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FOREWORD

This volume constitutes the proceedings of the Ninth Conference on Funda-
mentals of Computation Theory (FCT 23) held in Szeged, August 23-27, 1993.
Previous conferences of the FCT series took place in Poznan-Kornik {1977),
Wendisch-Rietz (1979), Szeged {1981), Borgholm {1983), Cottbus {1985), Kazan
(1987), Szeged (1989) and Berlin {1991). Like its predecessors, the conference
was devoted to a broad range of topics of theoretical computer science, incliding
the following categories:

— Semantics and logical concepts in the theory of comnputing and formal spec-
ification

— Automata and formal languages

- Computational geometry, algorithmic aspects of algebra and algebraic ge-
ometry, cryptography '

— Complexity {sequential, parallel, distributed computing, structure, lower
bounds, complexity of analytical problems, general concepts)

— Algorithms (efficient, probabilistic, parallel, sequential, distributed)

— Counting and combinatorics in connection with mathematical computer sci-
ence

The proceedings coutain the texts of 8 invited lectures and 32 short com-
munications selected by the international program cominittee from a large nnn-
ber of submitted papers. The selection meeting took place on March 13-14 in
Szeged. The program committee consisted of L. Babal, S.L. Bloom, L. Budach,
R.G. Bukharajev, L. Czaja, Z. Esik, F. Gécseg, J. Gruska, J. Karhumaki, M.
Karpinski, B. Mahr, J. Sakarovitch, 1. Simon, 1. Wegener.

My sincere thanks go to all members of this committee as well as to all
the referees who assisted in the selection process: F.M. Ablaev, M. Bartha, D.
Beauquier, J. Berste]l, N. Blum, L. Boasson, H. Carstensen, Ch. Choffrut, B.
Courcelle, E. Csuhaj-Varju, M. Crochemore, P. Dembinski, V. Diekert, M. Diet-
zfelbinger, S, Dulucq, P. Fischer, L. Fortnow, U. Freitag, K. Friedl, Ch. Frougny,
Z. Fulép, T. Gaizer, L. Gasieniec, R. Glas, M. Grabowski, E. Grandjean, S.
Haddad, T. Harju, D. Hemschlelt, Th. Hofmeister, W. Hohberg, J. Honkala, Gy.
Horvath, K.-U. Héffgen, M. Hithne, M. Ito, M. Jantzen, Tao Jiang, S. Jukna, B.
Kacewicz, J. Kari, L. Kari, B, Kirsig, Y. Kohayakawa, W. Kozlowski, M. Krause,
H.-J. Kreowski, M. Kudlek, V.S. Kugurakov, S.E. Kuznetsov, A.P. do Lago,
K.-J. Lange, R.H. Latipov, A. Lentin, B.L. Lorho, W. Lukaszewicz, E.G. Manes,
R. Mantaci, A. Mateescu, A. Mazurkiewicz, R.G, Mubarakzianov, I.R. Nasirov,
V. Niemi, D. Niwinski, N.N. Nurmeev, V. Oleshchuk, M. Palis, P. Peladeau,
M. Pelletier, J.-G. Penaud, M. Penttonen, H. Petersen, S. Polt, P. Pudlak, M.
Racezunas, G. Rahonis, F.L Salimov, A. Salomaa, L.V. Satyanarayana, D. Sicling,
J. Simon, V.D. Soloviev, E.L. Stolov, K. Sutner, A. Szalas, J.L. Szwarcfiter, E.
Tardos, W. Thomas, D.R. Troeger, Gy. Turdn, F. Vatan, J. Virdagh, W. Vogler,
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5. Waack, E.G. Wagner, 5. Waligdrski, I, Walukievicz, P. Weil, 4. Weber, K.
Werther, D, Wikarski, . Winkowski, C. Zdobnov and 8.V, Zdobnov.

The conference was organized by the Department of Computer Science of
the Jdzsef Attila University. I wish to thank my colleagues T. GaizZer and J.
Virdgh who helped me mn all organization matters. They formed a very small
but effective team.

The conference was supported by a COST project of the Commission of the
Furopear Communities, the Jézsef Attila University, the Szeged branch of the
Hungarian Academy of Science, a grant from the Hungarian National Foundation
for Scientific Research and the ZENOIN Computer Engincering and Trading Ltd.
T would like to thank them all.

Finally, T would like to express my deepest gratitude o all authors and to
Alfred Hofmann of Springer-Verlag for their excellent cooperation in the publi-
gation of this volume.

Szeged, June 1993 )
Zoltan Fsik
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REWRITING, MOBIUS FUNCTIONS AND
SEMI-COMMUTATIONS*

Volker Diekert

Universitit Stuttgart, Institut fir Informatik,
Breitwiesenstr. 20-22, D 70565 Stuttgart

i Introduction

The purpose of this paper is to review some results in the theory of rewriting
on traces which has been obtained over the past few years and to discuss some
open problems.

The theory of rewriting over free partially commutative monoids (trace rewrit-
ing)} combines combinatorial aspects from string rewriting {modulo a congru-
ence) and graph rewriting. It leads to feasible algorithms, but some interesting
complexity questions are still open. One of the challenging open problems is
to improve the known quadratic time bound for the non-uniform complexity of
length-reducing systems. For certain one-rule systems we present here a new lin-
ear time algorithm for computing irreducible descendants, but we are still not
able to handle the general case of multiple rules in linear time.

Semi commutations can be treated from the viewpoint of trace rewriting and
there are strong connections to the combinatorics of Mobius-functions. This is
reviewed in Sections 5 and 6.

We assume that the reader is familiar with the concept of Mazurkiewcz traces
[22]. For the background material we refer to [1, 12, 23] and to the forthcoming
book on traces [16]. For basic notions needed hLere on rewriting systems see

I3, 19].

2 Notations

By X we denote a finite alphabet, I} C 2 x £ is a reflexive and symmetric de-
pendence relation and SD € X' x X' is a reflexive semi-dependence relation which
may be asymmetric. The complement I = X x X'\ I} is calied the independence
relation and the quotient monoid M = JM(XZ,D) = £ /{ab = ba | (a,b) € I}
is Mazurkiewcz' trace zionoid. An element 1 € IM is a trace. We denote by ¢
the length of a trace ¢, by ||, its a-length for some @ € X, and by alph(t) =
{a € £ | |[t{a = 1} its alphabet. It is convenient to extend the independence
relation to a relation over IM. For u,v € IM we define (x,v)} € I, if we have
alph(u) x alph(v) C I. A trace is viewed as a dependence graph:

* This research has been partially supported by the ESPRIT Basic Research Action
No. 6137 ASMICS 11
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Lat a1+--ay € 5% bea word, a; € X for 1 £ ¢ € n. Then the corresponding
trace (G - -+ a,] € IM is given by the node-labelled acyclic graph [V, E, A] where
the set of vertices is any n-point set, say 'V = {i,...,n} with the lebelling
M1} = a;, and arcs are from ¢ {0 § if both { < j and (g;,¢;) € D. It is convenient
to distinguish between the notions of subtrace and factor. A subfrace s of ¢ is
2 subgraph of the dependence graph of t such all directed paths starting and
ending in ¢ are entirely contained in s. Every subtrace s of ¢ is a factor, i€,
we can write = usv, but this factorization is not unique, in general. The other
way, if £ = usv then the traces u,s end v can be identified as subtraces of ¢. Of
course, different subtraces may be equal viewed as factors or elements of IM. To
be precise, if we speak of a subtrace s C ¢, we mean that we have 1dent1ﬁed the
vertices belonging to s in the graph ¢,

A dependence alphabet (£, D} (independence alphabet (X, 7} resp.) will be
viewed zls an undirected graph where edges are between different dependent
{independent resp.) letters. A trace is called connected, if the dependence graph
i js connected or, what is the same, if alph{t) induces a connected subgraph in
E, . '

3 'Trace rewriting systems
In this section we give some overview on known resulls and open questions for
trace rewriting systems.

Definition: A trace rewriiing system is a (finite) set of rules 5 C IM{X, D) »

IM(E, D).
A trace rewriting system & defines a reduction relation = byz = yifz=
: 5

ulv,y = urv for some u,v € JAM and (I,v) € 5. The n-fold iteration of =S;»

is denoted by -_g:- for n 2 0. By -f-;ub !’:;> resp. ,<=;$r resp.) we denote the
transitive (reflexive, transitive resp., reflexive, symmetric, and transitive resp.)
closure of = The relation 1%# 18 a congruence and its quotient monoid is
denoted by IM/S.
A trace rewriting system 5 iz called:

— length-reducing, if |}| > rj forall ({,r) € §

— noetherian, if there is no infinite derivation chain zq :? 1 ;? Ty

— confluent, if <=C=ls o &=

g ] g

¥

~ locally confiuent, if =0 —_—~>§—-_¢“ o &=
<.\ <1

— strongly confinent, if éz ) :?C? <.=S=

— the set of irreducible traoec islrr(S)={t € IM| forno s:1¢ = s}h

1t is well-known thet strong confluence implies confiuence and confluence implies
local confluence. No other imgplication holds, in general. If in addition the system
3 is noetherian then confluence becomes equivalent to loca! confiuence.
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A classical result says that it is undecidable whether a finite semi-Thue system
is noetherian. More precisely, we can state;

Proposition 3.1 It is decidable whether o finite trace rewrtling system s noethe-
rian if and only if IM 13 commutative.

Proof: If IM is not commutative, we may use an encoding of semi-Thue systems.
If IM is commutative then the noetherian property can be expressed by some
Presburger formula. O

The minirnal number of rules which we need to have undecidability is not known.
In fact, the following problem is open:

Problem 1 Given a one-rule system § = {{I,r)},l,r € IM. Is it decidable
whether 5 is noetherian?

Remark 3.2 For one-rule semi-Thue systems this is an outstanding open prob-
lem and for one-rule term rewriling systems the property of being noetherian
is undecidable [9]. Of course, a positive solution to Problem 1 would imply the
semi-Thue case. However, due {o the commutation rules it may happen that there
is a negative answer in the trace case and a positive answer in the word case.
This is exactly what happens for the decidability of the confluence of noethenan
systems. .

Indeed, for finite noetherian semi-Thue systems {local) confluence is decidable,
since a finite system has finitely many so-called critical pairs, only. For trace
rewriting systems the notion of & critical pair is not completely clear. Whatever
definition we use, there must be finite noetherian systems without any finite com-
putable set of critical pairs. This is due fo the following result of P. Narendran
and F. Otto:

Proposition 3.3 ([25]) There ezists an alphabet (2, D) with exactly one pair
of independent letiers such that the confluence of finite length-reducing trace
rewriting systems is recursively undecidable.

Problem 2 Let (¥, D) be a dependence alphabet such that confluence of finite
noetherian systems is decidable and let (%7, D'} be an induced subgraph of
{2, D). Is the confluence of finite noetherian systems decidable for {2, D')?

A positive solution of Problem 2 is not obvious, since the confluence of a system
depends on the whole alphabet and not only on the letters occurring in the
system, c.f. the next example.

Example Let
a — b
(2,D)=(a—-b—c),()§",D")= | I
d — ¢

and § = {{ab, ba), (b, cb)}. We may view S as a system over IM = IM(X,D)
or over IM' = IM({3' D'). The system S is noetherian in both cases. This
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can be szen by mapping it to {e,5}" x {b,¢}°. The systern 5§ & M x JM is
confiuent, since every trace reduces to a unique normal form in ¢*b*e”. Viewing
5 C IM’ x AL over the monoid JM', the confluence disappasra:

Ire(S) 3 badc = abde i edeb € Irr( )

The minimal number of letters required to achieve the undecidability is not
known. In particular, we do not know the answer for three letters.

Problern 3 Let (X, D) = {a~b—c). Is it decidable whether a finite noetherian
eystem is confluent?

A roore general problem is to find good {decidable} sufficient conditions for
noetherian sysiems such that confluence becomes decidable. Further details can
be found in {12, Chapt.3).

4 Algorithms

A finite irace rewriting system is celled convergent or complete if it is noetherizn
and confluent. The interest in these systems arise from the fact that complete
systems provide us with an =ffective procedure for deciding the word problem
of the quotient monoid IM/S. The basic algorithm is to compute irreducible
descendants. Assumne for simplicity that the system 5 is length-reducing and no
part of the input. If I3 is free or commutative, the following simple reduction
algorithm computes of input ¢ € JAf in linear time O(]#]} an irreducible element

¢ =,S—» {e (S

function reduce{t)

begin

v=1;

while ¢t #£ 1 do
let ¢ = at’ for some a € X, € IM;
o= vayt =4y
if v = o'l {or some (I,r) € § then
vi=vit =t
endif

endwhile

return v

end

An efficient implementation of the aigerithm above for traces could be based
upon ideas of Hashiguchi and Yamada. In {18] the algorithm of Knuth, Morris,
and Pratt is transformed for solving pattern maitching problems op traces. This
can be used to decide efficiently whether v is reducible.
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The main problem however with this algorithm is that if IM is neither free nor
commutative, then we do net have reduce(t) € Irr(5), in general. In [13, 11] we
gave some more general decidable and sufficient conditions such that irreducible
descendants can be computed following the algorithmic scheme above. However
up to now no algorithm is known which satisfies the following two conditions for
all finite length-reducing trace rewriting systems:

~ it computes irreducible descendants
— it works in linear time on input of a trace t.

Problem 4 Let § be a finite length-reducing trace rewriting system. Does there
exist some linear time algorithm for computing irreducible descendants?

4.1 A new linear time algorithm for some one-rule systems

In some restricted cases we know that Problem 4 has a positive answer. Let
(£, D) be covered by a fixed set C of {maximal) cliques:

(2,D)= | J(4,4x 4)
AeC

and w4 : IM{ X, D) — A* be the canonical projection. Then we can represent
a trace t efficiently as a tuple of words {7 4(f})4cc. Using this data structure,
very recently the following result has been shown {2).

Theorem 4.1 Let S = {(I,r)} be a lengih-reducing one-rule system such that
I 45 connected, wa(I) # 1 for etl A € C, and alph(r) C alph(l). Then there is
some algorithm which computes on input t an irveducible descendant § € Irr(S)
in O(|t]) sieps.

Proof: The key observation to Theorem 4.1 is the following lemma:

Lemma 4.2 Letl € IM be connected and 51,5, C t be subtraces of a trace t such
that s; = s =1 € IM. Writet = u;8;v;,7 = 1,2 and assuyme that ngp(u1s1) ta a
proper prefiz of wy p{uys2) for some (a,b) € D where a € alph(!). Then 7y p{u151)
is @ proper prefiz of m, p(uase) for all (a,b) € D where {{a,d} Nalph(D)) # 0.

Now, let {s1,...,3.]} be the set of all subtraces of ¢ which are equal (as trace}
to . Then the lemma above allows to define & linear ordering on this set which
is based on the prefix relation. Thus, we may assume 57 < -+ < s,. Working
with the projection to cligues one can show that this chain in computable in
O({t]) steps. The invariant is that we have n = 0 if and only if ¢ is irreducible.
For the reduction algorithm we may take any s;,1 < i < n,f = us;jv = ulv
and then replace ¢ by t' = urv. The trace # is computable in constant time
{(since § is not part of the input). Next we have to compute the new chain of
subtraces equal to l. The crucial point is that there is a constant k such that
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8y < o0 < 8;_; is the beginning part and s;45 < -+ < 8¢ is the final pars of the
new chain. Moreover, there are at most £ new subtraces between 5,5 and 3,44,
All these new subtraces are located with overlap to the position of the subirace
v in t = ure. The hypothesis {74{}) 5 1 for el 4 € C and =liph{r} C alph{!)
is used to prove that the new subiraces can be computed in constant time. It
follows that the new rchain caa be compufed in constant timne, foo.

The method of computing irreducible normal forms given in the proof above
applies in other cases. For example, e weaker condition than alphfr) C alph(f)

is enough, which then includes the free case, see [2). However, we were not able

0 solve Problem 4 for multiple-rule systems, in general. So, for various special
cases we found linear time algorithms and, interesting enough, in 21l these cases
we were zble to decide confluence, too. We have no idea, whether there is any
mtrinsic connection.

Problem 5 Let § be a finite length-reducing trace rewriting system such that
there is some linear time algorithm for computing irreducible descendants: Does
this imply that the confluence of § is decidable?

4.2 Confluence of one-rule systems

Most of the following results ave from [28, 32]. We need the notion of averlap. Let
z,t be traces, then ¢ is called 2 (proper) overiap of z, if we have ¢ = pt = t¢g for
some (non-empty) traces p,¢. Recall the following well-known property of words
‘which is easily proved by induction on the length of t): For words p,f,6 € 2*
with p # 1 # ¢ and pt = g it holds aiph(#) C alph{p} = alph(g).

Using projection to cligues this fact imraediately extents to connected traces:

Lemma 4.3 ([28]) Let p,#,g € IM be troces such thal p#£ 1,4 # 1, pt = ig end
pt is connected. Then we heve alph{i) € alph(p) = alph(g).

Propaosition 4.4 {[28]) Leiz be a non-emply connecied troce. Then there ezist
z mazimal proper overlep ¢ of x. Every other proper overlep of o i3 an overlep

af t.

Prool: Let r, s be overlaps of x. View first r, s as prefixes of © and define the
prefix ¢; by the union of these subtraces r and s in the dependence graph. Let
{a,B) € D and m, 3 : IM{Z, D} — {a,b}* the canonical projection. Then we
have %q3(t ) = wo3{r) if {map(r)} 2 imesls)} and =z, 3{) = 7, 4{s) otherwise.
The latter condition ¢learly applies fo the suffix-consiruction, too. Thusg, et £
be the suffix of = defined by the graph theoretical union of the suffixes r and s.
Theén we obtain _
7o 4{ty) = map{tz) for all (@, b)) € D

Hence, we have i1 = #3 and this is an overlap of #. Furthermore, the equations
above and Lemma 4.3 yiele that it is a proper overlap. {3
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The proposition above does not extend to the unconnected case. If {(a,b) € I is
a pair of independent letters, then the trace ab = ba does not have any maximal
proper overlap.

In the following we use the Parikh-mapping.

$: IM(Z,D) — INZ,t = (g )acx
where n, = |t|, for all ¢ € % is the number of @ occurring in ¢

Lemma 4.5 ([32}) Let § = {(I,r)} be o confluent one-rule trace rewriling
system such that I ts connecled, and let s be ¢ proper overlap of I suck that
(s) < @(r). Then s i3 an overlap of the right-hand side r.

Prooft Let { = ps = sq. The pair (pr,rq) must be joinable by the system §.
Let (a,b) € D, then the pair (7, 4(pr), 7, s(rg)) must be joinable by the semi-
Thue system (72,5(1), %a,6(r)). Due to this fact and the Parikh condition, one
is reduced to consider the case JM = {a,d}*,s = s1asz,7 = s;brg, and a # b
The result now follows by an argument on lexicographical orderings. It shows
that the pair {pr,rg) is not joinable in this case. This yields contradiction to the
confluence of S. Clearly, any derivation step by § € {a,b}* x {a,b}* increases
the lexicographical order <r... Since IX* <y, pr, the rule (I,r) can never be
appiied totaily on the left of any descendam of pr. Therefore s1a is a prefix of
all ¢; where pr “2“,; 1. On the other hand, s1b is already a prefix of rg. Using
It

reductions rg ﬁ i+, this prefix never becomes lexicographically smaller. Hence,
K

the pair (pr,rg) is not joinabie.
O

A very natural condition for trace rewriting is that every letter, which is inde-
pendent of the left-hand side, has to commute with the right hand side. Indeed,
it is exactly this condition which says that the rewriting is defined on the de-
pendence graph. To he more clear, let ! be a subtrace of a trace ¢. Then there is
some factorization ¢ = plg, which however is not unique. For example, if p = p'u
and (u,!} € I, then the same subtrace { C ¢ yields the factorization z = p'lug,
too. Applying the rule (I,7) depends therefore on the explicit factorization and

not only on the subtrace. We may have prg E::_—) Plg “==)- p'rug. The condition
it +F

above implies prg = p'rug and the result is unique.

Formally, we write J{{) = {e € £ | (a,1) € I} and Com(r) = {a € X | ar = ra}.
Of course, the condition I(!) < Com(r) is satisfied for words whenever { # 1. It
is also verified for complete one-rule trace rewriting systems:

Lemma 4.6 Let § = {({,r)} be a confluent one-rule trace rewriting system such
that I is not a factor of r. Then it holds I(1) C Com(r).

Prooft Let a € I(I). Then al = la and (ar, ra) must be joinable. Since { is not a
factor of v and a ¢ alph{l}), both traces are irreducible and hence they are equal.
=
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In general, it is & difficult task so determine an appropriate set of iraces which
hias to be tested for checking local confluence. Due to the undecidability result
for confluence of noetherian systems, we cannot expect ot find a finite set. In
[12, Thm.5:3.11] a combinatorial description of an infinite set of criticel pairs is
ziven, In the special case of one-rule systems, this theoremn yields the following
lemimas:

Lemma 4.7 Let S = {(I,7)} be o one-rule trace rewriiing sysiem such ihatl the
left-hand side ! is connecled and I(I) € Com(r). Then the system S is localiy
confluent if and enly if for all p,s,q,y € IM such that | = ps = sq,(y, 3} € I,
and s is ¢ proper non-emply sverlap of I, the pasr (pyr,ryq) 15 joinable by 5.

We are now prepared to state the main result on the confluence of one-rule
systems.

Theorem 4.8 ([32]) Let 5= {({,)} be a one rule trace rewriling system such
that [ is connected and I(I) C Com(r). Then ihe follewing siatements are eguiv-
aleni:

i) 8§ is confluent,
i) 8 is strongly confluent,
tif) Either the maximal proper overlap of I is an cverlap of r ar there exisi

p# 1,81 € IM and some k > 2 such that 1 = p¥s,r = st (L#} € T
and every overlap of I is a proper overlap of s or of the form p's for some
3<i <k,

Proof: The implication iii} = 1i) is 2 nice exercise using Lemma 4.7, 1i} = i)
is trivial. 1) = iii} this is technically the most difficult part. if involves results
of C. Duboe, [17), on the existence of minimal conjugators and in an essential
way Lemma 4.5. For details see [32]. D

Tf the left-hand side 1s empty we have:

Proposiiion 4.9 ([32]) Let § = {{(1,7)} be a one-rule irece rewriting syslem
where the lefi-hand side is empty and r # 1. Then lhe following assertions are
eguivalent: '

i) the system § 13 sirongly confluent,
it} for all pairs of independent letters (a,b) € I, the letters a, b are in_different
connecied compenents in elphlarh).

The following example is due to F, Otto. It shows that confluence does not imply
strong confluence for one-rule systems, in general.

Example [32] Let (¥, D) = (¢ ¢ ~b). Then the system (1, beab] is not strongly
confluent since the trace abeabb is connected. The system can be shown to be
confluent.

Conjeciure The notion of confluence and strong confluence ccincides for one-
rule systems if and only if Iif is a direct product of free monoids, i.e, if and
only if IJ is transiiive.
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Problem 6 Consider the class of one-rule trace rewriting systems.

— Is confluence decidable?

— Is it decidable, if we have I(I) C Com(r)?

— Is it decidable, if the left-hand sides is connected, but a factor of the right-
hand side?

— Is it decidable, if the left-hand side is disconnected?

— Is it decidable, if the left-hand side is empty (and (X, D) = (a — ¢ — b))?

Problem 7 Let § = {(/,r)} be a confluent one-rule trace rewriting system such
that we have I(I) C Com(r). Is the system § strongly confluent?

5 Rewriting systems and Mé&bius functions

Let A be any monoid such that each ¢t € M admits at most finitely many
decompositions t = uy -+ u, where u; € M \ {1}. The ring Z{{M}) of formal
power series over M is the set of mappings from M to the integers Z, where the
addition and multiplication for f,g: X — Z and ¢ € M are defined as follows:

(f +9)t) = f(t) + a(t)

(fg)(t} = z f(t)e(t2)

fig=t

Power series are also written as formal sums

f=3 f
€M

in accordance with the natural embedding M — Z{{M)) which identifies the
element £ € M with the characteristic function x4y : M — Z.
The suppori of a power series f € Z{{M)}} is the set supp(f) = {t € M | f(¥) #
0}. A power series with finite support is called a polynomial.
The Mabius function of the monoid M can be defined as the formal inverse in
Z{{M})} of constant function with value 1, see [4, Lem. 2.2)

am = () 1)

teM

The well-known result of P. Cartier-D. Foata |4, Thm. 1,2} says that the poly-

nomial
par = ) (=1)VIF]
FeF
is the Mobijus function of the monoid IM = IM(ZX, D). Here F is the set of all
steps and a step is a finite subset F' C I such that {a,b) € [ for all «,b € F,
a # b. A step F yields a well-defined trace [F] by taking the product over its
elements: [F] = [], ¢ a- Since the multipticative monoid of the natural numbers
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{without zero) is free commutalive where the prime numbers are the generators,
the result of Cartier and Foata generalizes the classical inversion formu.la. for the
Mabius function of natural numbers:

fr) =" ald) &= g(n) = > w(d)F(5)

dln din

,Jet 3 C I* x £* be a noetherian and confiuent. semi-Thue system and let
= {l € Z* | {I,r) € §} be the set of left-hand sides. An overlapping-chein

is & sequence (wy,...,wn), n = 0 of words such that wy € ¥, w; € Ire(5) for

1<i<nand wiwigr € Z*L\EZ*LX" for 1 <1 < n. This means w; is a letter,

no factor of w; is in L, a {unique)} suffix of w;w;y is in L 2nd no other factor of

wiw;sy belongs to L. In particular, w; # 1 for all 1 <¢ < n.

The set of overlapping-chains is denoted by L. The mapping

£ — Ex,(w“,_.,wn)w Wy ... Wy

is injective, Thus, we may identify £ with a subset of 2.
In {12, Thn. 4.4.2] the following result is shown using a bijective proof

Lemma 5.1 let

ps= T (=1wgeew,
{wi,.,wp)EL

(s= 2 w
weR

Then the power series ugs, (s € Z{{X*}} are formal inverass of cach other.

Exampile Let § C 2 x X be an independence relation and < be o partial order-
ing of £* such that (IN <) is transitive. Then the system § = {(ab, ba} | (@, b) €
{INn €)} is complete, [24]. There is a one-to-one correspondence between over-
lapping chains end steps. Indeed, if (wy,...,w,) € £, then w; € ¥ {(wi,w;) € 1
forallt # j and w; S wj for: € j. C-onver.sely, if F' & F iz a step, then we can
write ¥ = {w1,...,wa} such that wy < - < w, and we have {wy,...,w,} € L.
In this case the formula of Carties and Foata % zn immediate consequence.

Let par € Z{{M}) be the Mébius function of & monoid M, which is a quotient of
. A formal power series p € Z{{X")} is called an unembiguous ffting of uas,
if first, the support of x4 maps bijectively onto the support of ppg, and if second,
p~t € ZUE*YY is the characteristic function over a cross section of M in Z*,

Theorem 5.2 ([10]; Let IM = MY, D) and I = T x I the independence
relation. Then the following cssertions arz equivalent:

i} There iz en unembiguous lifting of p;M in Z{Z*)).
i1) There is ¢ trensitive erientation of I, ie., there is an srdering < such that
IM < is transitive.
it} There is e finite complete semi. Thue spstem 5 € 2 x 27 such thcz;. IS5 =
.
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Proof: The equivalence of ii) and iii} is in [24, 27]. The implication i} =
i) is done by a direct computation on traces up to length three and the (most
difficuit) final implication i} = i) is immediate from 5.1. O

For a homological interpretation of Theorem 5.2 the reader is referred to [20].
Here we continue with a complete system which always exist, but which is infinite
if the underlying ordering does not define a transitive orientation. Let < be any
partial ordering of T such that all independent letters are comparable. Then
every trace t € JM has a unique lexicographical normal form £ € £*, The set of
all lexicographical normal forms is the set of irreducible words of the following
complete semi-Thue system.

S = {(bua,abu) | a < b,(bu,q) € [,0,b€ 2 uc I}

Moreover, we may assume that for all rules above the words bu and ua are in
lexicographical normal form.

Problem 8 Is it possible to compute the formal inverse of the characteristic
function of the lexicographical normal forms by using overlapping-chains such
that the formula of Cartier-Foata becomes a corollary.

A positive solution of the problem above would be another hint for a close con-
nection between the combinatories of Mabius functions and complete rewriting
systems. This might be of particular interest with respect to seme homological
interpretation mentioned above, see also [30].

6 Semil commutations and Mobius functions

A semi dependence relation {averX) is a reflexive relation SD € X' x 2, the pair
(X, 8D) is called a semi dependence alphabet. A semi dependence yields a semi
commutation by the following set of rules: S = {ab = ba | (2,b) ¢ SD,q, b€ T}.
The definition of a semi traces induced by a word u € 2™ is the set of words
derivable from u by application of semi commutation rules:

[u)={v€2'[u?"gv}

The theory of semi commutations and semi traces is of growing interest, see e.g.
6, 7, 8, 5, 15, 21, 26, 29, 31].

A basic question is to characterize when the composition of two semi commuta-
tions is again a semi commutation. The answer is given by a graph theoretical
characterization of Y. Roos and P.A. Wacrenier:

Theorem 6.1 ([29]) Let SD.SE C X x X be semi dependence relations with
associaled semi commutalions S and T. Then the composition =;> o =%.‘» 1s

defined by some sems commutation if end only if there is no cycle of pairwise
different letiers

{(zﬂerl )‘(:clzxz)ﬂ" : !{‘BiaIH—l)}' - ($n,$0),}
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such thai ewvery edge is tn SDUSE gnd, in addiiien, we fave

{To,za) € SE\SD
{:t-‘,‘,:!:,'.H) S SD\SE
{:Cu, ca ,”.C;'} % {$§+1,...,$n} CXrx E\(SDUSE)

¥t turns out that the theorem above is closely related to the confluence of semi
commutation systems. Indeed, it is an easy exercise to see that a semi com-
mutation system § = {{ab,ba) | {a,8) ¢ SD} is confluent if and only if the
composition =;:- © ?:'——:; is defined by some semi commutation.

In this case we have (=;> o %) = {:%:' o ;:-:4?) = % Therefore

Theorem 6.1 generalizes results by Diekert et al. [15] and the complexity results
shown there imply:

Corollary 8.2 Bsth problems are co-NP -complete:
Is the composition of two semi commaulations a sems commuiation sgain?
Is o given semi commuiation confluent?

In the remaining part of the paper we relate the confluence of semi commutation
systems to unambiguous liftings of Mébius functions in a relative situaticn. Let
D € D' C X x X2 be an inclusion of (symmetric) dependence reletions, IM =
IM{Y D) and IM' = IM(%,D"), The cancnical prejection p : IM — IR’
extends uniquely to a surjective ring homomorphism

p: L{IMY) = ZUDMY), Y it (S Fp

eM rEM a(f)=¢

The noticn of unambiguous lifting ig now defined with respect to p as above,
Let g € Z{{I}M'}} be the Mobius functien of IM'. A formal power series
g € Z{{IM)) is celled an vnombiguous lifling if the following two conditions are
satisfied:

— The function g is the formal inverse of a characteristic series over a (rational)
cross section of IM' in IM.
— The support of 4 maps bijectively onto the support of gz,

Theorem 6.3 ({14]) There is ¢ cenonical one-to-one correspondence belween
unembiguous liftings of Mébius functions and confluent semi commutations.

The proof of the Theorem 6.3 is very long and technically involved. It is based on
a combinzatorial analysis and some tedious computations. All details can be found
in {14]. Let us sketch some basic ideas. We define two mappings: A mepping from
semi commuiations to Mobius functions and vice versa.

Let 3D € ¥ x I be any semi dependence relation, such that the semi com-
mutation system § = {(ab,ba) | (a,b) & SD} i= confluent. Define the monoids
IM = IM(2,SDUSD™) and IM' = IM(2,SD NSD ™). Then, of course,

{S)= 3 ¢

teler( )
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is a rational cross section of M' in M. The mapping from semi commutations to
Mébius functions is defined by § — u(S) = {(5)™!. One has to show that the
support of ¢(5) maps bijectively onto the support of . To see this consider
those traces s € IM which can be written as a product s = ay---a, where
a; € X and {(a;,a;) € SD whenever ¢ < j. Following the terminology of Diekert
et al. such traces are called soft, since the semi trace [y - - - an) contains soft arcs
only, see [15]. Since SD is confluent, there is a bijection between soft traces and
steps of IM'. A lengthy computation shews the formula:

U™ = D (=1l

a js soft

The mapping in the other direction is obtained as follows: If z € Z{{IM}) is an
unambiguous lifting of gz then one defines

# = S(u) = {(ab,ba) | u(ab} = 1}

One can show that S{u) defines a confluent semi ecommutation. The proof de-
pends heavily on the graph-theoretical characterization for confluence given in
[15], see also Thm. 6.1 above.

The final (and most difficult) part is to show that we have p(5(z)) = &

Remark 6.4 Let g € Z{{IM}) be an unambiguous Ifting of ppy and S{(p) =
{(ab,ba) | g{ab) = 1} A direct verification of the equality

e S
t€lrn(S(p))

would probably lead to a new proof of the graph-theoretical characterization for
confluence. '

Problem 9 Is it possible to extend the homological result of Y. Kobayashi [20]
to the relative situation D C D' C T x 27
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