
Frank Dehne Jorg-Rüdiger Sack
Nicola Santoro Sue Whitesides (Eds.)

Aigorithms and
l)ataStructures
Third Workshop, WADS '93
Montréal, Canada, August 11-13, 1993
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

. , .

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series EditaIs

Gerhard Goos
Universitlit Karlsruhe
Postfach 6980
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, Germany

Volume Editors

Frank Dehne
Jorg-Rüdiger Sack
Nicola Santoro

J uris Hartmanis
Comell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

School of Computer Science, Carleton University
1125 Colonel By Drive, Ottawa, Canada KIS 5B6

Sue Whitesides
School of Computer Science, McGil! University
3480 University Street, Montréal PQ, Canada H3A 2A7

CR Subject Classification (1991): El-2, E.l, G.2, I.3.5, H.3.3

ISBN 3-540-57155-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57155-8 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. AU rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in ilS CUITent version, and permission for use must always be obtained from
Springer-Verlag. Violations are Hable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, HemsbachfBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

PREFACE

The papers in this volume were presented at the Third Workshop on Algorithms and Data

Structures CW ADS '93). The workshop took place August 11 - 13, 1993, in Montréal, Canada.

The workshop alternates with the Scandinavian Workshop on Algorithm Theory (SWAT),

continuing the tradition of SWAT '88, WADS '89, SWAT '90, WADS '91, and SWAT '92.

In response to the program committee's cali for papers, 165 papers were submittedrFr{)~

these submissions, the program committee selected 52 for presentation at the workshop. Each

paper was evaluated by at least three program committee members, many of whom called upon

addition al reviewers. In addition to selecting the papers for presentation, the program

committee invited the following people to give p1enary lectures at the workshop: Mikhail

Atallah, Allan Borodin, Richard Cole, Richard Karp, Robert Trujan, and Andrew Yao.

On behalf of the program committee, we would like to express our appreciation to the six

plenary lecturers who accepted our invitation to speak, to all the authors who submitted papers

to W ADS '93, and to Rosemary Carter of Carleton University for her technical assistance to the

program committee. Finally, we would like to express our gratitude to all the people who

reviewed papers at the request of program committee members.

August 1993 Frank Dehne

JOrg-Rüdiger Sack

Nicola Santoro

Sue Whitesides

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Conference Chair:

S. Whitesides (McGill U.)

Pro gram Committee Chairs:

F. Dehne, J.-R. Sack, and N. Santoro
(Carleton U.)

Program Committee:

M.D. Atkinson (St. Andrew's U.)
H. Attiya (The Technion)
G. Ausiello (U. of Rome)
P. Flajolet (INRIA, Les Chesnay)
Z. Galil (Columbia U.)
S. Hambrusch (Purdue U.)
D. Kirkpanick (UBC)
M. Klawe (UBC)
R. Kosaraju (Johns Hopkins U.)
J. van Leeuwen (U. of Utrecht)
F. Lombardi (Texas A&M U.)
F. Luccio (U. of Pisa)
J. Matousek (Charles U.)

lnvited Speakers:

M. J. Atallah
A. Borodin
R. Cole
R. M. Karp
R. E. Tarjan
A. C. Yao

Sponsored by:

NSERC, Carleton University, and McGill
University

VII

I. Munro (U. of Waterloo)
O. Nurmi (U. of Helsinki)
L. Pagli (U. of Pisa)
J. Reif (Duke U.)
R. Seidel (U. of California, Berkeley)
R. Tamassia (Brown U.)
É. Tardos (Cornell U.)
J. Urrutia (U. of Ottawa)
J. Viuer (Duke V.)
D. Wagner (TU Berlin)
S. Whitesides (McGill U.)
P. Widmayer (ETH Zürich)
F. Yao (Xerox PARC)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

ADDITIONAL REFEREES

P. K. Agarwal
E. M. Arldn
D. Avis
A. Bertossi
P. Callahan
R. Canetti
P. Charraresi
J. Chen
Yi.-J. Chiang
R. F. Cohen
L. Devroye
D. Dobkin
H. Edelsbrunner
G. Even
S. Fei
R. FessIer
S. Fogel
G. Frederickson
G. Gambosi
A.Garg
D. Geiger
O. Gerstel
J. Gilbert

VIII

M. Goodrich
G. Grahne
R. Grossi
N.V.Hai
X.He
F. Huber
E. ThIer
H.Imai
G. Kant
M. van Kreveld
D. T.Lee
W.Lenhart
S. Leonardi
G. Liotta
E.Lodi
K. Lyons
L. Malmi
L. Margara
R. H. Mohring
C. Montangero
A.Monti
S. Naher
E. Nuutila

P.Orponen
E.Otoo
M. C. Pinotti
K. Pollari-Malmi
R. Ravi
H. Ripphausen-Lipa
K. Romanik
T. Roos
M. Schiiffter
P. Scheffler
A. Schuster
Y. Shen
M.Smid
S. Subramanian
S. Suri
S. Tate
L G. Tollis
J. Vilo
F. Wagner
K. Weihe
M. Wloka

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

T ABLE OF CONTENTS

Invited Presentations

Atallah, M.J. (Purdue V.) and Chen, D.Z. (V. of Notre Dame)
Computing the Ail-Pairs Longest Chains in the Plane

Borodin, A. (V. of Toronto and IBM Canada)
Towards a Better Understanding of Pure Packet Routing . 14

Cole, R. (New York V.)
Tolerating Faults in Meshes and Other Networks (abstract) 26

Karp, R. M. (U. of Califomia at Berkeley and Int. Comp. Sc. Institute Berkeley)
A Generalization of Binary Search . 27

Yao, A. C. (Princeton V.)
Groups and Algebraic Complexity (abstract) 35

Regular Presentations

Agarwal, P. K. (Duke V.) and van Kreveld, M. (McGill V.)
Connected Component and Simple Polygon Intersection Searching

Amato, N. M. (V. of Illinois, Vrbana-Champaign)

36

An Optimal Algorithmfor Finding the Separation of Simple Polygons 48

Andersson, A. (Lund V.)
Balanced Search Trees Made Simple 60

Aoki, Y., Imai, H. (V. of Tokyo), Imai, K. (Chuo V.), and Rappaport, D. (Queen's V.)
Probing a Set of Hyperplanes by Lines and Related Problems 72

Arge, L., Knudsen, M., and Larsen, K. (Aarhus V.)
A General Lower Bound on the I/O-Complexity of Comparison-Based Algorithms 23

Arkin, E. M. (SVNY, Stony Brook), Goodrich, M. T. (Johns Hopkins V.),
Mitchell, J. S. B. (SVNY, Stony Brook), Mount, D. (U. of Maryland),
Piatko, C. D. (NIST, Gaithersburg), and Skiena, S.S. (SVNY, Stony Brook)
Point Probe Decision Treesfor Geometrie Concept Classes 95

Armon, D. and Reif, J. (Duke V.)
ADynamie Separator Algorilhm

Azar, Y. (DEC SRC), Kalyanasundaram, B. (V. of Pittsburgh), Plotkin, S.
(Stanford V.), Pruhs, K. R. (U. of Pittsburgh), and Waarts, O. (IBM Almaden)

107

Online Load Balancing ofTemporary Tasks ll9

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

Balalcrishnan, H., Rajaraman, A., and Rangan, C. P. (Indian InstÎtute of Technology,
Madras)
Connected Domination and Steiner Set on Asteroidal Triple-Free Graphs 131

Balasubramanian, R., Raman, V., and Srinivasaraghavan, G. (Institute ofMathematical
Sciences, Madras)
The Complexity of Finding Certain Trees in Tournaments 142

Di Battista, G., Liotta, G., and Vargiu, F. CU. of Rome)
Spirality ofOrtlwgonal Representations and Optimal Drawings of Series-Parallel Graphs
and3-Plar.ar Graphs. .. 151

Beame, P. (U. of Washington), Fich, F. E. CU. of Toronto), and
Sinha, R. K. (U. of Washington)
Separating the Power of EREW and CREW PRAMs with Small Communication Width. 163

Berkman, O. (King's College London), Matias, Y. (AT &T Bell Labs, Murray Hill), and
Ragde, P. CU. of Waterloo)
Triply·Logarithmic Upper and Lower Rounds for Minimum, Range Minirl'.a,
aruiRelated Problems withlnteger Inputs 175

Bern, M. (Xerox, Palo Alto), Eppstein, D. CU. of California, Irvine), and
Teng, S.-H. (MiT)
Parallel Construction ofQuadtrees and Quality Triangulations 188

Bose, P. (McGill U.), Buss, J. P., and Lubiw, A. (U. of Waterloo)
Pattern Matchingfor Pennutations .. 200

Bose, P., van Kreveld, M., and Toussaint, G. (McGill U.)
Filling Polyhedral Molds ... 210

Chang, M.-S., Peng, S.-L., and Liaw, J.-L. (National Chung Cheng University)
Deferred-Query --- An Efficient Approachfor Problems on IntervaJ and
Circular-Arc Graphs .,. .. 222

Chen, J., Kanchi, S. P., and Kanevsky, A. (Texas A&M U.)
On the Complexity ofGraph Embeddings 0 • • • • • • • • • • • • • • •• 234

Clarkson, K. L. (AT&T Bell Lahs, Murray Hill)
Aigorithmsfor Polytope Covering and Approximation 246

Codenotti, B., Manzini, G. (IEI-CNR, Pisa), Margara, L. (U. degli studi, Pisa), and
Resta, G. (IEI-CNR, Pisa)
Global Strategies for Augmenring the Efficiency ofTSP Heuristics 253

Datta, A., Lenhof, R-P., Schwarz, c., and Smid, M. (Max-Planck-Institut
für Informatik, Saarbrücken)
Starie and Dynan-dc Algorithmsfor k-Point Clusrering Problems 265

Devillers, O. and Fabri, A. (INRIA, Sophia-Antipolis)
Scalable Aigorithms for Bichromalic Line Segment! ntersection Problems on
Coarse Grained MulticompUlers 277

Dielz, P. F. (U. of Rochester) and Raman, R. CU. of Maryland)
Persistence, Randomization and Parallelization: On SOIr'.e Combinatorial Games and
Their Applications .• 289

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

Ding, Y. (U. of California, Los Angeles) and Weiss, M. A. (Florida Int. V.)
The k-D Heap: An Efficient Multi-Dimensional Priority Queue 302

Dobrindt, K. (INRIA, Sophia··Antipolis), Mehlhorn, K. (Max-Planck-Institut
für Infonnatik, Saarbrucken), and Yvinec, M. (CNRS-VRA, Sophia-Antipolis)
A Complete and Efficient Algorithmfor the Intersection of a General
anda Convex Polyhedron .. 314

Efrat, A. (Tel Aviv V.), Sharir, M. (Tel Aviv V. and New York V.), and
Ziv, A. (The Technion)
Computing the Smallest k-Enclosing Circle and Related Problems 325

Giancarlo, R. (AT &T Bell Labs, Murray Hill)
An Index Data Structure for Matrices, with Applications to Fast Two-Dimensional
Pattern Matcmng .. 337

Graf, T. and Hinrichs, K. (Westfalische Wilhelms-Vniversitlit)
A Plane-Sweep Algorithmfor the All-Nearest-Neighbors Problemfor a Set of
Convex Planar Objects .. 349

Gupta, P., Janardan, R. (U. of Minnesota), and Smid, M. (Max-Planck-Institut
für Infonnatik, Saarbrucken)
Funher Results on Generalized Intersection Searching Problems:
Counting, Reporting, and Dynamization .. 361

Heffernan, P. J. (Memphis State V.)
Generalized Approximate Algorithms for Point Set Congruence 373

Jiang, T. (McMaster V.) and Li, M. (U.ofWaterloo)
Approximating Shortest Superstrings with Constraints 385

Kannan, S. (U. of Arizona) and Warnow, T. (Sandia National Labs, Albuquerque)
Tree Reconstruction from Partial Orders 397

Kao, M.-Y. (Duke V.), Teng, S.-H. (MIT), and Toyama, K. (Yale V.)
Improved ParaUel Depth-First Search in Undirected Planar Graphs 409

Karger, D., Motwani, R., and Ramkumar, G. D. S. (Stanford V.)
On Approximating the Longest Path in a Graph .. 421

Khuller, S. (V. of Maryland), Raghavachari, B. (Pennsylvania State V.), and
Young, N. (V. of Maryland)
Designing Multi-Commodity Flow Trees 433

Klein, P. N. and Subramanian, S. (Brown V.)
A Fully Dynamic Approximation Schemefor AU-Pairs Paths in PlanaI' Graphs 442

van Kreveld, M. (McGill V.)
On Fat Partitioning, Fat Covering, and the Union Size ofPolygons 452

Krizanc, D. (Carleton V.)
A Time-Randomness Tradeofffor Selection in ParaUel 464

Lu, H.-I, Klein, P. N., and Netzer, R. H. B. (Brown V.)
Detecting Race Conditions in ParaUel Programs that Use One Semaphore 471

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XII

Maggs, B.M. (NEC, Princeton) and Rauch, M. (Siemens, München)
An Algorit/>mfor Finding Predeeessors in Inleger Sels '" 483

Maier, R. S. CU. of ArizOn2.) and Scholt, R. CU. of Nancy)
The Exhaustion of Shared M C.'1wry: Stochastic Results 494

Mirzaian, A. (York U.)
Minimum Weight Euclidean Matehing and Weighted Relative Neighborhood Graphs. . . . 506

Mitra, P. and Bhattacharya, B. (Simon Fraser U.)
Efficient Approximate Shortest-Path Queries Among Isothetie Rectangular Obstacles 518

Palazzi, L. and Snoeyink, J. CUBC)
Counting and Reporting Red/Blue Segment Intersections. .. 530

Peliegrini, M. (King's College London)
Repetitive Hidden-Surface-Removalfor Polyhedral Scenes 541

De Prisco, R. (Columbia U.) and Monti, A. CU. of Pisa)
On ReconfigurabiUty of VLSI Linear Arrays 553

Sldena, S.S. and Sundaram, G. (SUNY, Stony Brook)
Reconstructing Strings from Substrings 565

Souvaine, D. L. (Rutgers U.) and Yap, C.-K. (New York U.)
Combinatorial Complexity of Signed Dises 577

Stallmann, M F. M. (North Carolina State U.) and Hughes, T. A.
(IBM, Research Triangle Park)
Fast Algorithms for One-Dimensional Compaction with log Insertion 589

Swanson, K. (Lund U.)
An Optimal Aigorithmfor Roundness Determination on Convex Polygons 601

Telle, J. A. and Proskurowsld, A. (U. of Oregon)
Practical Aigoritr,ms on Partial k-Trees with an Application tG Domination-LUce Problems. 610

Westbrook, J. and Yan, D. C. K. (Yale U.)
Greedy Algorithmsfor the On-fine Steiner Tree and GeneralizedSteiner Problems 622

Author Index .. 634 B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Computing the AIl-Pairs Longest Chains III the
Plane*

Mikhail J. AtaHah
Dept. of Computer Science

Purdue University
West Lafayette, IN 47907.

E-mail: rnj a@cs.purdue.edu.

Abstract

Danny Z. Chen
Department of Computer
Science and Engineering

University of Notre Darne
Notre Darne, IN 46556.

E-mail: chen@cse. nd. edu.

Many problems on sequences and on circular·arc graphs involve the compu·
Lation of longest cha.ins between points in the plane. GiVE'll a set 5 of 12. points
in the plane, we. consider the problem of wmputing the matrix of longest chain
lE:ngth~ hetwE'en aU pairs of poi'n'ts in S, and the matris of "parent" pointers
that desC'.ribès the n longest cha..i.n trees. vVe present a. simp]e sequential algo
rithm for compllting these matrices. Our aJgorithm rUllS in 0(,,') time, and
hence is optimal. We also present a rather involved parallel aJgorithm that
computes these matrices in o (log' n) time using O(n' / log n) processors in the
CREW PRAM model. These matrices enables us ta report, in 0(1) time, the
length of a longest chain between any two points in S by lIsing one processor,
and the actual chain by using k processors, where k is the number of points of
Son that chain. The space complexity of the aJgorithms is 0(,,').

1 Introduction

Problems that involve longest increasing subsequences of a given sequence of numbers
have attracted a lot of attention in the pasto Probably the mos! studied version is that
of the longeBt increasing Bubscqucnce (LIS), for which many O(n log n) time algorithms
are known (e.g., [10, Il, 1:3], and many others). There is also a well-know connection
between increasing subsequenC€s and problems on certain specialized classes of graphs

such as permutation graphs, circle and circular·arc graphs, and interval graphs (see,
e.g., [12J-[19]). This paper considers the ali-pairs version of the problem, whose
formulation we state precisely nex!. \Ve have chosen to formulate it as a l'rob lem on

*This research was supported by the Leonardo Fibonac,('.j InstÎtute in Trento, ItalYl and by the
National SciE"nce Foundation un der Grant CCR-9202807. Part of this research \\Tas done while the
tirst author was visiting LIPN, Paris) France.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

points in the plane because our solution techniques are drawn from compntational
geometry; in terms of sequences, the y coordinate of a planar point corresponds to
the value of an entry in the sequence, and the position at which that entry occurs in
the sequence is determined hy the x coordinate.

A point P is said to dominale another point q iff X(p) ?: X(q) and Y(p) ?: Y(q),
where X(p) and Y(p) respectively denote the x and y coordinates of point p. Let
S be a collection of n points in the plane, and let (1 = (PI, ... , Pk) be a sequence of
points such that each Pi is in S. The sequence (J" is increasing iff Pi dominates Pi-I

for aH 1 < i ::; k; such a sequence is caJled a chain, and we say that it begins at PI,

that it (nds at pk, and that its length is k (if the points are weighted then the length
of (J" is the sum of the weights of its points). The chain (J" is longesl if no other chain
starting at PI and ending at Pk has greater length than (J".

The problem we con si der is that of computing the n x n matrix D of the lengths
of longest chains between pairs of points in 8; that is, D(p, q) is eqna! to the length
of a longest p-to-q chain. By convention, for P of q, if q does not dominate P then
D(p, q) = -00. We also compute an n x n matrix P (shorthand for "parent") such
tbat P(p, q) is the successor of pin some p-to-q longest chain.

We give a simple 0(n2
) time sequential algorithm in the ul1weighted case. Clearly,

knowing P allows one processor to trace a longest p-to-q chain in time proportional
to its length.

In l'araBe!, we solve the weighted version of the problem in O«log n)2) time using
0(,,2/ log n) processors in theCREW PRAM model. We also show that a longest p
to-q chain Œn he obtained in O(1) time by using k CREW PRAM processors, where
le is the number of points of 8 on that chain. The paraUel algorithm bears very Iittle
resemblanC€ to the sequel1tial one, which seems hard to "parallelize". It also solves a
more general (weighted) version of the problem.

An 0(n 2 logn) time sequential algo~ithm for this problem is quite trivial to ohtain,
and to the best of our knowledge this l'las the best previously known bound for this
ail-pairs version of the problem. There is a pnblished 0(n2) time algoritlnn [2] for a
special case of this prohlem: that for dlains that start in 8 and end on a set of points
that lie on a vertical line V, where V is to the right of 8. In parallel, bounds similar
to ours were only known for the special case of the layers of maxima problem, which
can be viewed as the version of our problem where the chains of interest begin in 8
but must end ai the point (+00, +00) [1]. Jt is actually quite easy to use the methods
of [1, 3] to solve the version of the problem where the dlains of interest begin in 8
but must end on a set of points on a vertical line li that is to the right of S.

We now briefly discnss how our approach differs from the one for the above
mentioned special version of the problem, in which all djaïns start in S and end on
a set of points on a vertical li ne V that is to the right of S. Thal specia.J version of
the problem is substantially easier, both seqnentially and in paTaUel, because for a
fixed p E 8, the collection of longest chains that begill at p and end on V have the
following mOllotollïcîty property: Two snch lOllgest chains that end at (respectively)
q' and q", Y(q') < Y(q"), can al ways be chosen su ch that llowhere i$ the ·chain to q'

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

q(/::r" a? q'

p p

(al (bl

Figure 1: Illustrating (a) how lllonotonicity holds for some chains, and (b) how it
fails to hold for others.

higher (geometrically) than the chain to q" (intuitively, if it is higher then there is a
crossing between the two d,ains and we can "nllcross" them). Figure 1 (a) illustrates
this. Such a mOllotonicity property is lacking in the general versioll of the problem
cOllsidered here: If q' and q" do not lie on the same vertical line (see Figure 1 (b))
then 1110notonicity need not hold, in the sense that either one of the two p-to-q" d,ains
shown conld be a unique longest chain to '1", so that sucll a chain to q" might go either
"ab ove" or "below~' a iongest p-to-q' cha,in.

We are unable to obtain an 0(n2
) time sequential solution to the weighted version

of this problel11, and we leave this as an open problel11. Our parallel bounds, on the
other hand, hold for the weighted version of the problem.

The rest of the paper is organized as follows. Section 2 deals with the seqnential

algorithm, which is fairly simple. Section :3 gives the parallel algorithm. We have
chosen to give the basic terl11inology and definitions separately for each of the parallel
and sequential algorithms, since they have little in common (this way the reader
interested in one of the two will not be forced to read material unrelated to her
interest). Section 4 concludes by posing some open problems.

2 The Sequential Algorithm

This section gives the 0(n 2
) time sequential algorithm.

2.1 Preliminaries

The input consist, of set S of n points in the plane. For a point p E S, we use
LOM(p) to denote the subset ofpoints in S that are dominated by p. A point p of
Sis a maximum in S iff no other point of S dominates]J. We use MM(S) to denote

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

•
• • • l'

®
® •

•

• • • •
• •

• •
•

•
• •

•

Figure 2: The points of MD(p) are circled.

the set of maxima of 8, listed by increasing x coordinates (and hence by decreasing
y coordinates). VVe abbreviate MAX(LXJM(p)) aS MD(p). Figure 2 illustrates the
definition of MD(p).

For a point p E S, imagine pa.rtitioning LXJM(p) U {p} into k subsets, where k =
max{D(q,p)lq E LXJM(p) U {p}}, such that the points in each subset al! have longest
chains to p of the sawe length. The subset ûr LXJM(p) U {p} ",hose points have a
distance j to p iscailed the j-th domination layer of p, denoted by Layerj(p), For
example, Laye"l(p) = {p}, LaYe1'2(p) = MD(p), and sa on. In general, for each j,
Laye"j(p) = MAX(LXJM(p) U {p} - Ui<jLaye,'i(p)). VVe assume that each layer of p
is sorted by increasing x-coordinates (bence by decreasing y-coordinates).

It should be clear that, if we were able ta compnte the domination layers of
each p E 8, then we would effectively have computed the desired D matrix. Our
sequelltial algorithm will therefore mainly concern itself with the computation of
these domination layers and of the P m •. trix. (The parallel algorithm deals with the
weighted version and will use a different approach - in fact most of the definitions
given above willnot be used in tbe parallel algorithm.)

2.2 The Aigorithm

Below is a high-Ievel description of the sequential algorithm. We are assuming that
!la two points in S have the same x (resp., y) coordinate, i.e., that if p, q E Sand
p =f q then X(p) =f X(q) and Y(p) =f Y(q) (the algorithm can easlly be modified for
the general case). By convention, walking forward (resp., backward) along an MD(p)
lneans n10ving alo:ag it by increasing (resp., decreasing) x-coordinates.

Step 1. We first fOl1lpute MD(p) for every p E S. These MD(p)'s can all be easily
computed in 0(n2

) time as follows. ,Ve sort the points by their x coordinates, and
then for eacb p E .') we do the following. From the sorted list we obtain LXJM (p), in
O(n) time. Then we obtain the maximal elements of LXJM(p), also in O(n) time (this

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

• • • • • • v .. - .. __ ... __ ._-- _--.

• a2

•

1.

.. @
•• U V@ q'@

-_ _---- __ ._-- _-
• • • _--•.. _--.

• • w

• •

Figure:3: The points of bder'valj+' (p, a2) are shawn circled.

is possible since IXJM(p) is available sorted). These maximal elements of IXJM(p)
are, by definition, MD(p).

Step 2. We compute, for each pair p, q E 5, the position of Vrp) in the list
Y(MD(q)), which is the list obtained from MD(q) by replacing every point by its
y-coordinate. This is easy to do in 0(1l) time for a particular Y(MD(q)) and ail
p E 5, hy merging Y(AfD(q)) ",j,h the sorted lisL of tile y ~o0rdinates of the points
in S. Doing this once for each q E S takes a total of 0(1l2) time.

Step 3. For each p E S, we obtain the domination layers of p and the column
that corresponds to p in the P matrix. We do this in 0(1l) time for each p, as fol
lows. Clearly, we already have Layer',(p) (= {pl) and Layer'Ap) (= MD (p)). We
obtain Layerj+'(p) from Layer'j(p) in O(ILayer'j(p) 1 + ILayel'j+,(p)1) time, as fol
lows. Let Layer'j(p) = (a"a2, ... , ak), where X(a,) < X(a2) < ... < X(ak). We
shall walk along the Layer'j(p) list, creating the Layer'j+, (p) list as we go along, in
left ta right arder. Wh en we reach ai while scanning Layel'j(p), we compute the
portion of Layer'j+'(p) that is in MD(ai) but not in IXJM(ai+,); we cali this portion
Inter'valj+'(p, ai) (it forms a contiguous interval of MD(ai))' Figure 3 illustrates the
definition of Inte"valj+,(p,ai)' Note how, in that figure, point w is in Layer'j+'(p) n
MD(a2) but not in Intervalj+,(p, a2)' We shall compute Intervalj+,(p, a,), Intervalj+'(p, a,),
... , Inter'valj+'(p, ak), in that arder. While doing this, we maintain a variable called
cutoff whose significance is that, when we finish processing ai, cutoff contai~s the
rightmost point in U, <r<i Inter'valj+, (p, ar); intuitively, cutoff is the "dominant" point
among those in U'<f<;!nter'valj+l(p,ar) as far as the (yet to be compnted) lists
Inter'valj+, (p, ai+,), ... , Inter'valj+, (p, ak) are concerned. In Figure 3, after Inter'valj+'(p, a,)
is computed, cutoff is point t, and aftel' Intervalj+'(p, a2) is computed cutoff is poin1
q'.

Ta determine Intervalj+l(p, ad, we simply start at the beginning of MD(a,)
and walk forward along MD(a,) until we first reach a point q E MD(al) for which

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

Y(q) < Y(a,) (we do not count q as beillg part of our "walk" along MD(a,», The
(possibly empty) portion of MD(a,) so traced is obviously equal to lntervalj+l(p, a,),
If lntel'valj+l (p, ad is not empty tben we set cuioff equal to the predecessor of q in
MD(a,), otberwise it remains undefilled. For tbe example shown in Figure 3, q = u
and cutoff = t. We then proceed to process a,.

If cutoff is undefined (i.e., if Iniel'valj+l(p, ad turned out to be empty) then we
process a, exactly as explained above for a,. Otberwise we process it as follows. Recall
that we already know, from Step 2, the outcome of a hypothetical binary search for
Y(a3) in Y(A1D(a,»: Let q' be the predecessor of Y(a3) in Y(MD(a2», that is, the
lowest point of MD(a,) whose y-coordillate is larger than Y(a3). If no sueh point 'l'
exists 011 MD(a,) then surely lniervalj+l(p, a,) is empty and we move on to processing
a3 (leaving cutoff unchanged). 50 suppose that q' exists. If X(q') < X(cutoff)
then lniel'valj+l (p, a,) is empty and we move on to processing a3 (leaving cuioff
unchanged). If X(q') > X(cutoffJ then we start at q' and walk backward along
MD(a,) until we reach a point whose x-coordinate is less than X(cutoffJ; the portion
of MD(a,) so traced is Iniel'V(Ûj+l(P, a,). In Figure 3, the portion so traced is (in
that order) q', v, u (point .. is Bot traœ~ becanse X(..) < X(t». In that case we also
update cutoff by setting it equal to 'l' before we proceed to process a3'

We process a3, a4,"" ak in that order, exactly as explained above except that,
when processing ai+l, ai plays the raIe of al, ai+l plays the role of a2, and ai+' plays
the role of a3.

One", we ha','e obtained Layerj.,.,(p) from LayerJ(p), wemust compute P(w,p) for
"very w E L<1ye"J+1lp) (deariy, sueh a p(w,p) is in Layerj(p)). This is easily done
for all w E Layerj+1(p) in O(ILayerj(p)1 + ILayel'j+l(p)l) time, by merging the two
lists Laye"j+l(P) and Laye'·j(p).

This completes the description of the sequential algorithm. We now turn our
attention ta the parallel algorithm.

3 The Pm'allel Algorithm

This section gives the O((log n)2) time, 0(n2 / log n) pro cess or algorithm for the
weighted version of the problem.

3.1 Preliminaries

The parallel model used is the CREW PRAM, which is the synchronous shared
memory model where concurrent reads are allowed, but no two processors can simul
taneously attempt to write in the same memory location (even ",hen they a.re trying
to write the same thing). In what follows, we shall fOCilS on showing that the claimed
time complexity can be achieved with an O(n'logn) amonnt of Ulork (= Humber of
opera.tions). This will imply the 0(11'/ log n) processor bound, by Brent's theorem
[8J:

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

Theorem 1 (Brent) Any "ynchronou" paraUd algorithm taking time T that con"i"ts
of a total ofW operations can be simulated by P prOCf."sors in time O«W IP) + T).

Remark: There are actually two qualifications to the .above Brent 's theorem before
one can apply it to a PRAM: (i) at the beginning of the i-th parallel step, we must be
able to compute the amount of work W i done by that step, in time O(W;jP) and with
P processors, and (ii) we must know how to assign each processor to its task. Both
qualifications (i) and (ii) to the theorem will be easily satisfied in our algorithms,
therefore the main difficulty will be how to achieve W operations in time T.

Here as in [4], an important method we use illvolves multiplying special kinds of
matrices. Although the situation depicted in Figure l(b) implies that the structure
that gives rise to such matrices is not al ways available, the fact that we can deal with
the situation in Figure I(a) will be usefu!' (This will all be made precise later; for now
we are only giving an overview.) Ail matrix multiplications in the algorithm are in
the (max, +) closed semi-ring, i.e., (M' * M")(i, j) = maXk {M'(i, k) + M"(k,j)}. A
matrix M is said to be Monge [IJ iff for any two successive rows i, i + 1 and columns
j, j + 1, we have M(i,j) + M(i + I,j + 1) :0:: M(i,j + 1) + M(i + l,j). For two
point sets A and E in the plane, let matrix MAR contain the lengths of the longest
chains that start in A and end in E (by convention, these chains are allowed to go
through any points of 5' on their way from A to E). Now, consider two point sets
X and Y, each totally ordered in some way (so we can talk about the predecessor
and successor of a point in X or in Y), and such that the rows (resp., columns) of
the matrix M xy are as in the ordering for X (resp., Y). Mat,.ix Mxy is Monge iff
for a..lly two successive points p, pl in)(and two succetisive points Cf, ql in Y, w€ have
1\!Ixy (p,q) + Mxy(p',q') :0:: Mxy(p,q') + Mxy(p',q). The llext lemma characterizes
the Monge matrices of chain lengths used in the algorithm.

Lemma 1 Let V' (resp., V") be a 11erticalline that contains a set X (resp., Y) of
point" orde,·ed by increasing (resp., decrrasing) y-coordinates along V' (resp., V").
(Assume that V' is ta the left of V".) Then the mairix Mxy of chain lengths betwcen
X and Y is Monge

Proof. Obvious. D

The following well-known lemma [:3, IJ will be used.

Lemma ~ Assume that matrices Mxy and M yz are Monge, with IXI = cIIYI :0::
c21Z1 for .~omc positive constants CI and C2. Then M).")' * M yz can bc computcd in
O(log IYI) time and O(IXIIZI) 1L'ork in the CREW PRAM mode!.

Remark: Since * is a (max, +) matrix illultipIication, Mxy * Mn Ileed Ilot be Monge.
Lemmas 1 alld :2 imply the following.

Lemma 3 Let V (resp., V', V") be a verticalline that containB a Bct X (resp., Y, Z)
of points ordcrcd by increasi1/g y-coordinates along \1 (resp., V', V"). Assume that
X(V) < X(\I') < X(V"), and that IXI = cllYl:O:: c,lZI for some positive constants

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

c) and C2. Suppo,'e that, for cvery increasing chain C fTOm p E X to q E Z, there i...,
a p-fo-q chain C' that is at Zeust as long as C and goes through some w E Y. Then
given the matriefS Mxy and Myz, the matrix Mxz can be computcd in O(log IYI)
lime and O(IXIIZI) 11'ork in the CREW PRAM modeZ.

Proof. Let X' (resp., Y', Z') be the same as X (resp., Y, Z) but sorted by decreasing
y coordinates. By Lemma 1, Mxy, and My'z are both Monge. By Lemma 2, the
matrix Mxy, * My'z can be computed in o (log !YI) time and O(IXIIZI) work. Now,
sinee by hypothesis aIl the X-to-Z chains can be modified to go through Y without
any decrease in their lengths, it fo]]ows that the matrix lv/xv, * My'z is the desired
matrix Mxz. 0

3.2 The Aigorithm for Chain Lengths

The algorithm given in this subsection concerns itself with the computation of chain
lengths only, not of the P matrix that describes the n longest chain trees. lncluding
the computation of P here would have cluttered the exposition. The next subsection
will deal with the computation of P. In addition, it is not immediately c1ear that the
availabilityof P makes possible the reporting of a k-point chain in O(k) work and
constant time. This too is postponed until the next subsection.

Let S = {Ph"" Pn} where X(pd < '" < X(Pn). There is a weight associated
with ea{'.h Pi. Let ~~, Vi, ... , ~~ be verticallines such that X(Vo) < X(P1)' X(Pn) <
X(V,,), ana X(p;) < X(~;) < X(PHd for ail i E {l, ... , n -l}.

Let T be a complete n·leaf binary tree. For each leaf 1) of T, if v is the i-th leftl1l0st
leaf in T, then associate with 1) the region 1" of the plane that is between V;-1 and V;.
For each internal node 1) of T, associate with v the region Iv consisting of the union
of the regions of its children. That is, if v has children u and w, then Iv = lu U Iw.

Let 1) be any Dode of T. Suppose that the left (resp., right) boundary of Iv is V;
(resp., Vj), and let Sv = SnI v, that is, Sv is the subset of the input points that lie in
I". Observe that if 1) is at a height of h in T then j - i = 2" = ISvl (the height of 1)

is the height of its subtree in T, with leaves being at a height of zero). Let Lv (resp.,
Rv) be the set of points on V; (resp., II}) that are the horizontal projections of Sv on
V; (resp., Vj). The points of Lv and Rv are, of course, disjoint from the input set S,
and we assign ta each of them a weight of zero. Observe that

~ IL,·I = ~ IRvl = O(nlogn),
vET vET

because for each !evel of T a)Ji E S appears in exactly one S'" of that level, and henee
creates at most two extra points, one in Lv and one in R" (recall that a level of T is
tbe set of nodes in T that have saille distance to the root, so that the root is al level
zero, its two children at levell, etc).

There are two phases for the algorithm: Phase 1 is relatively straightforward,
while Phase 2 is the key that made our solution possible.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

3.2.1 Phase 1

This phase consists of computing, starting at the leaves and going upward in T, one
level at a time, the AhJi. matrices, which contain the lengths of ail the Lv-to-Ii"
longest chains (dJains that begin on Lv and end on Ii", of course possibly going
through points in Sv along the way). This information is trivially available if v is a
leaf. 50 suppose that we have already computed this information for levell + 1, and
we want to compute it for level R.

We claim that it suffices to show that the ML.R. matrix can be computed in
0(IS,,12) work and O(logn) time for each no de v at level f. This claim would imply
an 0((logn)2) time, 0(n 2

) work bound for Phase 1, as follows. That the time bound
follows from the daim is obvious (we would spend a logarithmic amount of time per
level, and there is a logarithmic number of levels). The work bound would follow
from the fact that there are 2f nodes v at level C, each having ISvl = n/2l, and hence
the total work at level f would be

5ummingover allieveis R gives 0(n 2
) total work. We next l'rave the daim by showing

that the Ilh"R. matrix can indeed be computed in 0(ISvI2) work and logarithmic time.
Let u (resp., w) be the left (resp., right) child of v in T. Let Y denote Ii" U Lw,

that is, Y consists of the horizontal projections of the points of S" on the verticalline
\;j that separates the region Iv from the region lw. 5ince MLJiv is already available
at u, we can easily obtain frolll it i\h.y. 5imilarly, we obtain j\1YR. From j\1LvRw'

Now, simply observe that the conditions for Lemma :3 are satisfied, \Vith L" playing
the role of X and Rv the role of Z. That is, we can obtain ML,R. from Ah.y and
M yR, in 0(18,,12) work and logarithmic time. This completes the l'roof.
Rcmark: The astnte reader may have observed that the above procedure can be
modified sa as ta compute the L"-to-8,, and S"-to-R,, chainlengths information. This
\Vould involve only a logarithmic factor of additional work, and would exploit the
kind of monotonicity depicted in Figure 1 (a) by using the lower-dimensional parallel
matrix searching algorithm of [5]. However, this would stillleave us far from having
solved our problem: We woulcl still neecl something like Phase 2 helow, since we
cannat afforcl to multiply "non-square" Monge matrices - as of now, it is not known
how to optimally (max, +)-multiply two non-square Monge matrices (for example,
the best parallel algorithm for multiplyillg a 1 x k Monge matrix \Vith a k x k one in
logarithmic time takes O(k log k) work [5]). Observe how Phase 2 belo\V will satisfy
the size requirements of Lemma:3, as expressed in the requirement that IXI = cI1Y1
::; c21Z1 for some positive constants CI and C2.

3.2.2 Phase 2

\Vhereas Phase 1 involved a bottom-up computation in T, Phase 2 will involve a
top-clown comp'jtation, starting at the root and proceeding one level at a time until
we reach the leaves. The purpose of the computation at a typical level e is more

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

10

li' W

AA
u a ~ w li a w

(a) (b)

u' w'

/\/\
u ~ W

u' w'

/\/\
u w

(c) (d)

Figure 4: lliustratillg the four cases of Phase 2,

ambitious than in Phase 1: Vve now seek, for every pair of nodes u, w at level R such
that u is ta the left of w, the computation of the MRJ.-w chain lengths matrix (u is ta
the left of w iff it is in the subtree of the left child of the lowest common ancestor of
u and w). The key idea is ta get help from the parents of u and w, which we call u'
and (respectively) w'. If u' '" w' then the desired information is trivially availahle, sa
suppose that u' # w'. We distinguish four ca,es, which are illustrated in Figure 4.

Case 1: u is the left child of u', and w is the right child of w'. Let a be the right
child of u', (3 be the left child of w' (see Figure 4(a)). Since Phase 1 computed
l'vhoRa, we can obtain from it j\1RuRa' then M RuR.,. Similarly, we obtaill MLw'/"w

from ,~htft. which was c.omputed in Phase l. Now, MRu'Lw' is already available
because Phase 2 1s already done with processing the pair u', w' (recall that
Phase 2 processes the levels from the root down). We use Lemma 3 to obtain
the matrix MRJ.-w' from MRuR., and MR.,Lw" with Ru playing the raIe of X, Ru'
playing the raIe of Y, and Lw' playing the raIe of Z. Finally, we use Lemma 3
again, this time ta obtain the desired matrix MRJ.-w from MRJ.-w' and MLw,Lw'

Case 2: u is the left child of u', and w is the left child of w'. Let a be the right child
of u' (see Figure 4(b)). From the MLoRo matrix which was computed in Phase
1, we obtain the M RuRu' matrix. Observe that l'vfRu,Lw' was already obtained
earlier in Phase 2: get from il the 111Ru'Lw matrix. We use Lemma 3 ta obtain
MRJ.-w from the matrices MRuR

u
' and MR.,Lw,

Case 3: u is the right child of u', and w is tbe right child of w'. Let (3 be the left
child of w' (see Figure 4(c)). From the MR ,1., , matrix which was computed

• w

earlier in Phase 2, obtain the MRJ.-, matrix. From the A1Ltft, matrix which was
computed in Phase l, we obtain the Ah,?w matrix. We use Lemma 3 ta obtain
MRJ.-w from MRJ.-, and ML,?w'

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

11

Case 4: u is the right chi Id of u', and w is the left child of w' (see Figure 4(d)).
Obtain I\1R,L., from MRu,L." which was compnted earlier in Phase 2.

Tbe time taken by Pbase 2 is dearly O((log n)2), sinee we take a logarithmic
amoullt of time at leach level of T. The work done for a particular pair u, w at level
C is 0((n/21)2), and sinee tbere are (2')2 such pairs at level C the total work done at
that level is 0(n2). Summing over all levels gives 0(n2 log n) work for Phase 2. Henee
it is Phase 2 that is tbe bottleneck in the work complexity. The space taken by Phase
2 is still 0(,,2) rather than 0(n2 10gn), however, sinee we do not need ta store the
matrices for all the levels as Pbase 2 proeeeds: \\Then we are done with level C, we can
discard the matriees for level R - 1 sinee level R + 1 will only need information from
level R (recall tbat in Pbase 2 tbe nodes of T request help only from their parents,
not from their grandparents or from bigber up in the tree T).

3.3 Computing the Actual Chains

In this subsection, we discuss bow ta obtain tbe matrix P which contains the n trees
of longest chains, and bow ta pre-process tbe longest cbain trees, sa tbat each tree
can support a longest chain query between any point in S and the point of S at the
root of that tree.

First we sketch bow tbe algorithm in the previous subsection can be modified
50 as ta compute tbe P matrix as weil. Für earh AIR..Lu matrix computed by t.,l,at
algorithm, we compute a companion PR,L., matrix whose significanee is that, for
P E Ru and q E Lw, PR,L,,(p, q) is the first point of S that lies on a longest p-to-q
chain (it is undefined if no snch point of S exists). Note tbat only points of Scan
be "parents". It is quite easy ta modify the computation of an Mxz sa that it also
produces Pxz : If Mxz is obtained by using Lemma 3, tben Pxz can be obtained from
Pxy or PyZ as a "byproduct" of tbis computation. For example, if q dominates P
and if Mxz(p, fi) = Mxy(p, i) + Myz(t, q), then we distinguisb two cases for obtaining
Pxz(p, q): If Pxy(p, t) is undefined then Pxz(p, q) = Pyz(t, q) (whicb could also be
undefined), otherwise Pxz(p,q) = Pxy(p,t). When the modified algorithm finish es
computing PR,Lw for all leaves u, w (at tbe end of Pbase 2), it is easy ta obtain the
matrix P: If Su = {Pi}, Ru = {pi}, Sw = {Pj}, Lw = {Pj}, then we set P(Pi,pj) equal
ta PR,Lw(p;,pj) if the latter is defined; otberwise, we set P(Pi,pj) equal ta Pj if Pj
dominates Pi, and set P(Pi,pj) ta be 11ndefined if pj does not dominate Pi. From now
on, we assume tbat the matrix P is available. Note tbat tbis matrix is a description
of n longest chain trees, eacb rooted at a point of S.

W'e pre-process eacb longest chain tree sa tbat the following type of queries can
be q11ickly answered: Given anode p in the tree and a positive integer i, find tbe i-tb
node on the path from p ta the raot of the tree. S11ch queries are called level-ancestor
querie, by Berkman and Vishkin [6J, who gave efficient parallel algorithms for pre
proee5sillg rooted trees 50 that th" level-ancestor queries can be answered quickly. The
work of Berkmall and Vishkin [6, 7J shows (implicitly) that a level-aneestor query can
be handled sequentially in constant time, after a logarithmic time and linear work

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

12

pre-processillg in the CREW PRAM model. The pre-processing of the longest chain
trees is done by simply applying the result of Berkman and Vishkin to each of the n
trees, in totally O(logn) time and 0(n2

) work.
For the sake of proeessor assignment in reporting chains, we also need to compute

the number of points of 8 on the actuallongest chain which is to be reported. Suppose
a longest chain between points p and q in 8 is to be reported. Tbe number of points
of 8 on such a p-to-q chain can be obtained from the depth of p in the longest chain
tree rooted at q; it is known that tbe depths can be computed within the required
comp]exity bounds by using the Euler Tour technique [20J.

To report an actuallongest chain between points p and q in 8, we do the following
(without Joss of generality, we assume that q dominates pl. First, we go to the longest
chain tree rooted at (say) g, and find the number of nodes on the path in that tree from
llode p to the root q. Let that number be k. The p-to-q path in the tree corresponds
to a longest chain from p to q, which we must report. We do so by performing, in
parallel, k - 1 level-ancestor queries, USillg node p and integers 1, 2, ... , k - 1. Each
query is handled by one proeessor in O(1) time. These queries find each point on the
p-to-q chain. Finally, we report the k points of that chain in parallel, by assigning to
k processors the task of reporting those k points (one point per processor).

4 Further Remarks

The fùllowing open problems relùain:

• Cive an 0(,,2) time sequential algorithm for the weighted case .

• Cive an 0(n2) time sequential algorithm for the three dimensional version of
the problem (unweighted).

@ For the three dimensiollal version of the problem, give an NC para.llel algorithm
that uses a qnadratic (to within a logarithmic factor) llumber of proeessors.

Finally, using the methods we developed here in combination with other ideas,
we can improve the proressor complexity of the layers of maxima problem: VVe can
achieve the same O((log n)2) time complexity as in [IJ with 0(n2 /(logn)') processors,
instead of the 0(n2/logn) proeessors used in [IJ.

References

[1] A. Aggarwal and J. Park. "Notes on Searching in Multidimensional Monotone Ar
rays (Preliminary VeTsion),~' Froc. 29th Annual IEEE Symposium on Foundations of
Computer Science, 1988, pp. 497-512.

[2] A. Apostolico, M. J. Atallah, and S. E. Hambrusch. "New Clique and Independent Set
Algorithms for Circle Graphs," Di8crete Appl. Math., Vol. 36, 1992, pp. 1-24.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

