. of Toronto and IBM Canada)
Towards a Better Understanding of Pure PacketRouting 14

Cole, R. {(New York U.)
Tolerating Faults in Meshes and Other Nerworks (absmact)00 v iennnn 26

Karp, R. M. (U. of California at Berkeley and Int. Comp. Sc. Insttuie Berkeley)
A Generalization of Bingry Search .. . i e e e 27

Yao, A. C. (Princeton U.)
Groups and Algebraic Complexity (abstract) 35

Regular Presentations

Agarwal, P. K. (Duke U.) and van Kreveld, M. (McGill U.)
Connected Component and Simple Polygon Intersection Searching 36

Amato, N. M. (U. of Illinois, Urbana-Champaign)
An Oprimal Algorithm for Finding the Separation of Simple Polygons coa. 48

Anderssen, A, (Lund U.)
Balanced Search Trees Made Simple i i i e o0

Aoki, Y., Trnai, H. (U. of Tokyo), Imai, K. (Chuo 1), and Rappaport D. (Queen's 1.)
Probing a Sei of Hyperplanes by Lines and Related Problems 72

Arge, L., Knudsen, M., and Larsen, K. (Aarhus U.}
A General Lower Bound on the I/Q-Complexiry of Comparison-Based Algorithms 83

Arkin, E. M. (SUNY, Stony Brook), Geodrich, M. T, (Johns Hopkins U.},

Mirchell, 1. 8. B. (SUNY, Stony Brook), Mount, D. (U. of Maryland),

Piatko, C. D. (NIST, Gaithersburg), and Skiena, S.8. (SUNY, Stony Brook)

Point Probe Decision Trees for Geometric Concepr Classeso vnn v 95

Armon, D. and Reif, J. {Duke U.}
A ynamic Separator Algerithm . . i 107

Azar, Y. (DEC SRC), Kalyanasundaram, B, (U, of Pittsbureh), Plotkin, S.
(Stanford U.), Pruhs, K. R. (U. of Pittsburgh), and Waarts, (. {IBM Almaden)
Online Load Balancing of Temporary Tasks . o o i ittt e et innnnns 119

BIBLIOTHEQUE DU CERIST

Balakrishnan, H., Rajaraman, A., and Rangan, C. P. {Indian Institute of Technology,
Madras)
Connecied Domination and Steiner Set on Astergidal Tripie-Free Graphs

Balasabramanian, R., Raman, V., and Srinivasaraghavan, G. (Institute of Mathematical
Sciences, Madras})
The Complexity of Finding Ceriain Trees in Tournaments oovine o -

Di Banista, G., Liotia, G., and Vargiu, F. (U. of Rome}
Spirality of Orthogonal Representations and Oprimal Drawings of Series-Paraliel Graphs
and 3-Planar Graphis oo oo e e e e e

Bearng, P. (U, of Washingion), Fich, F, E. (U. of Teronto), and
Sinha, R, K. (U. of Washington)
Separating the Power of EREW and CREW PRAMs with Smafl Communication Width .

Berkiman, &. (King's College London), Matias, Y. {AT&T Beil Labs, Mwrray Hill), and
Ragde, P. (U. of Waterloo)

Triply-Logarithmic Upper and Lower Bounds for Minimum, Range Minima,

and Related Problems withInteger Inpuits i i i iaa

Bern, M. (Xerox, Palo Alw), Eppstein, D. {U. of Califomia, Irvine}, and
Teng, §.-H. (MIT)
Parallel Construction of Quadirees and Quality Trigngulations oo ...

Bose, P. (McGill U.), Buss, §. F., and Lubiw, A, (U, of Waterloo)
Pattern Matching for Permulations e e

Bose, P., van Kreveld, M., and Toussaint, G. (McGill U.)
Filling Polvhedral Molds i i v i .

Chang, M.-8., Peng, S.-L., and Liaw, J.-L. {(Nationa) Chung Cheng University)
Deferred-Query --- An Efficient Approach for Prablams on Interval and
Clradar-Arc Graphs ... o i i e e i e e ey

Chen, 1., Kanchi, 8. P., and Kanevsky, A, (Texas A&M U.)
On the Complexity of Graph Embeddings i

Clarkson, K. L. (AT&T Bell Labs, Murray Hili}
Algorithms for Polytope Covering and Approximation v,

Codenotii, B., Manzini, G. (IEI-CNR, Fisa}, Margara, L. (U. degli studi, Pisa), and
Resta, G, (IEI-CNR, Pisa)
Global Strategies for Augmenting the Efficiency of TSP Heuristies

Datta, A., Lenhof, H.-P., Schwarz, C., and Smid, M. (Max-Planck-Institut
fur Informatk, Saarhriicken)
Static and Dynamic Algorithms for k-Point Clustering Probiems o oo oot -

Devillers, Q. and Fabri, A. (INRIA, Sophia-Antipolis)
Scalable Algorithms for Bichromaltic Line Segment Intersection Problems on
Coarse Grained MullHcomPters o e e e e s

Dietz, P, F. (U. of Rochester) and Raman, R. (U, of Maryland)
Persistence, Randomization and Parallelization: On Some Combinatorial Games and
Their Appficationso ovi .. e e e

131

151

163

1735

246

253

BIBLIOTHEQUE DU CERIST

Xl

Ding, Y. (U. of California, Los Angeles) and Weiss, M. A. (Florida Int. U.)
The k-D Heap: An Efficient Multi-Dimensional Priority Quete, 302

Dobrindt, K. (INRIA, Sophia-Antipolis}, Mehlhorn, K. (Max-Planck-Institut

firr Informatik, Saarbriicken), and Yvinec, M. (CNRS-URA, Sophia-Antipolis)

A Complete and Efficient Algorithm for the Intersection of a General

and a Convex Polyhedran . . . e e 314

Efrat, A. (Tel Aviv U.), Sharir, M. (Tel Aviv U, and New York U.), and
Ziv, A. (The Technion)
Computing the Smallest k-Enclosing Circle and Relared Problems 325

Giancarlo, R. {AT&T Bell Labs, Murray Hill)
An fndex Data Structure for Matrices, with Applications to Fast Two-Dimensional
Partern Mawching e P 337

Graf, T, and Hinrichs, K. (Westfilische Wilhelms-Universitit)
A Plane-Sweep Algoritiun for the Ali-Nearest-Neighbors Problem for a Set of
Convex Planar OBJects o i e e e e e 349

Gupta, P., Janardan, R. (U. of Minnzsota}, and Smid, M. {Max-Planck-Institat

fiir Informatik, Saarbriicken)

Further Resulis on Generalized Intersection Searching Problems:

Counting, Reporting, and Dynamizadion 0 iuiiniinn. 361

Heffernan, P. J. (Memphis State U.)
Generalized Approximate Algorithms for Point Ser Congruence 373

Jiang, T. (McMaster U.) and Li, M. {U. of Waterloo)
Approximating Shortest Superstrings with Constraintso 385

Kannan, 8, (U, of Arizona) and Wamow, T. (Sandia National Labs, Albuquerque)
Tree Reconstruction from Partial Orders o i ie e e en 397

Kao, M.-Y. (Duke U.}), Teng, 5.-H. (MIT}, and Toyama, K. (Yaie U.)
Improved Paralle! Depth-First Search in Undirected Planar Graphs 400

Karger, D., Motwani, R., and Ramkumar, G. D. §. (S1anford U.)
On Approximaring the Longest PathinaGraph 421

Khuller, S. (U. of Maryland), Raghavachari, B. (Pennsylvania State U.), and
Young, N, (U, of Maryland)
Designing Multi-Commodity FlowTrees o iiinaen. G 433

Klein, P. N, and Subramanian, 8. (Brown U.)
A Fully Dynamic Approximation Scheme for AN-Pairs Paths in Planar Graphs 442

van Kreveld, M. (McGill 11.)
On Fai Fartifioning, Fat Covering, and the Union Size of Polygons 452

Knzanc, D. (Carleton 1.}
A Time-Randomness Tradeaff for SelectioninParallel 464

Lu, H.-I, Klein, P. N,, and Netzer, R. H. B. (Brown 1J.)
Detecting Race Conditions in Parallel Programs that Use One Semaphore 471

BIBLIOTHEQUE DU CERIST

Kl
Maggs, B.M, (NEC, Princeton) and Rauch, M. {Sierens, Miinchen
An Algorithm for Finding Predecessors infntegerSets oo v it 483

Maier, R. 8. {UJ. of Arizonz} and Schott R. (U. of Nancy)
The Exhaustion of Shared Memory: Stechastic Resufts 494

Mirzaian, A. (York 1J.)
Minimum Welght Euclidean Matching and Weighted Relative Neighborhood Graphs. ... 506

Mirmra, P. and Bhattacharya, B. {Simon Fraser U.)
Efficient Approximate Shoriesi-Path Ghueries Among Isotheric Reclangular Obsiacles ... 518

Palazzi, L. and Snoeyink, J. (UBC)
Counting and Reporting Red/Blue Segment Intersectionso o0. 530

Peliegrint, M. (King's College London)
Repetitive Hidden-Surface-Removal for Polyhedral Scenes 541

De Prisco, R. {(Columbia U.) and Monty, A. (U, of Pisa)
On Recornfigurability of VESI Line@r Arrays ..o i v v v v i e nianas Ceearas 533

Skiena, 8.5. and Sundaram, G. (SUNY, Stony Brook)
Reconstructing Strings from Substrings ... i i 563

Souvaine, D. L. (Rutgers U.) and Yap, C.-K. (New York U.)
Combingtorial Complexity of Signed Discs o i 577

Stallmann, M. F. M. (North Carolina State U.) and Hughes, T. A.
{IBM, Research Triangle Park)
Fast Algorithms for One-Dimensional Compaction with Jog Insertion 589

Swanson, K. {Lund T.)
Ar Optimal Algorithm for Roundness Determination on Convex Polygons 601

Telle, J. A. and Proskurowski, A. {U. of Oregon)
Praciical Algorithms on Partigl k-Trees with an Application to Domination-Like Problems . 610

Westhrook, J. and Yan, D. C. K. (Yale U.}
Greedy Algorithms for the On-Line Steiner Tree and Generalized Steiner Problems 622

AuthorIndex L e e e e e e e e e e e e 634

BIBLIOTHEQUE DU CERIST

Computing the All-Pairs Longest Chains in the

Plane*
Mikhail J. Atallah Danny Z. Chen
Dept. of Computer Science Department of Computer
Purdue University Science and Engincering
Woest Lafayette, IN 47907, University of Notre Dame
E-mail: mja@cs.purdue.edu. Notre Dame, IN 46556.

E-mail: chen@cse.nd.edu.

Abstract

Many problews on sequences and on circular-arc graphs involve the campu-
iation of longest chains between points in the plane. Given a set 5 of n points
in the plane, we consider the problem of computing the matrix of longest chain
lengths between all pairs of poinls in 5, and the marrix of “parent”™ pointers
that descriibes the n jongest cian trees, We preseni a simple sequential algo-
rithm for computing these matrices. Onr algorithm runs in O(n?) time, and
hence is optimal. We alsc present a rather involved parallel algorithm that
computes these matrices in O{log? n) time using O(n?/ log) processors in the
CREW PRAM model. These matrices enables us to report, in G(1) time, the
length of a longest chain between any fwe points in § by using one processor,
and tlie actual chain by using & processors, where k is the number of points of
S on that chain. The space complexity of the algorithms is Q(n?).

1 Introduction

Problems that involve lougest increasing subsequences of a given sequence of numbers
have attracted alob of attention w the past. Probably the most studied version 1s that
of the lengest increasing subseguence (LIS}, for which many Gfrilog 1) time algorithms
are known (e.g., {10, 11, 13], and many others). There is also a well-know connection
between increasing subsequences and problems on certain specialized ¢lasses of graphs
such as permutation graphs, circle and cireular-are graphs, and interval graphs (see,
e.g., [12}-[19]). This paper considers the all-pairs version of the problem, whose
forimulation we state precisely next. We have chosen to formulale it as a problem on

*This research was supported by the Leonardo Fibomacei Institute in Trento, Ttaly, and by the
National Science Foundation under Grant COR-8202807. Part of this research was done while the
first author was visiting LIPN, Paris, France.

BIBLIOTHEQUE DU CERIST

poluts in the plane because our solution techniques are drawn from computational
geometry; in terms of sequences, the ¥ coordinate of a planar point corresponds to
the value of au entry in the sequence, and the position at which that entry occurs in
the sequence is determined by the ¢ coordinate.

A point p is said to dominefe another point g iff X(p) > X{g) and Y{p) = Y{(yg),
where X(p} and V{p) respectively denote the z and y coordinates of peint p. Let
3 be a collection of »n points iu the plane, and let & = {py,...,) be a sequence of
noiuts such that each p; is in 5. The sequence o is increasing iff p; dominates pi_,
for all | < ¢ £ k; such a sequence is called a chain, and we say that it begins at g,
that it ends at py, aud that its lengih is k (if the points are weighted then the length
of 7 is the sumn of the weights of its points). The chain g is longest if no other chain
starting at gy and ending al px has greater length than .

The problem we consider is that of computing the n ¥ »n matrix D of the lengths
of longest. chains between pairs of peints in 5 that is, D{p,) is equal to the length
of a longest p-to-¢ chain. By convention, for p # g, if ¢ does not dominate p then
O(p.q) = —oo. We also compute an n % n matrix P (shorthand for “parent”) such
that P{p.q) is the successor of p in some p-to-g longest chain.

We: give a simple O(r?) time scquential algorithm jn the unweighted case. Clearly,
knowing P allows one processzor to trace a longest p-to-¢ chain ut time proportional

i

to ite length.

In parallel, we solve the weighted version of the problem in O{{logn)?) time using
O(n?{log n) processors in the CREW PRAM model. We alse show that a longest p-
to-g chain can be obtained in Q1) time by using & CREW FRAM processors, where
k is the nurmber of points of 5 on that chain. The parallel algorithm bears very little
resemblance ta the sequential one, which seems hard Lo “parailelize”. It also solves a
more general {weighted) version of the problem.

An O(n?log ») time sequential algorithm for this problem is quite trivial to obtain,
aud to the best of our knowledge this was the best previously known bound for this
all-pairs version of the problein. There is a published ©{r?} time algorithm 2] for a
special case of this problem: that for chains that start in .5 and end on a set of points
that lie on a vertical line V', where ¥ is to the right of 5. In parallel, bounds similar
to ours were only known for the special case of the layers of maxima problem, which
can be viewed as the version of our preblem where the chains of interest begin in §
but must end at the point {4+oc, 400} [1]. It is actually quite casy to use the mmethods
of [t, 31 to solve the version of the problem where the chains of interest begin in §
but must end on a set of points on a vertical line V that is to the right of 5.

We now bricfly discuss how our approach differs from the one for the above-
mentioned special version of the problem, in which all chains start in § and end on
a set of points on a vertical line V that is to the right of 5. That special version of
the problem is substantially easier, both sequentially aud in parallel, because for a
fixed p € 5, the coilection of longest chains that begin at p and end on V' have the
following monotonicity preperty: Two such longest chains that end at (respectively)
q' and ", ¥(q) < ¥(q"). can always be chosen such that nowliere is the chain to ¢

BIBLIOTHEQUE DU CERIST

C‘I“ q

(a) (b}

Figure 1: Illustratiug (a} how monoctouicity holds for some chains, and (b} how it
fails to lold for others.

higher {(geometrically} than the chain te ¢” (lutuitively, if it is higher then there is a
crossing between the two chains and we can *uncross” them). Figure 1{a) illustrates
this. Such a monoctonicity property is lacking in the general version of the problem
considered here: If ¢" and ¢” do not lie ou the same vertical line {see Figure 1(h})
then monotonicity need not hold, in the sense that either one of the two p-to-¢” chains
shown could be & unique longest chaiu te 47, so that such a chain to ¢” might go either
“above” or “below” a jongest p-to-¢' chain.

We are unible to abtain an O(n?) time sequential solution to the weighted version
of this problem, and we leave this as an open problem. Our parallel bounds, on the
other hand, hold for the weighted version of the prablem.

The rest of the paper is organized as follows. Section 2 deals with the sequential
algorithm, which is fairly simple. Section 3 gives the parallel algorithin, We have
chosen to give the basic terminalogy and definitions separately for each of the parallel
and sequential algorithms, since they have little in common (this way the reader
interested in one of the two will not be forced to read material unrelated to her
interest). Section 4 concludes by posing some open probiems.

2 The Sequential Algorithm

Tlhis section gives the Q{n®) time sequential algoritling.

2.1 Preliminaries

The input consists of set S of n points in the plave. For a point p € §. we usc
PO (p) to denote the subset of points in S that are dominated by p. A point p of
S is a mazimum in 5 Iff no other point of S dominates p. We use MAX(S) to denote

BIBLIOTHEQUE DU CERIST

,,,,,,,,,,,,,, @,,p
e © e |)
- . . @:

Figure 2: The points of MD{p) are circled.

the set of maxima of &, listed by inceeasing & coordinaies {and hence by decreasing
¥ courdinates). We abhreviate MAX{DOM (p}) as MD(p). Figure 2 illustrates the
definition of MD{p).

For & poiut p € S, imagine partitioning DOM (p) U {p} into % subsets, where k =
maxy D{g. plig € DOM{p) U {p}}, such that the points in each subset all have longest
chains to p of the saiwe leugth. The subset of DOM(p} U {p! whose points have a
distance j to p is.called the j-th domination layer of p, denoted by Layer;(p). For
example, Layeri(p) = {p}, Layery(s} = MD(p), and so on. In general, for each j,
Layer;{p) = MAX(DOM{p) U {p} ~ Uic;Layeri(p}). We assume that each layer of p
is sorted by increasing x-coordinates (bence by decreasing y-coordinates).

It should be clear that, if we were able to compute the domination layers of
each p € 5, then we would effectively have computed the desired D matrix, Our
sequential algorithm will therefore mainrly concern itself with the computation of
these domination layers and of the P mairix. (The parailel algorithm deals with the
weighted version and will use a differeut approach — in fact most of the definitions
given above will not be used in the parallel algorithm.)

2.2 The Algorithm

Below is a high-leve! description of the sequential algorithm. We are assuming that
no two points in ¥ have the same & {resp., y) coordinate, i.e., that if p,¢ € 5 and
p 7 ¢ then X(p) # X(g) and Y{p) # ¥{q) (the algorithm can easily be modified for
the general cage]. By convention, walking ferwerd (resp., backward) along an MD(p)
means moving aloug it by increasing (resp., decreasing) xr-coordinates,

Step 1. We first compute MD(p) for every p € 5. These MD(p)’s can all be easily
computed in Oin?) time as {ollows. We sort the points by their z coordinates, and
then for each p € 5 we do the following., From the sorted list we obtain DOM (p). in
O(n) time. Then we obtain the maximal elements of DOM (p), also in Ofn] time (this

BIBLIOTHEQUE DU CERIST

Figure 3: The points of fterval;1{p, a2} are shown circled.

is possible since DOM (p) is available sorted). These maximal elemnents of DOM (p)
are, by definition, MD{p).

Step 2. We compute, for each pair p,g¢ € 5, the position of Y (p) in the list
Y{MD{g)), which is the Jist obtained from MD{q) by replacing every point by its
y-coordinate. This is easy to do in O{n} time for a particular Y(MD(g)) and all
p €5, by merging V{MIKe)) with the soried list of the y coordinates of the points
in 5. Doing this ouce lor each ¢ € $ takes a total of O(n?} time.

Step 3. For each p € §, we obtain the dominalion layers of p and the coluinu
that corresponds to p in the P matrix. We do this in O{xn) lime for each p, as fol-
fows. Clearly, we already have Layeri(p) (= {p}) and Layery(p) (= MD(p)). We
obtain Laycr 1 (p) from Layer;(p) in O(|Layer{pl} + [Layer;(p)]) time, as fol-
fows. Lot Layerip) = {ay, a2, ... o), where X{ay)} < X{az) < --+ < Afaz). We
shall walk along the Layer;{p) Hst, creating the Layer;qi(p) st as we go along, in
left to righi order. When we reach o; while scanning Layer;(p), we compute the
portion of Layer;1(p) that is in MI{a;) but not in DOA{a;4,}; we call this portien
nterval;y(p, ;) {it forms a contiguous interval of MD{a;)). Figure 3 illustrates the
definition of Miterval;pi{p, a;). Note how, in that figure. point w is in Layer;,(p) N
MD({a2) but not in feterval(p, az). We shall compute Interval;zi(p, a1}, fnterval;ya{p, a2},
ooy Intervaligy(p, ap), in that order. While doing this, we maintain a variable called
cutoff whose significance is that, when we finish processing o, cuteff contains the
rightmost point in U<y Iilervaljpy (p, u); intuitively, cutoff is the “dominant” point
among those in UygrciMterval,y)(p,a;} as far as the (yet to bLe computed) lists
Interval, \(p, aipa), ..., Inderval;qip, o) are concerned. In Figure 3, after fnterval;i(p, a1}

is computed, culof is point ¢, and after nterval, 41(p, az) s compuled cuteff is pomy
7
To determine Mtervalyi(p.ay}, we simply start atv the beginning of MD{a}

and walk forward along MD{a;) until we first reach a point ¢ € MD{a;) for which

BIBLIOTHEQUE DU CERIST

¥{g) < ¥{az) (we do not count ¢ as being part of our “walk™ along MD{e;}}. The
{ possibly empty } portion of MD{ay) so traced is obvicusly equal to Interval; 1(p, a1).
¥ Iderval;1(p, a1} is not empty then we set cutoff equal to the predecessor of ¢ in
MD(a,), otherwise it remains undefined. For the example shown in Figure 3, ¢ = u
and cutoff =t. We then proceed to process ay.

If cutoff is undefined (i.e., if Mmierval;+1{p,a,) turned cut to be empty) then we
process ay exaclly as explained above for a;. Otherwise we process it as follows. Recall
that we already know, from Siep 2, the outcome of a hypothetical binary search for
Yiaz) in Y(MIH{a)}): Lev ¢’ be the predecessor of ¥{as) in Y(MD{ay)), that is, the
lowest poiut of MD(a;) whose y-coordinate is larger than Y(a3). If no such point ¢
exists on MIHa;) then surely fnterval;oy(p, as) is empty and we move on to processing
az (Jeaving cufoff unchanged). So suppose that ¢' exists. If X(¢") < X(eutaff)
then Interval;yifp, az) is empty and we move on to processing as (leaving cutoff
unchanged). If X{¢'} > X{cuteff} then we start at ¢ and walk backward along
MD{a,) unii] we reach a point whose z-coordineate is less than X {eufof[); the portion
of MD{a,) so traced is nterval;yi(p,ez). ln Figure 3, the pertion so traced is (in
that order) ¢', v, u {point s is not traced because X(s) < X (4)). In that case we also
update cutoff by setting it equal to ¢’ before we proceed to process as.

We process ag, 4, ..., 6 0 that order, exactly as explained above except that,
wlien processing aiy1, @; plays the role of a1, a1 plays the role of aq, and a;42 plays
the rale of aj.

Ouce we have obiained Leyer 1 (p) from Layer.(p}, we must compute #(w, p) for
cvery w & Layer,y(p) {clearly, such a Plw,pj is in Lager;ip;). This is easily done
for all w € Layer;4+1(p) in Of|Layer;(p} + (Layeriy(p)]) time, by merging the two
lists Layer;.(p) and Layer(p).

This completes the descriptiou of the sequential algorithin. We now twrn our
attention 1o the parallel algorithin.

3 The Parallel Algorithm

This section gives the O{(logn)?) time, O{n?/logn} processor algorithm for the
weighted version of the problem.

3.1 Preliminaries

The parallel mode] used is the CREW PRAM, which iz the synchronous shared-
memory inadel where concurrent reads are allowed, but no two processors can simul-
taneously atlempt t¢ write in the zame memory location {even when they are trying
to write the same thing). In what follows. we shall focus on showing that the clainied
time complexity ran be achieved with an O{n?logn} amount of werk {= number of
operations]. This will imply the Gir?/logn) processor bound, by Brent’s theorem

[

BIBLIOTHEQUE DU CERIST

Theorem I (Brent} Any synchronous purallel algorithm taking time T tha! consisls
of a iotal of W operations can be simulated by P processors in time O({W/P) + T).

Remark: There are actually two qualifications to the above Brent’s theorem before
one can apply it to a PRAM: (1} at the beginning of the ©-th parallel step, we must be
able to compute the amount of work W; done by that step, in time O{W;/P) and with
P processors, and (i1} we mnst know how to assign each processor to ifs task. Both
qualifications (i) and () to the theorem will be easily satisfied in our algorithms,
therefore the main difficulty will be how te achieve W operations in time T.

Here as in [4], an important method we use inveolves multiplying special kinds of
matrices. Although the situation depicted in Figure 1(b) implies that the structure
that gives rise to such matrices is not always avaitable, the fact that we can deal with
the sitnation in Figure 1{a) will be useful. (This will all be made precise later; for now
we are only giving an overview.} All matrix multiplications in the algorithn are in
the {max, +) closed soini-ring, f.e., (M’ * MY}i, 7)) = maxy { M (0, k) + M"(k, 7)) A
matrix M is said 1o be Mownge [1] iff for any two successive rows ¢, 7 4 1 and columns
Foi+towehave Mo} # M+ L5+ 1} < ME G+ 1T+ M{{+1,7). For two
point sets A and £ in the plane, let watrix Mag contain the lengths of the longest
chains that start in 4 aud end in B {by cenvention, these chains are allowed to go
through any points of § on their way from A4 to B). Now, cousider two point sets
X and Y. each totally ordered in some way {so we can talk about the predecessor
and successor of a point in X or in Y, and such that the rows (resp., columns) of
the matrix My are as in the ordering for X {resp.. ¥} Matrix Mxy is Monge iff
for auy two successive points p, p' in X and two suceessive points ¢, ¢ in ¥, we Lave
Maip g+ Mxy (7.6 < Mxy(p, ") + Mxy(p'.q). The vext lemma characterizes
the Monge matrices of chain lengths used in the algorithm.

Lemma 1 fet V' fresp., V') be a vertical linc thal contains a set X (resp., Y) of
paints ordered by increasing (resp., decrcasing) y-coordinates along V' (resp., V).
{Assume thal V' is lo the left of VY.) Then the matriz My of chain lenglhs belween
X and Y s Monge. :

Proof. Obvious. &)
The following well-known lemma [3, 1] will be used.

X] = a}¥| €
o3| Z] for somc positive constants ¢ and ¢;. Then My * Myz ran be computed in

O(log {Y|) time and O{|X||Z]) work in the CREW PRAM moddl.

Lemma 2 Assume that matrices My and Myz are Monge, with

Remark: Since = is a {max, ~) watrix multiplication, My + AMfyz need not be Monge.
Lemmas 1 and 2 imply the following.

Lemma 3 Let V' fresp., VI, V) be a vertical fine thal contains a set X (resp., ¥V, Z)
of points ordered by increasing y-coordinales along V fresp., V' V") Assume that
XV < X{(V) < X(V"), and that |X| = al¥] <)lZ| for some positive constants

BIBLIOTHEQUE DU CERIST

o1 and oy, Ruppese thai, for rvery tncreasing chain C fromp € X te 9 € Z, lhere s
& p-to-g chain (' that is gl least as long as O and gocs through some w € Y. Then
given the matrices Myyv and Myz. the mairiz Myxz can be computed in Oflog [V])
fime and O{|.X:[Z1) work in the CREW PRAM model,

Proof. Let X' (resp., Y’, Z') be the same as X (resp., ¥, Z) but sorted by decreasing
¥ coordinates. By Lemma |, My and My are both Monge, By Lemma 2, the
matrix M+ Myz can be computed in Olog |V]) time and O{| X|1Z]) work. Now,
since by hypothesis all the X-to-Z chains can be modified to go through ¥ without
any decrease in their lengths, it follows that the matrix My, * Mysz is the desired
matrix Myz. 0

3.2 The Algorithm for Chain Lengths

The algoritiun given in this subsection coucerns itself with the computation of cham
lengths only, not of the P matrix that describes the n longest chain trees. Including
the computation of P here would have chuttered the exposition. The next subsection
will deal with the computation of P. In addition, it is not immediately clear that the
availability of P makes possible the reporting of a &-point chain in G(k) work and
constant time. This too is postponed wntil the next subsection.

Let & = {m;.....p} where X{(pn} < --- < X{p.). There is a weight associated
with each pe. Let Vo, V..., 35 be vertical lines such that X{14) < X{pm), X(p.) <
XtV ana X{p) < XtV < A{pig) for allc e {1,... . n —1}.

Let T be a complete n-leaf binary tree. For cach leaf v of T, if v is the i-th leftimost
leaf in T, then assoclale with v the region I, of the plane Lthal is between Vi_; and V.
For each internal node v of T, associate with v the region [, consisting of the union
of the regions of its children. That is, if v has children u and w, then f, = [, U [,.

Let v be any node of T'. Suppose that the left {resp., right} boundary of 7, is ¥
{resp., ¥;}, and let 5, = SN L, that s, 5, is the subset of the input points that lie in
7.. Observe that if v is at a height of 2 in T then § ~ i = 2% = |5,! (the height of v
is the height of its subtree in T, with leaves being at a beight of zero). Let L, (resp.,
R,) be the set of points ou V; {resp., ¥;) that are the horizontal projections of 5, on
V; (resp., ;). The points of L, and R, are, of course, disjoint from the input set S,
and we assign to 2ach of them a weight of zero. Observe that

E L] = }: |Ry| = O(nlogn),

weT vel

because for each levei of T a p; € 5 appears in exactly one 5, of that level, and hence
creates at most two extra points, one in L, and one in A, {recall that a level of T is
the set of nodes in ¥ that have samc distance to the rool, so that the root is at level
zero, its twa children at level I, etc).

There are two phases {or the algorithng: Phase I s relatively straightforward,
while Phase 2 is the key that made our solution possible.

BIBLIOTHEQUE DU CERIST

3.2.1 Phase 1

This phase consists of computing, starting at the leaves and going upward in T, ane
level at a time, the My p, matrices, which contain the lengths of all the L,-to-R,
longest chains {chains that begin on L, and end on R,, of course possibly going
through points in 5, along the way). This information is trivially available if v is a
leal. So suppaose that we have already computed this information for level £+ 1, and
we want to compute it for level £,

We claim that it suffices to show that the Ay p matrix can be computed in
O(|5.|*) work and O{logn) time for each node v at level £. This claim would imply
an O{{log n)?) time, (J{n?) work bound for Phase 1, as follows. That the time hound
follows from the claim is obvious {(we would spend a logarithmic amount of thne per
level, and there is a logarithmic number of levels}). The wark bound would follow
from: the fact that there are 2f nodes v at level ¢, each having | 5.} = n/2f, and hence
the total work at level £ would be

O(2 (nj2)?) = O(n* /2"y

Summing over all levels £ gives O(n?) total work. We next prove the claim by showing
that the My g, matrix can indeed be computed in (] 5,12} work and logarithmic time.
Let w (resp., w) be the left (resp., right) child of v in T'. Let ¥V dencte R, U L.,
that is, ¥ consists of the horizontal projeciions of the points of 5, on the vertical line
V; that separates the region [, [rom the region f,.. Since My g, is already available
at u, we can easily obtain from 1t Mpy. Similarly, we obtain Myg, from My gq,..
Now, simply abserve that the conditions for Lemma 3 are satisfied, with L, plaving
the role of X' and A, the role of Z. That is, we can obtain M g, from My y and
Myr, in O(|S.]%) work aud logarithmic time, This completes the proof.
flemark: The astute reader may have observed that the above procedure can be
inodified so as to compute the £,-to-5, and S,-to- R, chaln lengths information. This
would invelve oenly a logarithmic factor of additional work, and would exploit the
kind of monotonicity depicted in Figure 1{a} by using the lower-dimensional parallel
maltrix searching algorithm of [3]. However, this would still leave us far from having
solved our prohlem: We wonld still need something like Phase 2 below, since we
cannot afford Lo multiply “nen-square” Monge matrices — as of now, it is not known
Lhow to optimally {max, +)-multiply two non-square Monge matrices {for example,
the best parallel algorithin for multiplyiuga | x & Monge matrix with a k x k one in
logarithmic time takes Ofklog &)} work [5]). Observe how Pliase 2 helow will salisfy
the size reguirements of Lemma 3, as expressed in the requirement that |X| = ¢ {Y]
< ea[Z] for some positive constants ¢ and ;. '

3.2.2 Phase 2

Whereas Phase 1 iovolved a boltom-up computation in T, Phase 2 will involve a
top-down compubation, starting at the root and proceeding one level at a time until
we reach the leaves. The purpase of the computation at a typical level £ is maore

BIBLIOTHEQUE DU CERIST

10

/\ /\ /\ \ /\
u a 8 w u o w
(a) (b)

u w' " W'
A A AN
) © f w [:'

{c) ey

FPigure 4: Hlustraiing the four cases of Phase 2.

ambiticus than in Phase !: We now seek, for every pair of nodes u, w at level £ such
that u is to the left of iz, the computation of the Mgz chain lengths matrix (u is to
thie left of w iff it is in the subtree of the left child of the lowest common ancestor of
u and). The key idea is o get help from the parents of v and w. which we call o
and (respectively) w'. If v/ = w’ then the desired information is trivially available, so
suppose Lhat o & w'. We distinguish four cascs, which are illustrated in Figure 4.

Case 1t w is the left child of v/, and w is the right child of w'. Let & be the right
child of &', 8 be the teft child of w' {see Figure 4{a}). Since Phase 1 computed
M.k, we can obtaiu from it Mpg,, then Mp k. Similarly, we obtain My .,
from My g, whick was computed in Phase 1. Now, Mg . , is already availzble
because Phase 2 is already done with processing the pair «',w’ (recall that
Phase 2 processes the levels from the root down). We use Lemma 3 te obtain
the matrix Mg, , from Mr,e, aod Mz - with B, playing the role of X, R,
vlaying the role of Y, and L, playing the reole of Z. Finally, we use Lenma 3
again, this time to obtain the desired matrix Mpr,, from Mg,z , and Mr_.z,,-

Case 2: uis the left child of o', and 1 s the Teft child of w'. Let o be the right child
of u' {see Figure 4(h)). From the M, g, matrix which was computed in Phase
1. we obtain the Mg g, matrix. Observe that Mgy , was already oblained
earlicr in Phase 2: gei frow 3t the Mg p, matrix. We use Lemma 3 to obtain
Mp,p,, from the matrices Ma g, and Mg ...

Case 3: u is the right child of ¢, and w is the right child of w'. Let # be the lefi
child of w’ (sce Figure 4(c)}. From the Mp ; , matrix which was computed
earlier in Phase 2, obtain the Mg, matrix. From the M », matrix which was
computed in Phase 1, we obfain the Ay g, matrix, We use Lenuna 3 to abrain
Mrp, from Mg, and My

BIBLIOTHEQUE DU CERIST

11

Case 4: u is the right child of . and w is the left child of w' {(see Figure 4(d)).
Obtain Mg,1,. from Mg g , which was computed earlier in Phase 2.

The time taken by Phase 2 is clearly O((logn)?), since we take a logarithmic
amount of time at leach level of 7. The work done for a particular pair u,w at level
£is Of(n/25)?), and since there are (27)? such pairs at level £ the total work done at
that level is O(n?). Summing over all levels gives (3{n?logn) work for Phase 2. Hence
it is Phase 2 that is the hottleneck in the work complexity. The space taken by Phase
2 is still O{n?} rather than O{n?logn), however, since we do not need to store the
matrices for all the levels as Phase 2 proceeds: When we are done with level £, we can
discard the matrices for level £ — 1 since level £ 4+ 1 will only need information from
level € {recall that i Phase 2 the nodes of T request help culy from their parents,
not from iheir grandparents or from higher up in the tree 7).

3.3 Computing the Actual Chains

In this subsection, we discuss how to obtain the matrix # which contains the n trees
of longest chains, and how lo pre-process the longest chain trees, so that cach tree
can support a longest chiain query between any point in 5 and the point of 5 at the
root of that tree.

First we sketch how the algorithm i the previous subsection can be modified
so as to compule the P matrix as well. For earh Mz, matrix computed by that
algoritlim, we compute a companion Prg, matrix whose significance is that, for
p € R, and g &€ Ly, Pror.{p.¢) is the first point of 5 that lies on & longest p-to-g
chain (it is undefined if no such point of 5 exists). Note that only points of S can
be “parents”. It is quite easy to modify the computation of an AMyz so that it also
produces Pxz: If Myz is obtained by using Lemima 3, then Pyz can be obtained from
Pgy or Pyz as a “byproduct” of this computation. For example, if 4 dominates p
and if Mxz{p.q) = Mxy(p, 1} + Myz{t, ¢}, then we distinguish two cases for obtaining
Pyzip, g} U Py(p,t) is undefined then Pyzip,¢) = Fz{t,) (which could also be
undefined), otherwise Pyz{(p,q) = Pxyip,t). When the modified algorithm finishes
computing Frr. for all leaves u, w {at the end of Phase 2), it is easy to obtain the
matrix P If S, = {pe}, B = {pi}, Sw = {p;}: L = {p}}. then we set P{p;, p;) equal
to Pry,(pi.pi) if the latter 1s defined; otherwise, we set P(p;, p;) equal 10 p; if p;
dominates p,, and set P{p;, p;} to be undefined if p; does net dominate p;. From new
on, we assume that the matrix P is available. Note that this matrix is a description
of n longest chain trees, each rooted at a peint of 5.

We pre-process each longest chain tree so that the following type of gueries can
be quickly answered: Given a nnde pin the tree and a positive integer 7, find the i-th
node on the palh from pio the root of the tree. Such queries are called fevel-ancestor
gueries by Berkumn and Vishkin [6], who gave efficient parallel algorithms for pre-
processing rooted trees so that the level-ancestor queries can he answered quickly, The
work of Berkman and Vishkin [6, 7] shows (implicitly) that a level-aucestor query can
be handled sequentially in constant time, after a logarithmic time and lincar work

BIBLIOTHEQUE DU CERIST

12

pre-processing in the CHEW PRAM model. The pre-processing of the longest chain
trees is done by simply applyvivg the result of Berkman and Vishkin to each of the n
trees, in totally Q{logn) time and O(n*} work.

For the sake of processor assigninent in reporting chains, we also need to compute
the aumber of points of 5 on the actnal longest chain which is to lie reported. Suppose
a longest chain between points p and ¢ in § is to be reported. The number of points
of 5 on such a p-to-¢ chain can be obtained from the depth of p in the longest chain
tree rooted at g; it is known that the depths tan be computed within the required
complexity bounds by using the Euler Tour technique [20].

To repaort, an actual longest chain between points p and ¢ in 5, we do the following
fwithout loss of generality, we assume that ¢ dominates p). First, we go to the longest
chain tree rooted at (say) ¢, and find the number of nodes on the path in that tree from
node p to the root ¢. Let that number be k. The p-to-¢ path in the tree corresponds
to a longest chain from p to g, which we nmst report. We do so by performing, in
parallel, k — | level-ancestor queries, using node p and integers 1, 2, ..., k— 1. Each
query is handled by one processor in O(1} thine. These queries fiud each peint on the
p-to-¢ ckain. Finally, we report the % points of that chain in paralle], by assigning to
k processors the task of reporting those k points (one point per processor}.

4 Further Remarks
The following opan probiems reriain:
v Give an O(n?) time sequential algorithm for the weighted case.

% Give an O(n?} time sequential algorithm for the three dimensional version of
the problem {unweighted).

s For the three dimeusioual version of the problem, give an NC parallel algorithm
that uses a quadratic {to within a logarithmie factor) aumber of processors.

Flually, using the mnethods we developed here in combination with other ideas,
we rait improve the processor complexity of the lavers of maxima problem: We can
achieve the same O{{log n)?} time complexity as in [1} with O(n?/{log n)?) processors,
instead of the {n?/log) processors used in {1}

References

[1] A. Aggarwal and). Park. “Notes on Searching in Multidimensional Monotone Ar-
rays {Prefiminary Version),” Proc. 28th Annual IEEE Symposium on Foundalions of

Computer Science, (888, pp. 497-512.

2] A. Apostolico, M. I, Atallah, and 5. E. Hambrusch. “New Clique and Independent Set
Algovithms for Circle Graphs,” Discreie Appl. Math., Vol. 36, 1992, pp. 1-24.

