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PREFACE 

The papers in this volume were presented at the Third Workshop on Algorithms and Data 

Structures CW ADS '93). The workshop took place August 11 - 13, 1993, in Montréal, Canada. 

The workshop alternates with the Scandinavian Workshop on Algorithm Theory (SWAT), 

continuing the tradition of SWAT '88, WADS '89, SWAT '90, WADS '91, and SWAT '92. 

In response to the program committee's cali for papers, 165 papers were submittedrFr{)~ 

these submissions, the program committee selected 52 for presentation at the workshop. Each 

paper was evaluated by at least three program committee members, many of whom called upon 

addition al reviewers. In addition to selecting the papers for presentation, the program 

committee invited the following people to give p1enary lectures at the workshop: Mikhail 

Atallah, Allan Borodin, Richard Cole, Richard Karp, Robert Trujan, and Andrew Yao. 

On behalf of the program committee, we would like to express our appreciation to the six 

plenary lecturers who accepted our invitation to speak, to all the authors who submitted papers 

to W ADS '93, and to Rosemary Carter of Carleton University for her technical assistance to the 

program committee. Finally, we would like to express our gratitude to all the people who 

reviewed papers at the request of program committee members. 

August 1993 Frank Dehne 

JOrg-Rüdiger Sack 

Nicola Santoro 

Sue Whitesides 
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Computing the AIl-Pairs Longest Chains III the 
Plane* 

Mikhail J. AtaHah 
Dept. of Computer Science 

Purdue University 
West Lafayette, IN 47907. 

E-mail: rnj a@cs.purdue.edu. 

Abstract 

Danny Z. Chen 
Department of Computer 
Science and Engineering 

University of Notre Darne 
Notre Darne, IN 46556. 

E-mail: chen@cse. nd. edu. 

Many problems on sequences and on circular·arc graphs involve the compu· 
Lation of longest cha.ins between points in the plane. GiVE'll a set 5 of 12. points 
in the plane, we. consider the problem of wmputing the matrix of longest chain 
lE:ngth~ hetwE'en aU pairs of poi'n'ts in S, and the matris of "parent" pointers 
that desC'.ribès the n longest cha..i.n trees. vVe present a. simp]e sequential algo
rithm for compllting these matrices. Our aJgorithm rUllS in 0(,,') time, and 
hence is optimal. We also present a rather involved parallel aJgorithm that 
computes these matrices in o (log' n) time using O( n' / log n) processors in the 
CREW PRAM model. These matrices enables us ta report, in 0(1) time, the 
length of a longest chain between any two points in S by lIsing one processor, 
and the actual chain by using k processors, where k is the number of points of 
Son that chain. The space complexity of the aJgorithms is 0(,,'). 

1 Introduction 

Problems that involve longest increasing subsequences of a given sequence of numbers 
have attracted a lot of attention in the pasto Probably the mos! studied version is that 
of the longeBt increasing Bubscqucnce (LIS), for which many O(n log n) time algorithms 
are known (e.g., [10, Il, 1:3], and many others). There is also a well-know connection 
between increasing subsequenC€s and problems on certain specialized classes of graphs 

such as permutation graphs, circle and circular·arc graphs, and interval graphs (see, 
e.g., [12J-[19]). This paper considers the ali-pairs version of the problem, whose 
formulation we state precisely nex!. \Ve have chosen to formulate it as a l'rob lem on 

*This research was supported by the Leonardo Fibonac,('.j InstÎtute in Trento, ItalYl and by the 
National SciE"nce Foundation un der Grant CCR-9202807. Part of this research \\Tas done while the 
tirst author was visiting LIPN, Paris) France. 
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2 

points in the plane because our solution techniques are drawn from compntational 
geometry; in terms of sequences, the y coordinate of a planar point corresponds to 
the value of an entry in the sequence, and the position at which that entry occurs in 
the sequence is determined hy the x coordinate. 

A point P is said to dominale another point q iff X(p) ?: X(q) and Y(p) ?: Y(q), 
where X(p) and Y(p) respectively denote the x and y coordinates of point p. Let 
S be a collection of n points in the plane, and let (1 = (PI, ... , Pk) be a sequence of 
points such that each Pi is in S. The sequence (J" is increasing iff Pi dominates Pi-I 

for aH 1 < i ::; k; such a sequence is caJled a chain, and we say that it begins at PI, 

that it (nds at pk, and that its length is k (if the points are weighted then the length 
of (J" is the sum of the weights of its points). The chain (J" is longesl if no other chain 
starting at PI and ending at Pk has greater length than (J". 

The problem we con si der is that of computing the n x n matrix D of the lengths 
of longest chains between pairs of points in 8; that is, D(p, q) is eqna! to the length 
of a longest p-to-q chain. By convention, for P of q, if q does not dominate P then 
D(p, q) = -00. We also compute an n x n matrix P (shorthand for "parent") such 
tbat P(p, q) is the successor of pin some p-to-q longest chain. 

We give a simple 0(n2
) time sequential algorithm in the ul1weighted case. Clearly, 

knowing P allows one processor to trace a longest p-to-q chain in time proportional 
to its length. 

In l'araBe!, we solve the weighted version of the problem in O«log n )2) time using 
0(,,2/ log n) processors in theCREW PRAM model. We also show that a longest p
to-q chain Œn he obtained in O( 1) time by using k CREW PRAM processors, where 
le is the number of points of 8 on that chain. The paraUel algorithm bears very Iittle 
resemblanC€ to the sequel1tial one, which seems hard to "parallelize". It also solves a 
more general (weighted) version of the problem. 

An 0(n 2 logn) time sequential algo~ithm for this problem is quite trivial to ohtain, 
and to the best of our knowledge this l'las the best previously known bound for this 
ail-pairs version of the problem. There is a pnblished 0(n2 ) time algoritlnn [2] for a 
special case of this prohlem: that for dlains that start in 8 and end on a set of points 
that lie on a vertical line V, where V is to the right of 8. In parallel, bounds similar 
to ours were only known for the special case of the layers of maxima problem, which 
can be viewed as the version of our problem where the chains of interest begin in 8 
but must end ai the point (+00, +00) [1]. Jt is actually quite easy to use the methods 
of [1, 3] to solve the version of the problem where the dlains of interest begin in 8 
but must end on a set of points on a vertical line li that is to the right of S. 

We now briefly discnss how our approach differs from the one for the above
mentioned special version of the problem, in which all djaïns start in S and end on 
a set of points on a vertical li ne V that is to the right of S. Thal specia.J version of 
the problem is substantially easier, both seqnentially and in paTaUel, because for a 
fixed p E 8, the collection of longest chains that begill at p and end on V have the 
following mOllotollïcîty property: Two snch lOllgest chains that end at (respectively) 
q' and q", Y(q') < Y(q"), can al ways be chosen su ch that llowhere i$ the ·chain to q' 
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q( /::r" a? q' 

p p 

(al (bl 

Figure 1: Illustrating (a) how lllonotonicity holds for some chains, and (b) how it 
fails to hold for others. 

higher (geometrically) than the chain to q" (intuitively, if it is higher then there is a 
crossing between the two d,ains and we can "nllcross" them). Figure 1 (a) illustrates 
this. Such a mOllotonicity property is lacking in the general versioll of the problem 
cOllsidered here: If q' and q" do not lie on the same vertical line (see Figure 1 (b)) 
then 1110notonicity need not hold, in the sense that either one of the two p-to-q" d,ains 
shown conld be a unique longest chain to '1", so that sucll a chain to q" might go either 
"ab ove" or "below~' a iongest p-to-q' cha,in. 

We are unable to obtain an 0(n2
) time sequential solution to the weighted version 

of this problel11, and we leave this as an open problel11. Our parallel bounds, on the 
other hand, hold for the weighted version of the problem. 

The rest of the paper is organized as follows. Section 2 deals with the seqnential 

algorithm, which is fairly simple. Section :3 gives the parallel algorithm. We have 
chosen to give the basic terl11inology and definitions separately for each of the parallel 
and sequential algorithms, since they have little in common (this way the reader 
interested in one of the two will not be forced to read material unrelated to her 
interest). Section 4 concludes by posing some open problems. 

2 The Sequential Algorithm 

This section gives the 0(n 2
) time sequential algorithm. 

2.1 Preliminaries 

The input consist, of set S of n points in the plane. For a point p E S, we use 
LOM(p) to denote the subset ofpoints in S that are dominated by p. A point p of 
Sis a maximum in S iff no other point of S dominates]J. We use MM(S) to denote 
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Figure 2: The points of MD(p) are circled. 

the set of maxima of 8, listed by increasing x coordinates (and hence by decreasing 
y coordinates). VVe abbreviate MAX(LXJM(p)) aS MD(p). Figure 2 illustrates the 
definition of MD(p). 

For a point p E S, imagine pa.rtitioning LXJM(p) U {p} into k subsets, where k = 
max{D(q,p)lq E LXJM(p) U {p}}, such that the points in each subset al! have longest 
chains to p of the sawe length. The subset ûr LXJM(p) U {p} ",hose points have a 
distance j to p iscailed the j-th domination layer of p, denoted by Layerj(p), For 
example, Laye"l(p) = {p}, LaYe1'2(p) = MD(p), and sa on. In general, for each j, 
Laye"j(p) = MAX(LXJM(p) U {p} - Ui<jLaye,'i(p)). VVe assume that each layer of p 
is sorted by increasing x-coordinates (bence by decreasing y-coordinates). 

It should be clear that, if we were able ta compnte the domination layers of 
each p E 8, then we would effectively have computed the desired D matrix. Our 
sequelltial algorithm will therefore mainly concern itself with the computation of 
these domination layers and of the P m •. trix. (The parallel algorithm deals with the 
weighted version and will use a different approach - in fact most of the definitions 
given above willnot be used in tbe parallel algorithm.) 

2.2 The Aigorithm 

Below is a high-Ievel description of the sequential algorithm. We are assuming that 
!la two points in S have the same x (resp., y) coordinate, i.e., that if p, q E Sand 
p =f q then X(p) =f X(q) and Y(p) =f Y(q) (the algorithm can easlly be modified for 
the general case). By convention, walking forward (resp., backward) along an MD(p) 
lneans n10ving alo:ag it by increasing (resp., decreasing) x-coordinates. 

Step 1. We first fOl1lpute MD(p) for every p E S. These MD(p)'s can all be easily 
computed in 0(n2

) time as follows. ,Ve sort the points by their x coordinates, and 
then for eacb p E .') we do the following. From the sorted list we obtain LXJM (p), in 
O(n) time. Then we obtain the maximal elements of LXJM(p), also in O(n) time (this 
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Figure:3: The points of bder'valj+' (p, a2) are shawn circled. 

is possible since IXJM(p) is available sorted). These maximal elements of IXJM(p) 
are, by definition, MD(p). 

Step 2. We compute, for each pair p, q E 5, the position of Vrp) in the list 
Y(MD(q)), which is the list obtained from MD(q) by replacing every point by its 
y-coordinate. This is easy to do in 0(1l) time for a particular Y(MD(q)) and ail 
p E 5, hy merging Y(AfD(q)) ",j,h the sorted lisL of tile y ~o0rdinates of the points 
in S. Doing this once for each q E S takes a total of 0(1l2 ) time. 

Step 3. For each p E S, we obtain the domination layers of p and the column 
that corresponds to p in the P matrix. We do this in 0(1l) time for each p, as fol
lows. Clearly, we already have Layer',(p) (= {pl) and Layer'Ap) (= MD (p)). We 
obtain Layerj+'(p) from Layer'j(p) in O(ILayer'j(p) 1 + ILayel'j+,(p)1) time, as fol
lows. Let Layer'j(p) = (a"a2, ... , ak), where X(a,) < X(a2) < ... < X(ak). We 
shall walk along the Layer'j(p) list, creating the Layer'j+, (p) list as we go along, in 
left ta right arder. Wh en we reach ai while scanning Layel'j(p), we compute the 
portion of Layer'j+'(p) that is in MD(ai) but not in IXJM(ai+,); we cali this portion 
Inter'valj+'(p, ai) (it forms a contiguous interval of MD(ai))' Figure 3 illustrates the 
definition of Inte"valj+,(p,ai)' Note how, in that figure, point w is in Layer'j+'(p) n 
MD(a2) but not in Intervalj+,(p, a2)' We shall compute Intervalj+,(p, a,), Intervalj+'(p, a,), 
... , Inter'valj+'(p, ak), in that arder. While doing this, we maintain a variable called 
cutoff whose significance is that, when we finish processing ai, cutoff contai~s the 
rightmost point in U, <r<i Inter'valj+, (p, ar); intuitively, cutoff is the "dominant" point 
among those in U'<f<;!nter'valj+l(p,ar) as far as the (yet to be compnted) lists 
Inter'valj+, (p, ai+,), ... , Inter'valj+, (p, ak) are concerned. In Figure 3, after Inter'valj+'(p, a,) 
is computed, cutoff is point t, and aftel' Intervalj+'(p, a2) is computed cutoff is poin1 
q'. 

Ta determine Intervalj+l(p, ad, we simply start at the beginning of MD(a,) 
and walk forward along MD(a,) until we first reach a point q E MD(al) for which 
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Y(q) < Y(a,) (we do not count q as beillg part of our "walk" along MD(a,», The 
(possibly empty) portion of MD( a,) so traced is obviously equal to lntervalj+l(p, a,), 
If lntel'valj+l (p, ad is not empty tben we set cuioff equal to the predecessor of q in 
MD(a,), otberwise it remains undefilled. For tbe example shown in Figure 3, q = u 
and cutoff = t. We then proceed to process a,. 

If cutoff is undefined (i.e., if Iniel'valj+l(p, ad turned out to be empty) then we 
process a, exactly as explained above for a,. Otberwise we process it as follows. Recall 
that we already know, from Step 2, the outcome of a hypothetical binary search for 
Y(a3) in Y(A1D(a,»: Let q' be the predecessor of Y(a3) in Y(MD(a2», that is, the 
lowest point of MD(a,) whose y-coordillate is larger than Y(a3). If no sueh point 'l' 
exists 011 MD( a,) then surely lniervalj+l(p, a,) is empty and we move on to processing 
a3 (leaving cutoff unchanged). 50 suppose that q' exists. If X(q') < X(cutoff) 
then lniel'valj+l (p, a,) is empty and we move on to processing a3 (leaving cuioff 
unchanged). If X(q') > X(cutoffJ then we start at q' and walk backward along 
MD(a,) until we reach a point whose x-coordinate is less than X(cutoffJ; the portion 
of MD(a,) so traced is Iniel'V(Ûj+l(P, a,). In Figure 3, the portion so traced is (in 
that order) q', v, u (point .. is Bot traœ~ becanse X( .. ) < X(t». In that case we also 
update cutoff by setting it equal to 'l' before we proceed to process a3' 

We process a3, a4,"" ak in that order, exactly as explained above except that, 
when processing ai+l, ai plays the raIe of al, ai+l plays the role of a2, and ai+' plays 
the role of a3. 

One", we ha','e obtained Layerj.,.,(p) from LayerJ(p), wemust compute P(w,p) for 
"very w E L<1ye"J+1lp) (deariy, sueh a p(w,p) is in Layerj(p)). This is easily done 
for all w E Layerj+1(p) in O(ILayerj(p)1 + ILayel'j+l(p)l) time, by merging the two 
lists Laye"j+l(P) and Laye'·j(p). 

This completes the description of the sequential algorithm. We now turn our 
attention ta the parallel algorithm. 

3 The Pm'allel Algorithm 

This section gives the O((log n )2) time, 0(n2 / log n) pro cess or algorithm for the 
weighted version of the problem. 

3.1 Preliminaries 

The parallel model used is the CREW PRAM, which is the synchronous shared
memory model where concurrent reads are allowed, but no two processors can simul
taneously attempt to write in the same memory location (even ",hen they a.re trying 
to write the same thing). In what follows, we shall fOCilS on showing that the claimed 
time complexity can be achieved with an O(n'logn) amonnt of Ulork (= Humber of 
opera.tions). This will imply the 0(11'/ log n) processor bound, by Brent's theorem 
[8J: 
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Theorem 1 (Brent) Any "ynchronou" paraUd algorithm taking time T that con"i"ts 
of a total ofW operations can be simulated by P prOCf."sors in time O«W IP) + T). 

Remark: There are actually two qualifications to the .above Brent 's theorem before 
one can apply it to a PRAM: (i) at the beginning of the i-th parallel step, we must be 
able to compute the amount of work W i done by that step, in time O(W;jP) and with 
P processors, and (ii) we must know how to assign each processor to its task. Both 
qualifications (i) and (ii) to the theorem will be easily satisfied in our algorithms, 
therefore the main difficulty will be how to achieve W operations in time T. 

Here as in [4], an important method we use illvolves multiplying special kinds of 
matrices. Although the situation depicted in Figure l(b) implies that the structure 
that gives rise to such matrices is not al ways available, the fact that we can deal with 
the situation in Figure I(a) will be usefu!' (This will all be made precise later; for now 
we are only giving an overview.) Ail matrix multiplications in the algorithm are in 
the (max, +) closed semi-ring, i.e., (M' * M")(i, j) = maXk {M'(i, k) + M"( k,j)}. A 
matrix M is said to be Monge [IJ iff for any two successive rows i, i + 1 and columns 
j, j + 1, we have M(i,j) + M(i + I,j + 1) :0:: M(i,j + 1) + M(i + l,j). For two 
point sets A and E in the plane, let matrix MAR contain the lengths of the longest 
chains that start in A and end in E (by convention, these chains are allowed to go 
through any points of 5' on their way from A to E). Now, consider two point sets 
X and Y, each totally ordered in some way (so we can talk about the predecessor 
and successor of a point in X or in Y), and such that the rows (resp., columns) of 
the matrix M xy are as in the ordering for X (resp., Y). Mat,.ix Mxy is Monge iff 
for a..lly two successive points p, pl in )( and two succetisive points Cf, ql in Y, w€ have 
1\!Ixy (p,q) + Mxy(p',q') :0:: Mxy(p,q') + Mxy(p',q). The llext lemma characterizes 
the Monge matrices of chain lengths used in the algorithm. 

Lemma 1 Let V' (resp., V") be a 11erticalline that contains a set X (resp., Y) of 
point" orde,·ed by increasing (resp., decrrasing) y-coordinates along V' (resp., V"). 
(Assume that V' is ta the left of V".) Then the mairix Mxy of chain lengths betwcen 
X and Y is Monge 

Proof. Obvious. D 

The following well-known lemma [:3, IJ will be used. 

Lemma ~ Assume that matrices Mxy and M yz are Monge, with IXI = cIIYI :0:: 
c21Z1 for .~omc positive constants CI and C2. Then M).")' * M yz can bc computcd in 
O(log IYI) time and O(IXIIZI) 1L'ork in the CREW PRAM mode!. 

Remark: Since * is a (max, +) matrix illultipIication, Mxy * Mn Ileed Ilot be Monge. 
Lemmas 1 alld :2 imply the following. 

Lemma 3 Let V (resp., V', V") be a verticalline that containB a Bct X (resp., Y, Z) 
of points ordcrcd by increasi1/g y-coordinates along \1 (resp., V', V"). Assume that 
X(V) < X(\I') < X(V"), and that IXI = cllYl:O:: c,lZI for some positive constants 
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c) and C2. Suppo,'e that, for cvery increasing chain C fTOm p E X to q E Z, there i..., 
a p-fo-q chain C' that is at Zeust as long as C and goes through some w E Y. Then 
given the matriefS Mxy and Myz, the matrix Mxz can be computcd in O(log IYI) 
lime and O(IXIIZI) 11'ork in the CREW PRAM modeZ. 

Proof. Let X' (resp., Y', Z') be the same as X (resp., Y, Z) but sorted by decreasing 
y coordinates. By Lemma 1, Mxy, and My'z are both Monge. By Lemma 2, the 
matrix Mxy, * My'z can be computed in o (log !YI) time and O(IXIIZI) work. Now, 
sinee by hypothesis aIl the X-to-Z chains can be modified to go through Y without 
any decrease in their lengths, it fo]]ows that the matrix lv/xv, * My'z is the desired 
matrix Mxz. 0 

3.2 The Aigorithm for Chain Lengths 

The algorithm given in this subsection concerns itself with the computation of chain 
lengths only, not of the P matrix that describes the n longest chain trees. lncluding 
the computation of P here would have cluttered the exposition. The next subsection 
will deal with the computation of P. In addition, it is not immediately c1ear that the 
availabilityof P makes possible the reporting of a k-point chain in O(k) work and 
constant time. This too is postponed until the next subsection. 

Let S = {Ph"" Pn} where X(pd < '" < X(Pn). There is a weight associated 
with ea{'.h Pi. Let ~~, Vi, ... , ~~ be verticallines such that X(Vo) < X(P1)' X(Pn) < 
X(V,,), ana X(p;) < X(~;) < X(PHd for ail i E {l, ... , n -l}. 

Let T be a complete n·leaf binary tree. For each leaf 1) of T, if v is the i-th leftl1l0st 
leaf in T, then associate with 1) the region 1" of the plane that is between V;-1 and V;. 
For each internal node 1) of T, associate with v the region Iv consisting of the union 
of the regions of its children. That is, if v has children u and w, then Iv = lu U Iw. 

Let 1) be any Dode of T. Suppose that the left (resp., right) boundary of Iv is V; 
(resp., Vj), and let Sv = SnI v, that is, Sv is the subset of the input points that lie in 
I". Observe that if 1) is at a height of h in T then j - i = 2" = ISvl (the height of 1) 

is the height of its subtree in T, with leaves being at a height of zero). Let Lv (resp., 
Rv) be the set of points on V; (resp., II}) that are the horizontal projections of Sv on 
V; (resp., Vj). The points of Lv and Rv are, of course, disjoint from the input set S, 
and we assign ta each of them a weight of zero. Observe that 

~ IL,·I = ~ IRvl = O(nlogn), 
vET vET 

because for each !evel of T a)Ji E S appears in exactly one S'" of that level, and henee 
creates at most two extra points, one in Lv and one in R" (recall that a level of T is 
tbe set of nodes in T that have saille distance to the root, so that the root is al level 
zero, its two children at levell, etc). 

There are two phases for the algorithm: Phase 1 is relatively straightforward, 
while Phase 2 is the key that made our solution possible. 
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3.2.1 Phase 1 

This phase consists of computing, starting at the leaves and going upward in T, one 
level at a time, the AhJi. matrices, which contain the lengths of ail the Lv-to-Ii" 
longest chains (dJains that begin on Lv and end on Ii", of course possibly going 
through points in Sv along the way). This information is trivially available if v is a 
leaf. 50 suppose that we have already computed this information for levell + 1, and 
we want to compute it for level R. 

We claim that it suffices to show that the ML.R. matrix can be computed in 
0(IS,,12) work and O(logn) time for each no de v at level f. This claim would imply 
an 0((logn)2) time, 0(n 2

) work bound for Phase 1, as follows. That the time bound 
follows from the daim is obvious (we would spend a logarithmic amount of time per 
level, and there is a logarithmic number of levels). The work bound would follow 
from the fact that there are 2f nodes v at level C, each having ISvl = n/2l, and hence 
the total work at level f would be 

5ummingover allieveis R gives 0(n 2
) total work. We next l'rave the daim by showing 

that the Ilh"R. matrix can indeed be computed in 0(ISvI2) work and logarithmic time. 
Let u (resp., w) be the left (resp., right) child of v in T. Let Y denote Ii" U Lw, 

that is, Y consists of the horizontal projections of the points of S" on the verticalline 
\;j that separates the region Iv from the region lw. 5ince MLJiv is already available 
at u, we can easily obtain frolll it i\h.y. 5imilarly, we obtain j\1YR. From j\1LvRw' 

Now, simply observe that the conditions for Lemma :3 are satisfied, \Vith L" playing 
the role of X and Rv the role of Z. That is, we can obtain ML,R. from Ah.y and 
M yR, in 0(18,,12) work and logarithmic time. This completes the l'roof. 
Rcmark: The astnte reader may have observed that the above procedure can be 
modified sa as ta compute the L"-to-8,, and S"-to-R,, chainlengths information. This 
\Vould involve only a logarithmic factor of additional work, and would exploit the 
kind of monotonicity depicted in Figure 1 (a) by using the lower-dimensional parallel 
matrix searching algorithm of [5]. However, this would stillleave us far from having 
solved our problem: We woulcl still neecl something like Phase 2 helow, since we 
cannat afforcl to multiply "non-square" Monge matrices - as of now, it is not known 
how to optimally (max, + )-multiply two non-square Monge matrices (for example, 
the best parallel algorithm for multiplyillg a 1 x k Monge matrix \Vith a k x k one in 
logarithmic time takes O(k log k) work [5]). Observe how Phase 2 belo\V will satisfy 
the size requirements of Lemma:3, as expressed in the requirement that IXI = cI1Y1 
::; c21Z1 for some positive constants CI and C2. 

3.2.2 Phase 2 

\Vhereas Phase 1 involved a bottom-up computation in T, Phase 2 will involve a 
top-clown comp'jtation, starting at the root and proceeding one level at a time until 
we reach the leaves. The purpose of the computation at a typical level e is more 
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Figure 4: lliustratillg the four cases of Phase 2, 

ambitious than in Phase 1: Vve now seek, for every pair of nodes u, w at level R such 
that u is ta the left of w, the computation of the MRJ.-w chain lengths matrix (u is ta 
the left of w iff it is in the subtree of the left child of the lowest common ancestor of 
u and w). The key idea is ta get help from the parents of u and w, which we call u' 
and (respectively) w'. If u' '" w' then the desired information is trivially availahle, sa 
suppose that u' # w'. We distinguish four ca,es, which are illustrated in Figure 4. 

Case 1: u is the left child of u', and w is the right child of w'. Let a be the right 
child of u', (3 be the left child of w' (see Figure 4(a)). Since Phase 1 computed 
l'vhoRa, we can obtain from it j\1RuRa' then M RuR.,. Similarly, we obtaill MLw'/"w 

from ,~htft. which was c.omputed in Phase l. Now, MRu'Lw' is already available 
because Phase 2 1s already done with processing the pair u', w' (recall that 
Phase 2 processes the levels from the root down). We use Lemma 3 to obtain 
the matrix MRJ.-w' from MRuR., and MR.,Lw" with Ru playing the raIe of X, Ru' 
playing the raIe of Y, and Lw' playing the raIe of Z. Finally, we use Lemma 3 
again, this time ta obtain the desired matrix MRJ.-w from MRJ.-w' and MLw,Lw' 

Case 2: u is the left child of u', and w is the left child of w'. Let a be the right child 
of u' (see Figure 4(b)). From the MLoRo matrix which was computed in Phase 
1, we obtain the M RuRu' matrix. Observe that l'vfRu,Lw' was already obtained 
earlier in Phase 2: get from il the 111Ru'Lw matrix. We use Lemma 3 ta obtain 
MRJ.-w from the matrices MRuR

u
' and MR.,Lw, 

Case 3: u is the right child of u', and w is tbe right child of w'. Let (3 be the left 
child of w' (see Figure 4(c)). From the MR ,1., , matrix which was computed 

• w 

earlier in Phase 2, obtain the MRJ.-, matrix. From the A1Ltft, matrix which was 
computed in Phase l, we obtain the Ah,?w matrix. We use Lemma 3 ta obtain 
MRJ.-w from MRJ.-, and ML,?w' 
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Case 4: u is the right chi Id of u', and w is the left child of w' (see Figure 4(d)). 
Obtain I\1R,L., from MRu,L." which was compnted earlier in Phase 2. 

Tbe time taken by Pbase 2 is dearly O((log n )2), sinee we take a logarithmic 
amoullt of time at leach level of T. The work done for a particular pair u, w at level 
C is 0((n/21)2), and sinee tbere are (2')2 such pairs at level C the total work done at 
that level is 0(n2). Summing over all levels gives 0(n2 log n) work for Phase 2. Henee 
it is Phase 2 that is tbe bottleneck in the work complexity. The space taken by Phase 
2 is still 0(,,2) rather than 0(n2 10gn), however, sinee we do not need ta store the 
matrices for all the levels as Pbase 2 proeeeds: \\Then we are done with level C, we can 
discard the matriees for level R - 1 sinee level R + 1 will only need information from 
level R (recall tbat in Pbase 2 tbe nodes of T request help only from their parents, 
not from their grandparents or from bigber up in the tree T). 

3.3 Computing the Actual Chains 

In this subsection, we discuss bow ta obtain tbe matrix P which contains the n trees 
of longest chains, and bow ta pre-process tbe longest cbain trees, sa tbat each tree 
can support a longest chain query between any point in S and the point of S at the 
root of that tree. 

First we sketch bow tbe algorithm in the previous subsection can be modified 
50 as ta compute tbe P matrix as weil. Für earh AIR..Lu matrix computed by t.,l,at 
algorithm, we compute a companion PR,L., matrix whose significanee is that, for 
P E Ru and q E Lw, PR,L,,(p, q) is the first point of S that lies on a longest p-to-q 
chain (it is undefined if no snch point of S exists). Note tbat only points of Scan 
be "parents". It is quite easy ta modify the computation of an Mxz sa that it also 
produces Pxz : If Mxz is obtained by using Lemma 3, tben Pxz can be obtained from 
Pxy or PyZ as a "byproduct" of tbis computation. For example, if q dominates P 
and if Mxz(p, fi) = Mxy(p, i) + Myz(t, q), then we distinguisb two cases for obtaining 
Pxz(p, q): If Pxy(p, t) is undefined then Pxz(p, q) = Pyz(t, q) (whicb could also be 
undefined), otherwise Pxz(p,q) = Pxy(p,t). When the modified algorithm finish es 
computing PR,Lw for all leaves u, w (at tbe end of Pbase 2), it is easy ta obtain the 
matrix P: If Su = {Pi}, Ru = {pi}, Sw = {Pj}, Lw = {Pj}, then we set P(Pi,pj) equal 
ta PR,Lw(p;,pj) if the latter is defined; otberwise, we set P(Pi,pj) equal ta Pj if Pj 
dominates Pi, and set P(Pi,pj) ta be 11ndefined if pj does not dominate Pi. From now 
on, we assume tbat the matrix P is available. Note tbat tbis matrix is a description 
of n longest chain trees, eacb rooted at a point of S. 

W'e pre-process eacb longest chain tree sa tbat the following type of queries can 
be q11ickly answered: Given anode p in the tree and a positive integer i, find tbe i-tb 
node on the path from p ta the raot of the tree. S11ch queries are called level-ancestor 
querie, by Berkman and Vishkin [6J, who gave efficient parallel algorithms for pre
proee5sillg rooted trees 50 that th" level-ancestor queries can be answered quickly. The 
work of Berkmall and Vishkin [6, 7J shows (implicitly) that a level-aneestor query can 
be handled sequentially in constant time, after a logarithmic time and linear work 
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pre-processillg in the CREW PRAM model. The pre-processing of the longest chain 
trees is done by simply applying the result of Berkman and Vishkin to each of the n 
trees, in totally O(logn) time and 0(n2

) work. 
For the sake of proeessor assignment in reporting chains, we also need to compute 

the number of points of 8 on the actuallongest chain which is to be reported. Suppose 
a longest chain between points p and q in 8 is to be reported. Tbe number of points 
of 8 on such a p-to-q chain can be obtained from the depth of p in the longest chain 
tree rooted at q; it is known that tbe depths can be computed within the required 
comp]exity bounds by using the Euler Tour technique [20J. 

To report an actuallongest chain between points p and q in 8, we do the following 
(without Joss of generality, we assume that q dominates pl. First, we go to the longest 
chain tree rooted at (say) g, and find the number of nodes on the path in that tree from 
llode p to the root q. Let that number be k. The p-to-q path in the tree corresponds 
to a longest chain from p to q, which we must report. We do so by performing, in 
parallel, k - 1 level-ancestor queries, USillg node p and integers 1, 2, ... , k - 1. Each 
query is handled by one proeessor in O( 1) time. These queries find each point on the 
p-to-q chain. Finally, we report the k points of that chain in parallel, by assigning to 
k processors the task of reporting those k points (one point per processor). 

4 Further Remarks 

The fùllowing open problems relùain: 

• Cive an 0(,,2) time sequential algorithm for the weighted case . 

• Cive an 0(n2 ) time sequential algorithm for the three dimensional version of 
the problem (unweighted). 

@ For the three dimensiollal version of the problem, give an NC para.llel algorithm 
that uses a qnadratic (to within a logarithmic factor) llumber of proeessors. 

Finally, using the methods we developed here in combination with other ideas, 
we can improve the proressor complexity of the layers of maxima problem: VVe can 
achieve the same O((log n)2) time complexity as in [IJ with 0(n2 /(logn)') processors, 
instead of the 0(n2/logn) proeessors used in [IJ. 
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