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FOREWORD 

This volume constitutes the proceedings of the Ninth Conference on Funda
mentals of Computation Theory (FCT 93) held in Szeged, August 23-27, 1993. 
Previous conferences of the FCT series took place in Poznan-Kornik (1977), 
Wendisch-Rietz (1979), Szeged (1981), Borgholm (1983), Cottbus (1985), Kazan 
(1987), Szeged (1989) and Berlin (1991). Like its predecessors, the conference 
was devoted to a broad range of topics of theoretical computer science, induding 
the following categories: 

- Semantics and logical concepts in the theory of computing and formal spec
ification 
Automata and formallanguages 

- Computational geometry, algorithmic aspects of algebra and algebraic ge
ometry, cryptography 

- Complexity (sequential, parallél, distributed computing, structure, lower 
bounds, complexity of analytical problems, general concepts) 
Algorithms (efficient, probabilistic, parallel, sequential, distributed) 
Counting and combinatorics in connection with mathematical computer sci
ence 

The proceedings contain the texts of 8 invited lectures and 32 short com
munications selected by the international pro gram committee from a large num
ber of submitted papers. The selection meeting took place on March 13-14 in 
Szeged. The program committee consisted of L. Babai, S.1. Bloom, L. Budach, 
R.G. Bukharajev, 1. Czaja, Z. Ésik, F. Gécseg, J. Gruska, J. Karhumiiki, M. 
Karpinski, B. Mahr, J. Sakarovitch, 1. Simon, 1. Wegener. 

My sincere thanks go to all members of this committee as weil as to all 
the referees who assisted in the selection process: F.M. Ablaev, M. Bartha, D. 
Beauquier, J. Berstel, N. Blum, L. Boasson, H. Carstensen, Ch. Choffrut, B. 
Courcelle, E. Csuhaj-Varju, M. Crochemore, P. Dembinski, V. Diekert, M. Diet
zfelbinger, S. Dulucq, P. Fischer, L. Fortnow, U. Freitag, K. Friedl, Ch. Frougny, 
Z. Fülop, T. Gaizer, 1. Gasieniec, R. "Glas, M. Grabowski, E. Grandjean, S. 
Haddad, T. Harju, D. Hemschlelt, Th. Hofmeister, W. Hohberg, J. Honkala, Gy. 
Horvath, K.-U. Hoffgen, M. Hühne, M. Ito, M. Jantzen, Tao Jiang, S. Jukna, B. 
Kacewicz, J. Kari, 1. Kari, B. Kirsig, Y. Kohayakawa, W. Kozlowski, M. Krause, 
H.-J. Kreowski, M. Kudlek, V.S. Kugurakov, S.E. Kuznetsov, A.P. do Lago, 
K.-J. Lange, R.H. Latipov, A. Lentin, B.L. Lorho, W. Lukaszewicz, E.G. Manes, 
R. Mantaci, A. Mateescu, A. Mazurkiewicz, R.G. Mubarakzianov, I.R. Nasirov, 
V. Niemi, D. Niwinski, N.N. Nurmeev, V. Oleshchuk, M. Palis, P. Peladeau, 
M. Pelletier, J.-G. Penaud, M. Penttonen, H. Petersen, S. Polt, P. Pudlâk, M. 
Raczunas, G. Rahonis, F.I. Salimov, A. Salomaa, L.V. Satyanarayana, D. Sieling, 
J. Simon, V.D. Soloviev, E.L. Stolov, K. Sutner, A. Szalas, J.L. Szwarcfiter, É. 
Tardos, W. Thomas, D.R. Troeger, Gy. Turan, F. Vatan, J. Viragh, W. Vogler, 
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VI 

S. Waack, E.G. Wagner, S. Walig6rski, I. Walukievicz, P. Weil, A. Weber, K. 
Werther, D. Wikarski,1. Winkowski, C. Zdobnovand S.V. Zdobnov. 

The conference was organized by the Department of Computer Science of 
the J6zsef Attila University. 1 wish to thank my colleagues T. Gaizer and J. 
Viragh who helped me in ail organization matters. They formed a very smaU 
but effective team. 

The conference was supported by aCOST project of the Commission of the 
European Communities, the J6zsèf Attila University, the Szeged branch of the 
Hungarian Academy of Science, a grant from the Hungarian National Foundation 
for Scientific Research and the ZENON Computer Engineering and Trading Ltd. 
1 would like to thank them ail. 

Finally, l would like to express my deepest gratitude to ail authors and to 
Alfred Hofmann of Springer-Verlag for their excellent cooperation in .the publi
cation of this volume. 

Szeged, June 1993 
ZQltan Ésik 
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REWRITING, MOBIUS FUNCTIONS AND 
SEMI-COMMUTATIONS* 

Volker Diekert 

Universitat Stuttgart, Institut für Informatik, 
Breitwiesenstr. 20-22, D 70565 Stuttgart 

1 Introduction 

The purpose of this paper is to review sorne results in the theory of rewriting 
on traces which has been obtained over the past few years and to discuss sorne 
open problems. 
The theory of rewriting over free partially commutative monoids (trace rewrit
ing) combines combinatorial aspects from string rewriting (modulo a congru
ence) and graph rewriting. It leads to feasible algorithms, but sorne interesting 
complexity questions are still open. One of the challenging open problems is 
to improve the known quadratic time bound for the non-uniform complexity of 
length-reducing systems. For certain one-mie systems we present here a new lin
ear time algorithm for computing irreducible descendants, but we are still not 
able to han die the general case of multiple rules in linear time. 
Semi commutations can be treated from the viewpoint of trace rewriting and 
there are strong connections ta the combinatorics of Mobius-functions. This is 
reviewed in Sections 5 and 6. 
We assume that the reader is familiar with the concept of Mazurkiewcz traces 
[22]. For the background material we refer to [1, 12, 23] and to the forthcoming 
book on traces [16]. For basic notions needed here on rewriting systems see 
[3, 19]. 

2 Notations 

By E we denote a fini te alphabet, D ç E x E is a reflexive and symmetric de
pendence relation and SU ç E x E is a reflexive semi-dependence relation which 
may be asymmetric. The complement 1 =E x E \ D is called the independence 
rela';on and the quotient monoid lM = IM(E,D) = E*/{ab == ba 1 (a,b) El} 
is Mazurkiewcz' trace "10noid" An element t E lM is a trace. We denote by Itl 
the length of a trace t, by Itla its a-length for sorne a E E, and by alph(t) = 
{a E E 1 Itla ;;::: 1} its alphabet. It is convenient to extend the independence 
relation to a relation over lM. For u, v E IM we define (u, v) El, if we have 
alph( u) x alph( v) ç 1. A trace is viewed as a dependence graph: 

* This research has been partially supported by the ESPRIT Basic Research Action 
No. 6137 ASMICS II 
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2 

Let al ... an E E* be a ",oTd, ai E E for l ::; i ~ n. Then the corresponding 
trace [al' .. an] E LM is given by the node-Iabelled acyclic graph [V, E, Al where 
the set of vertices ls any n-pointset, say V =: {l, ... ,n} with the labelling 
A( i) = ai, and arcs are from i to j if both i < j and (ai, ai) E D. It is convenient 
ta distinguish between the notions of subtrace and factor. A 8ubtrace s of t is 
a subgraph of the dependence graphof t snch all direded paths starting and 
ending in s are entirely contained in 8. Every subtrace s of t iB a factor, Le., 
we can write t = usv, but this factorization Îs not unique, in general. The other 
way, Ht= usv then the traces u, s and v canbe identified as subtraces of t. Of 
course, different subtraces may be equal viewed as factors or elements of Illif. To 
be precise, if we speak of a subtrace s ç t, we rnean that we have identified the 
vertices belonging to s in the graph t. 
À dependence alphabet (E, D) (independence alphabet (E, l) resp.) will be 
viewed als aIl undirected graph where edges are between different dependent 
(independent resp.) letters. A trace is called connected, if the depen:dence graph 
t is connected or, what is the same, if alph(t) induces a connectedsubgraph in 
(E, D). 

3 Trace rewriting systems 

In this section we give sorne overview on known results and open questions for 
trace rewriting systems. 

Definition: A trace rewriting system is a (nnite) set ofrules S ç Ilv!(E, D) x 
1M(E,D). 

À trace rewriting system S defines a. reduciion relation ==? by x ==? y if x = 
s s 

ulv, y = urv for sorne u, Il E lM and (1, r) E S. The n-fold iteration of ==? 
S 

Îs denoted by ~ for n > O. By 4? (~ 1'esp., ~ resp.) we denote the s - s 'S s 
transitive (reflexive, transitive resp., refiexive, symrnetric, and transitive resp.) 
dosure of ==? The relation ~ is a congruence and its ouotient monoid is s s -- ~ 

denoted by IM/S. 
A trace rewriting system S is called: 

- length-reducing, if !ll > Il'l for all (1; r) E S 
noetherian,if there is no infinite derivation chain Xo ==? Xl ==? X2 ••• 

s s 
- confluent, if ~C~ 0 ~ s - s s 
- locally confiuent, jf {== 0 ==?C~ 0 ~ 

S S - S S 
. ·<1 <1 

- strongly confiuent, If {== 0 ==?C"",* 0 {"= . s s-s s 
- the set of irreducible traces js Irr( S) = {t E lM 1 for no s : t==t s}. 

It ls well-known that strong confluence implies confluence and confluence impiies 
local confluence. No other irnpiication holds, in generaL If in addition the system 
S is noetherian then confluence be.comes equivalent to local confluence. 
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3 

A classical result says that it is undecidable whether a finite semi-Thue system 
is noetherian. More precisely, we can state: 

Proposition 3.1 lt is decidable whether a finite trace rewriting system is noethe
Man if and only if lM is commutative. 

Proof: If lM is not commutative, we may use an encoding of semi-Thue systems. 
If IM is commutative then the noetherian property can be expressed by sorne 
Presburger formula. 0 

The minimal number of rules which we need to have undecidability is not known. 
In fact, the following problem is open: 

Problem 1 Given a one-rule system S = {(I,r)},I,r E lM. ls it decidable 
whether Sis noetherian? 

Remark 3.2 For one-rule semi-Thue systems this is an outstanding open prob
lem and for one-rule term rewriting systems the property of being noetherian 
is undecidable [9]. Of course, a positive solution to Problem 1 would imply the 
semi-Thue case. However, due to the commutation rules it may happen that there 
is a negative answer in the trace case and a positive answer in the word case. 
This is exactly ",hat happens for the decidability of the confluence of noetherian 
systems. 
Indeed, for finite noetherian semi-Thue systems (local) confluence is decidable, 
since a finite system has finitely many so-called critical pairs, only. For trace 
rewriting systems the notion of a critical pair is not completely clear. Whatever 
definition we use, there must be finite noetherian systems without any finite com
putable set of critical pairs. This is due to the following result of P. Narendran 
and F. Otto: 

Proposition 3.3 ([25]) There exists an alphabet (E, D) with ezactly one pair 
of independent letters such that the confluence of finite length-reducing trace 
rewriting systems is recursively undecidable. 

Problem 2 Let (E, D) be a dependence alphabet such that confluence of finite 
noetherian systems is decidable and let (E', D') be an induced subgraph of 
(E,D). Is the confluence offinite noetherian systems decidable for(E', D')? 

A positive solution of Problem 2 is not obvious, sinee the confluence of a system 
depends on the whole alphabet and not only on the letters occurring in the 
system, c.f. the next example. 

Example Let 
a - b 

(E,D) = (a - b - c), (E',D') = 1 

d 
1 

-c 

and S = {(ab,ba),(bc,cb)}. We may view S as a system over lM = lM(E,D) 
or over lM' = lM(E', D'). The system S is noetherian in both cases. This 
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4 

cau be seen by mapping it to {a,b}' X {b,c}*. The system S ç L?vf x lM is 
confluent, sinee every trace reduces ta a unique normal ferm in c*boa·. Viewing 
S ç lM' X lM' over the monoid lM', the confluence disappears: 

Irr(S) :3 badc <= abdc => adcb E Irr(S) 
S . S 

The minimal number of letters required to achieve the undecidability is not 
known. In partîcular, we do not know the auswer for three letters. 

Problem 3 Let (E, D) = (a - b ~ c). ls it decidable whether a finite noetherian 
system is confiuent? 

A more general problem is to find good (decidable) sufficient conditions for 
noetherian systems such that confluence becomes decidable. Further details can 
be found. in [12, Chapt.3j. 

4 Algorithms 

A nnite trace rewriting system ls called convergent or complete if it is noetherian 
and confluent. The interest in these systems arise h"'Om the faet that complete 
systems provide us with an effective procedure for deciding the ward problem 
of the quotient monoid lM/S. The basic algorithm i5 to compute irreducible 
descendfu"lts. Assume for simplicity that the system S 18 length-reducing and no 
part of the input. If lM is free or commutative, the following simple reduction 
algorithm computes of input t E lM in Iinear time O(!i!) an irreducible element 
t ~ i E lrr(S): s 

fUlIlction reduce(t) 
begin 
v:= 1; 
while t '# l do 

let t = at' for sorne a E E, i' E lMi 
v :==vait:= t'i· 
if v = v'l for sorne (l,r) E S then 
v:= V'it:= rt 
endif 

endwhile 
return v 
end 

An efficient implementation of the algorithm above for traces could be based 
upon ideas of Hashiguchi and Yamada. In [18] the algorithm of Knuth, Morris, 
and Pratt is transformed for sol'ling pattern matching probiems on traces. This 
can be used to decide efficiently whether v is reducible. 
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5 

The main problem however with this algorithm is that if IM is neither free nor 
commutative, then we do not have reduce(t) E Irr(S), in general. In [13, 11] we 
gave sorne more general decidable and sufficient conditions such that irreducible 
descendants can be computed following the algorithmic scheme above. However 
up to now no algorithm is known which satisfies the following two conditions for 
aIl finite length-reducing trace rewriting systems: 

- it computes irreducible descendants 
- it works in linear time on input of a trace t. 

Problem 4 Let S be a finite length-reducing trace rewriting system. Does there 
exist sorne linear time algorithm for computing irreducible descendants? 

4.1 A new linear time algorithm for sorne one-rule systems 

In sorne restricted cases we know that Proqlem 4 has a positive answer. Let 
(E, D) be covered by a fixed set C of (maximal) cliques: 

(E,D) = U (A,A x A) 
AeC 

and T."A : IM(E,D) ---> A* be the canonical projection. Then we can represent 
a trace t efficiently as a tuple of words ('1I"A(t»AEC. Using this data structure, 
very recently the following result has been shown [2]. 

Theorem 4.1 Let S = {(l, r)} be a length-reducing one-mIe system such that 
1 is connected, '1I"A(I) '" 1 for ail A E C, and alph(r) ç alph(l). Then there is 
some algorithm which computes on input t an irreducible descendant i E Irr( S) 
in O(lt!) steps. 

Proof: The key observation to Theorem 4.1 is the following lemma: 

LelTIlTIa 4.2 Let 1 E lM be connected and SI, S2 ç t be subtraces of a trace t such 
that SI = S2 = 1 E lM. Write t = UiSiVi,i = 1,2 and assume that '1I"a,b(UISI) is a 
properprefix of'1l"a,b(u2s2)forJOme (a,b) E D wherea E alph(I). Then'1l"a,b(uISI) 
is a proper prefix of '1I"a,b( U2S2) for ail (a, b) E D where ({a, b} n alph(I» '" 0. 

Now, let {SI, ... , Su} be the set of aIl subtraces of t which are equal (as trace) 
to 1. Then the lemma above allows to define a linear ordering on this set which 
is based on the prefix relation. Thus, we may assume SI < ... < Sn. Working 
with the projection to cliques one can show that this chain in comput able in 
O(lt!) steps. The invariant is that we have n = 0 if and only if t is irreducible. 
For the reduction algorithm we may take any si,l ::; i ::; n, t = USiV = ulv 
and then replace t by t' = urv. The trace t ' is comput able in constant time 
(since S is not part of the input). Next we have to compute the new chain of 
subtraces equal to 1. The crucial point is that there is a constant k such that 
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6 

SI < ... < Si-k is the beginning part and Si+.k < ... < Su is the final part of the 
new chain. Moreover, there are at rnost k new subtraces between Si-I: and Si+.k. 

Ail these new Eubtraces arelocated with overlap to the position of the subtrace 
r in t = url.'. The hypothesis (1I'AU)) :f: 1 for al! A E C and alph(r) ç alph(l) 
is used to prove that the new subtraces can be computed in constant time. It 
follows that the new chain can be computed in constant time, tao. 
The method of computing irreducible normal f<;lrms given in the proof above 
applies in other Cases. For example, a weaker condition than alph(r) ç alph(l) 
'is enough, which then includes thefree case, see [2J. However,we were not able 
ta solve Problem 4 for multiple-rule systems, in general. So,. for various special 
cases we found Iinear time algorithms and, interesting enough, in all these cases 
we were able to decide confluence, too. Vole bave no idea, whetber there 15 any 
intrinsic connection. 

Problem 5 Let S be a finite !ength-reducingtrace rewriting system such that 
there is sorne linear time algorithmfor computing irreducible descendants. Does 
thisimply that the confluence of S is decidable? 

4.2 Confluence of one-rule systems 

Most of the following results are from [28, 32]. We need the notion of overlap. Let 
x, t he traces, then t is called a (proper) overlap of x, if we have x = pt = tq roI' 
some (non-empty) traces p, q. Recall the following well-known property of words 
(which is easily proved by induction on the lengtb of t): For words p, t, q E E* 
with p:f: l i= q and pt = tq it holds alph(t) ç alph(p) = alph(q). 
Using projection ta cliques this fact immediately extents to connected traces: 

Lemma 4.3 ([28]) Let p, t, q E IM oe tmces such that p '" 1, q :f: l,pt = tq and 
pt is connected. Then wc have alph(t)Ç alph(p) = alph(q). 

Proposition 4.4 ([28]) Leix be a non-empty conneded trace. Then there exist 
IL ma:cimal proper overlap t of x. Every other proper overÙ!.p of x is an ove1'lap 
oft. 

Proof: Let r, s be overlaps oî x. View first ',s as prefixes of x and define the 
prefix tl by the union of these subtraces r and s in the dependence graph. Let 
(a,b) E D and ?Ta,b : IM(E,D) --> {a,b}' the canonical projection. Then we 
have ?Ta,b(tl) = 11'0,.(1') if 11I'a,b(r)j ?: 11I'a,b(S)i and ?T"b(t) = ?Ta,.(s) otherwise. 
The latter condition c1early appHes to the suffix-construction,too. Thus, let t2 

be the suffix of x defined by the graph theoretical union of the suffixes r and s. 
Then we obtain 

?Ta,b(tl ) = 7ra,b(tZ) for all (a,b) E D 

Rence, we have il = t2 and this is an overlap of x. Furthermore, the equations 
above and Lemma 4.3 yield that it is a proper overlap. 0 
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The proposition above does lIlot extend to the unconnected case. If (a, b) Elis 
a pair of independent letters, then the trace ab = ba does not have any maximal 
proper overlap. 
In the following we use the Parikh-mapping . 

.p : !M(E, D) --+ JNE, t 1-+ (no)oEE 

where na = Itla for al! a E E is the number of a occurring in t 

Lemma 4.5 ([32)) Let S = {(l, rH be a confluent one-mIe trace rewriting 
system such that 1 is connected, and let S be a proper overlap of 1 such that 
.p(s) ::; .p(r). Then s is an overlap of the right-hand side r. 

Proof: Let 1 = ps = sq. The pair (pr; rq) must be joinable by the system S. 
Let (a,b) E D, then the pair (?ra,b(pr),?ro,b(rq» must be joinable by the semi
Thue system (?ro,b(I),?ra,b(r». Due to this fact and the Parikh condition, one 
is reduced to consider the case lM = {a, b}', s = SI asz, r = SI brz, and a oF b. 
The result now follows by an argument on lexicographical orderings. It shows 
that the pair (pr, rq) is not joinable in this case. This yields contradiction to the 
confluence of S. Clearly, any derivation step by S ç {a, b}' x {a, b}' increases 
the lexicographical order <'ex. Since lE' <'ex pr, the mIe (I,r) can never be 
applied totally on the left of any descendant oÎ pro Therefore SI a is a prefix of 
all t l where pr ~ tl. On the other hand, slb is already a prefix of rq. Using 

(I,r) 

reductions rq ~ t2, this prefix never becomes lexicographically smaller. Renee, 
(I,r) 

the pair (pr, rq) is not joinable. 
o 

A very natural condition for trace rewriting is that every letter, which is inde
pendent of the left-hand side, has ta commute with the right hand side. Indeed, 
it is exactly this condition which says that· the rewriting is defined on the de
pendence graph. Ta be more clear, let 1 be a subtrace of a trace t. Then there is 
sorne factorization x = plq, which however is not unique. For example, if p = p'u 
and (u, /) E l, then the same subtraee 1 ç t yields the factorization x = p'luq, 
too. Applying the mie (l, r) depends therefore on the explicit factorization and 
not only on the subtrace. We may have prq {:= plq ==} p'ruq. The condition 

(I,r) (I,r) 

above implies prq = p'ruq and the result is unique. 
Formally, we write I(l) = {a E E 1 (a,l) E I} and Com(r) = {a E E 1 ar = ra}. 
Of course, the condition 1(1) ç Com(r) is satisfied for words whenever 1 oF 1. It 
is also verified for complete one-mIe traee rewriting systems: 

Lemma 4.6 Let S = {(I,r)} be a confluent one-rule trace rewriting system such 
that 1 is not a factor of r. Then it holds 1(1) ç Com(r). 

Proof: Let a E 1(1). Then al = la and (ar, ra) must be joinable. Since 1 is not a 
factor of r and a ~ alph( 1), both traces are irreducible and henee they are equal. 
o 
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In general, it i5 a difficult task te determine an appropriate set of traces which 
hasto be tested for checking local conl'l,uence. Due to the undecidability result 
for confluence of noetherian systems, we cannot expect ot find a finite set. In 
[12, Thm.5;3.11] a combinatorial description of an infinite set of critical pairs is 
given. In the special case of one-mIe systems, this theorern yields the following 
lemma: 

Lemma 4.7 Let S = {(l, rH be a Q,ne-rule trace rewriting system such that the 
left-hand aide 1 is connected and l(l) S;:Com(r). Then the system S is local/y 
confluent if and only if for aU p, s, q, yE IM such that 1 ==: ps = sq, (y, s) E l, 
and s is a proper non-empty overlap of 1, the pair (pyr, ryq) is joinable by S. 

We are now prepared, to state the main result on the confluence of one-rule 
systems, 

Theorem 4.8 ([32]) Let S = {(l, r)} be a one rule trace rewriting system such 
that 1 is connected and 1(1) ç Com(r). Then thefol1owing statements are equiv
aIent: 

lj S je confluent, 
ii) S ie strongly confluent, 

iii) Either the maximal proper overlap of 1 is an overlap of r or there exlS. 
p of 1,s,t E ru ;md ,some k -2:2 such that 1 = pks,r = st,(l,t) E I 
and fvery over/ap of 1 i8 a proper overlap of s or of the form pi s for Mme 
G ~ i ~ k. 

Proo!: The implication iii) ==} ii) is a nice exercise using Lemma 4,7. ii) ==} i) 
is trivial. i) ==} iii) this rs technically the most difficult part. If involves results 
of C. Duboc, 117], on the existence of minimal conjugators and in an essential 
way Lemma 4.5. For details see [32]. 0 

If the left-hand side is empty we have: 

Proposition 4.9 ([32]) Let 5 = {(l, r)} oe a one-ruZe trace rewriting system 
where the left-hand side is empty and r of 1. Then the following assertions are 
equivalent: 

i) the system 5 is strongly confluent, 
ii) for ail pairs of independent letters (a, b) E l, the letters a, b are in different 

connected components in alph( arb). 

The following example is due to F. Otto. It shows that confluence does not imply 
strong confluence for one-rule systems, in general. 

Example [32] Let (17, D) == (a- c- b). Then the system (1, bcab) is not strong!y 
confluent since the trace abcabb is connected. The system can be shown to be 
confiuent. 

Conjecture The notion of confluence and strong confluence coincides for one
mIe systems if and only if lM is a direct product of free monoids, i.e., if and 
only if D i5 transi ti ve. 
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Problem 6 Consider the class of one-rule trace rewriting systems. 

- Is confluence decidable? 
- Is it decidable, if we have 1(1) ç Com(r)? 
- Is it decidable, if the left-hand sides is connected, but a factor of the right-

hand side? 
- Is it decidable, if the left-hand side is disconnected? 
- ls it decidable, if the left-hand side is empty (and (17, D) = (a - c - b»? 

Problem 7 Let S = {(l, r)} be a confluent one-rule trace rewriting system such 
that we have l(l) ç Com(r). ls the system S strongly confluent? 

5 Rewriting systems and Mübius functions 

Let M be any monoid such that each t E M admits at most finitely many 
decompositions t = Ul"'Un where Ui E M \ {1}. The ring Z((M)) of Jormal 
power series over M is the set of mappings from M to the integers Z, where the 
addition and multiplication for J, g : 17 --> Z and t E M are defined as follows: 

(J + g)(t) = J(t) + g(t) 

(Jg)(t) = L l(t1 )g(t2) 
t1 t2=t 

Power series are also written as formal surns 

1 = L I(t)t 
lEM 

in accordance with the natural embedding M ~ Z( (M)) which identifies the 
element t E M withthe characteristic functionX{/} : M --> Z. 
The support of a power series 1 E Z((M)) is the set supp(J) = {t E MI I(t) # 
O}. A power series with finite support is called a polynomial. 
The Mobius function of the monoid M can be defined as the formal inverse in 
Z«M)) of constant function with value 1, see [4, Lem. 2.2] 

The well-known result of P. Cartier-Do Foata [4, Thm. 1.2] says that the poly
nomial 

J.lM = I:(-I)IFI[F] 
FE:F 

is the Mobius function of the monoid lM = IM(E, D). Here F is the set of all 
steps and a step is a finite subset F ç 17 such that (a, b) E 1 for al! a, b E F, 
a # b. A step F yields a well-defined trace [F] by taking the product over its 
elements: [FJ = TIaEF a. Since the multiplicative monoid of the natural numbers 
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(without zero) is free commutative where the prime numbers are the generators, 
the result of Cartier and Foata generalizes the classical inversion formula for the 
Môbius function of natural numbers: 

f(n) = I>Cd) ~ yen) = I>(d)f(~) 
<lIn dln 

Let S C E~ x E* be a noetherian aLld confluent semi-Thue system and let 
L = {l E E* 1 (l, r) E S} be the set of left-hand sides. An overlapping-chain 
isa sequence (Wb"" W n ), n ?: 0 of \'lords such that Wl E .E, Wi EIrr(S) for 
1 ::;i ::; n and W;Wi+l E E*L \ E* LE+ for 1 ::; i < n. This means Wl is a letter, 
no factor of Wi is in L, a (unique) suffix of WjWi+l is in L and no other factor of 
W;Wi+l belongs to L. In particular, Wi of 1 for all 1 ::; i ::; n. 
The set of overlapping-chainsisdenoted by C. The mapping 

is injective. Thus, we may identify C with a subset of E". 
In [12, Thm. 4.4.2] the following result is shown using a bijective prao/: 

Lemma 5.1 Let 
f.lS == E (-l)n w ! "'Wn 

(Wl, ... ,wn)EC 

(s= L: W 
wEB 

Then the power .'Jcries I"s, 's E Z((E*)) are forma! inverse.'! of ea,ch oiher. 

Example Let l ç 17 x 17 be an indepenclence relation and::; be a partial order
ing of E'such that (In ::;) is transitive. Then the system S = ((ab,ba) I(a,b) E 
(In ::;)} is complete, [24]. There is a one-to-one correspondence between over
lapping chains and steps. Indeed, if (Wl, ... ,.wn ) E .c, then Wi E 17, (w;, W j) E l 
for al! i =/: j and Wi ::; Wj for i ::; j. Conversely, if F E Fis a, step, then we can 
write F = {Wl,"" w n } such that Wl < '" < W n anclwe have (w}, ... ,wn ) E.c. 
In this case the formula of Cartier anf Foata is an immediate consequence. 

Let I"M E Z( (M)) be the Mabius function of a monoid M, which is a quotient of 
E*. A formal power series f1, E Z(L")) is called an unambiguous lifting of PM, 
if first, the support of f1, maps bijectively onto the support of PM, and if second, 
p.-l E Z(E*)) is the characteristic function over a eross section of lvf in EO. 

Theorem 5.2 ([10]) Let lM = IM(E, D) and l = E x Ethe independence 
relation. Then the following assertions aT,e equivaleni: 

i) There is an unambiguou$ lifting of I"IM in Z«E*}). 
ii) There is a transitive orientation of l, i.e., thereis an ordering ::; such that 

In ::; is transitive. 
iii) There is a finite complete sem;- Thue system 5 ç E* x 17* such that 17*/ S = 

lM. 
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Proof: The equivalence of ii) and iii) is in [24, 27]. The implication i) ==} 

ii) is done by a direct computation on traces up to length three and the (most 
difficult) final implication ii) ==} i) is immediate from 5.1. 0 

For a homological interpretation of Theorem 5.2 the reader is referred to [20]. 
Here we continue with a complete system which always exist, but which is infinite 
if the underlying ordering does not define a transitive orientation. Let::; be any 
partial ordering of E such that all independent letters are comparable. Then 
every trace t E lM has a unique lexicographical normal form i E E*. The set of 
all lexicographical normal forms is the set of irreducible words of the following 
complete semi-Thue system. 

S = {(bua,abu) 1 a::; b,(bu,a) E l,a,b E E,u E E*} 

Moreover, we may assume that for ail rules above the words bu and ua are in 
lexicographical normal form. 

Problem 8 Is it possible to compute the formaI inverse of the characteristic 
function of the lexicographical normal forms by using overlapping-chains such 
that the formula of Cartier-Foata becomes a corollary. 

A positive solution of the problem above would be another hint for a close con
nection between the combinatorics of Mëbius functions and complete rev,rriting 
systems. This might be of particular interest with respect to sorne homological 
interpretation mentioned above, see also [30]. 

6 Semi commutations and Mübius functions 

A Jemi dependence relation (overE) is a reflexive relation SD ç Ex E, the pair 
(E, SD) is called a Jemi dependence alphabet. A semi dependence yields a semi 
commutation by the following set ofrules: S = {ab =} ba 1 (a, b) if: SD, a, b E E}. 
The definition of a semi traces induced by a word u E E* is the set of words 
derivable from u by application of semi commutation rules: 

[u)={vEE*lu~v} 
sc 

The theory of semi commutations and semi traces is of growing interest, see e.g. 
[6, 7, 8, 5, 15, 21, 26, 29, 31]. 
A basic question is to characterize when the composition of two semi commuta
tions is again a semi commutation. The answer is given by a graph theoretical 
characterization of Y. Roos and P.A. Wacrenier: 

Theorem 6.1 ([29]) Let SD, SE ç E x E be Jemi dependence relationJ with 
aJJociated sem; commutations Sand T. Then the compoJit;on ~ 0 ~ iJ 

S T 
defined by Jome Jemi commutation if and only if there iJ no cycle of pairwise 
different letterJ 
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$uch th ai c1Jery edge i$ in SD U SE and, in addition, wc have 

(XO,Xn) E SE \ SD 
(x;, xi+d E SD \ SE 

{xo,.", Xi} X {Xi+l"'" Xn} ç E x E \ (SDUSE) 

It turns out that the theorem above is closely related to the confluence of semi 
commutation systems. Indeed, it is an easy· exercise to see that a semi com
mutation system 5= {(ab, ba) 1 (a,b) ~ SD} is confluent if and only jf the 
composition ~o .~ is defined by some semi commutation. 

S S-1 

In this case we have (~ o.çh) = (~o~) = ~. Therefore 
s S S S-1 S 

Theorem 6.1 generalîzes results by Diekert et al. [15J ând the complexity results 
shown there imply: 

Corollary 6.2 Bath pToblems are co-NP complete: 
b the composition of two semi commutations a semi commutation again? 
13 a given semi commutation confluenif 

In the remaining part of the paper we relate the confluence of semi commutation 
systems to unambiguous liftings of Môbius functions in a relative situation. Let 
D ç D' ç E x E be an inclusion of (symmetric) dependence relations, IM = 
L"'f(E,D) and [M' = IM(E,D'). The canonical projection p : lM --+ lM' 
extends uniquely to a surjective ring homomorphism 

p: Z({IM)} -> Z{(IM')), 2: f(t)t >-t 2: ( 2: f(t»t' 
lEM t'EM' p(t)=t' 

The notion of unambiguous lifting is now defined with respect to p as above. 
Let f-lIM'E Z((IM')) be the M&bius functionof lM'. A formai power series 
Il E Z ( (lM)) is called an unambiguous lifting if the following· two conditions are 
satisfied: 

- The function f-l is the formal inverse of a characteristic series over a (rational) 
cross section of lM' in IJvf. 

- The support of Il maps bijedively onto the support of f-lIM', 

Theorem 6.3 ([14]) There ie a canofi,ical one-to-one correspondence between 
unambiguous liftings of Mjjbius functions and confluent sem; commutations. 

The proof of the Theorem 6.3 is very long and technically involved, It is based on 
a combinatorial analysis and sorne tedious computations. AU details can be found 
in [14]. Let us sketch some basic ideas. We definetwo mappings: A mapping from 
sem! commutations to Mobius fllnctions and vice versa. 
Let SD ç E x E be any semi dependence relation, such that thesemi com
mutation system S = {(ab, ba) 1 (a, b) if; SD} i8 confluent. Define the monoids 
IM = IM(E,SDUSD-1

) and lM' = IM(E,SDnSD- 1
). Then, of course, 

(5) = 2: t 
tElrr(S) 
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is a rational cross section of M'in M. The mapping from semi commutat.ions to 
Mi:>bius functions is defined by S 1-+ p.(S) = (S)-l. One has to show that the 
support of p.(S) maps bijectively onto the support of P.M'. To see this consider 
those traces s E lM which can be written as a product $ = al··· an where 
ai E E and (ai, aj) rt SD whenever i < j. Following the terminology of Diekert 
et al. such traces are called soft, since the semi trace [al· .. an) contains soft arcs 
only, see [15]. Since SD is confluent, there is a bijection between soft traces and 
steps of lM'. A lengthy computation shows the formula: 

(S)-l = L (_1)1-1$ 
.s is 50ft 

The mapping in the other direction is obtained as follows: If p. E Z«IM)) is an 
unambiguous lifting of P.IM' then one defines 

P. 1-+ S(p.) = {(ab,ba) 1 p.(ab) = 1} 

One can show that S(p.) defines a confluent semi commutation. The proof de
pends heavily on the graph-theoretical characterization for confluence given in 
[15], see also Thm. 6.1 above. 
The final (and most difficult) part is to show that we have p.( S(p.)) = p.. 

Remark 6.4 Let p. E Z«IM)} be an unambiguous lifting of P.lM' and S(p.) = 
{( ab, lia) 1 p.( ab) = 1} A direct verification of the equality 

p.-l = L t 
tElrr(S(I'» 

would probably lead to a new proof of the graph-theoretical characterization for 
confluence. 

Problem 9 Is it possible to extend the homological result of Y. Kobayashi [20] 
to the relative situation D ~ D' ~ E x E? 
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