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Preface

KGC93, the Third Kurl Géadel Colloguium, held on August 24-27, 1993, at
Masaryk University, Bruo, Czech Republic is the third in a series of biannual
colloquia on logie, theoretical computer science and philosophy of mathematics,
which are organized by the Kurt Godel Society. The first calloquium took place
in Salzburg, Austria (1989) and the second one in Kirchberg am Wechsel, Anstria
(1991). The aim of this meeting is to bring together researchers working in the
fields of computational logic and proof theory. While proof theory traditionally is
a discipline of mathematical logic, the central activity in computational logic can
be found in computer science. Tn both disciplines methods were invented which
are crucial to one another. We hope that Lhis conference will further strengthen
the bridge between logic and computer science, an impartant task in a time of
growing specialization.

‘This volurmne contains conlributions by 36 authors from 10 different couniries:
10 invited papers and 26 contributed papers, which werc selected from over 50
submissions.

Many thanks to the referees, without whase hard work a selection guaranteeing
high quality would have been impossible. We gratefully acknowledge the financial
sponsorship by the following institutions:

International Unico of History and Philosophy of Science,
Christian Doppler Laboratary for Expert Syslems,
Austrian Ministry for Science and Hesearch,

June 1993 G. Gottlab, A. Leitsch, . Mundici
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The Mathematics of Set Predicates in Prolog

EcoN BORGER! DEAN ROSENZWEIGE

1 Dip. di Informatica, Universita di Pisa
boerger@di.unipi.it
? FSB, University of Zagreh
dean@math.hr

Abstract. We provide a logical specification of set predicates findall
and bagof of Prolog. The specilicaiion is given in proof thearetic terms,
and pertains to any SLD -resolution based langrage. The order depen-
dent aspects, relevant for languages embodying a sequential proof search
strategy {possibly with side effects), can be added in an orthogonal way.
The specification also allows us to prove that bagof cannot be defined by
SLD- resolution alone. We show the correctness, wrt 1o our specification,
of Demoen’s definition of bagof for Prolog in Prolog. The specification of
bagef allows us to throw scine light on the logical problems with setof.

Introduction

The solution collecting predicates findull, bagof, setof of Prolog have been quite
extensively discussed in the hiferature- - [PerPor 81}, [Warren 82], [Ueda 86},
[Ueda 87], [O"Keefe 90), [Demeen $1], [Dodd 91], [WG17 92] and can be found,
in different versions, in most Prolog systems (DEC-10, €, Quintus, BIM, Sic-
stus, IBM, LPA,...). Discussion has however mainly been about whether and
why they should be used, and whether and how they are eliminable. The dis-
cussion never came to the poinl that these predicates are needed because they
express (however imperfecily) fundamental logical principles, which bave explic-
itly been with us since Frege. This may be because the predicates are usually
explained through examples and defined, if at all, by specific algorithms; and
not by a mathematical semantics which could be clearly seen as detived from
those principles.

We provide a puarely logical semantics of findall and bagef predicales, based
on proof theory of SLD-resolution but independent of any parlicular proof scarch
strategy. The specification thus pertains to any SLD-resolution based language.
We relate the specification of bagef to the underlying fundamential mathemati-
cal principles of comprehension (abstraction} and parametrization. Some choices,
made in (current practice and) the draft slandard proposal [WG17 92] for bagof,
turn out to be best justified by combining proof theoretical and model theoretical
considerations. Once the specification is given, we can prove that bagof cannot
be defined by SLD-resolution alone. We also prove that the algortthm, prob-
ably intended by the ISO Prolog standardization committee [WG17 92]; and
expressed by an elegant piece of Prolog code by [Demoen 91], is correct with
respect to our specification.
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The mathematical crux of the paper Is seciion 2 which provides the logi-

cal semantics of bagof/3. Section 1 prepares the ground with a Jogical {order—

independent)' semantics for findall/3, giving also the methodological paradigm.
In Section 3, we prove correctness of Demoen’s Prclog code for fagof. In Section
4 we examine selof.

Terminology and notation

The notation for ‘the set of all z such that P{z}’, {x | P(z) }, is understood as
denoting application of comprehension {abstraction, collection) operator to vari-
able z and expression P{z}, which binds all occurrences of # within its scope—in
very much the same way as other variable-binding operators, such as ¥, 3 in
predicaie calculus, A in A—caleulus, fab In integral caleulus. .. bind all occurrences
of a variable in an expression. Variable (occurrences)s which arc not bound, in
this sense, are free. In order té distinguish this logicel notion of bound variable
from the computing notion of variable being ‘bound to a value’, we shall call the
latier, in this logic programming context, instaniiafed.

Every textbook on logic explains why bound variables can and must be re-
named, o avoid clashes with variables which occur free in the same context.
Most notable example in logic programming is probably renaming of a clanse
to be resolved, since all variables occusring in a clause are tacitly understocd as
being bound by a universal guantifier. .

We shall have to deal with mulfiscts (bags, ‘sets with repetitions’}. We adopt
the following notakion, for ‘the bag of all & such that P(z,?}, so that, for each
such 1 € A, a copy of z is taken’, where A is an ordinary sct:

(| Pz, 1) hiea

In such an expression z,i are both bound. For instance
LRI B R U _ i Y
Wi = Jhei-1,00) =10, L, 1}

where the form {zy,...%, ) will denote bags given by enumeration {obviously,
ihe order of enumeration is irrelevant here). We shall drop the indication of index
set, i € A, when it is clear from the context, We use V o denote multisst nnion,
thus {1,2,1Y v {2,2) = {1,1,2,2,2}.

We shall otherwise rely on standard notation and termirclogy of logic pro-
gremming, <f. {Apt 90]. '

1 Semantics of findall

The predicate findell{/T, &, L} bas been introduced into Prolog in order to auto-
mate the process of finding (through repeated backiracking) and collecting into
a list, all values of the term T with which the goal & succeeds, unifying subse-
quently thig list with L. Can we make some logical sense cut of this procedural
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deseription, uncoupling its overdependence on Prolog backtracking (and hence
on ordering)?

Let ¢ be a term and g a goal. Let X be the (sequence of) variables occuring
in ¢, and Y the variables occuring in g but not in t. During the computation of
g, both X-variables and Y-variables get instantiated to some values. By find-
eflft,g,!) only the values of the X-vartables are collected into the list, while the
collecting phase disregards the Y values. The mathematical idea underlying this
collecting process can be, in the first approximation, expressed by comprehension

{1X)13Y (X, Y) }.

Note that all variables are bound here, Y’s by quantification, and X’s by com-
prehension®, These bound variables must be treated as nameless dummies, 1.e.
as distinct from all variables occurring [ree in the same context—in { or in the
calling environmment—ecven if they have the same name. But note that being a
free or a bound variable is here a runtime property; as long as findall(t, g,1) is
not called, all variable occurrences in £, 7,1 are instantiated uniformly. The ne-
cessity to distinguish hound from free variables, without in general using explicit
variable-binding operators with syntactically clearly defined scope, does create
some difficulties for logic programming, as we shall see in a more pronounced
way in the section on setof.

In the context of usual model theory of logic programming, an approxi-
mate model-theoretic specification for findell would then be: compute (a finite
representation of) the set

S={#a)|3b [=y(a,b}}

where a, b are understood as ranging over (a finite power of) the Herbrand uni-
verse (i.e. sequences of ground terms). This approximate specification disregards
both possible repetition of solutions and the order of their appearance.

We cannot do much better with model theory alone, since findai! inherently
involves proof-theoretic nolions.

... although Prolog reperis solutions, it is losking for proofs, and findall/3
is defined to return an instance of the ¢ for every proof of g. [O’Keefe 90]

For the following proof theoretical analysis we have the assumption that
the SLD-tree of g 1s fimte (since otherwise the computation of findall will not
terminate). In that case, as is well known, for terms a, b of the Herbrand universe,
E g(a, b) if |- g(a, b).

Let then m1,...m, be all SLD—proofs of (the original goal) g, and o; = o{n;)
the corresponding answer substitutions. The requirement, as formulated by O’-
Keefe, can be expressed by the bag

B = (to;r,- | o= 0'(7":‘), }fi Q‘)i:l,...,n

® Remember that {#(X)|...} is set theorctical shorthand for
{UV]IXT =t(X)& ..)}.



BIBLIOTHEQUE DU CERIST

where each #; is a renaming of ¢¢; by fresh variables {more exactly, we assume
the ranges of r¢'s to be digjoint, mutually and from the set of all variables present
in the calling environment). The renamings may need some explanation. Only
the X.Y variables, which appear in the original ¢,¢ as well as in toy, really
need renaming, since all other variables, which may occur in to;, are brought
in by resolution, and therefore are always fresh. The renaming makes every bag
element come with distinct variables. Intuitively this makes them independent—
mutually, and from the environment-—as they should be, since they come from
independent computations. More formally, this is needed to distinguish between
free and bound variable ocaurrences. since our multises comprehension also binds
all variables which occur there.

To sum up, a better approximate specification of findall is; compute a repre-
gentation of B. It refines the first model-theoretic approxxmahon by the obvious:

Proposition 1. For a ground term t{a)}, i(a) € S iff it is a (ground) instance of
an element of B.

This makes every element s of B stand for, in ¢lassical model theory,

{U[=32(U = s(2))},

where Z are all variables occurring in 5. The bag represents the union of (sets
represented by) its elements. Note that, under this interpretation, ail variables
in & should be seen as bound.

A natural representation of a bag is a list of ils elements. Such a repre-
sentation, however, imposes an ordering on bag elements (as would any olher
simple repreﬂenta,tlon} If we are to have unique representability, some ordering

eriterion must then be selected. Since our specification has so far remained or-
der independent, we can adopt any choxrc whatsoever. Therefore wo have the
following

Specification of findaell{¢,1,{}. Given an ordering critericn, compute the repre-
septation of B in that ordering and umiy the resulting hs;. with {. This unifier
is the answer subslitution.

For languages based on some sequential proof search strategy, the natural
choice of ordering is the sofution ordering {the solutions come in the list in the
order in which they appear during the computation}. For Prolog this is the usual
left-to-right preorder of the tree. For languages with side effects, a proviso should
be added: the side effects of proofs @; appear in the order in which they happen
{in those prcofs).

2 Semantics of bagof

Whereas nobody has problemse with understanding or explaiving findell—this
wact is reflected in the straightforwardnese of the preceding section—this does
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not seem tc be the case with bagof, as one can see from the discussion in the
literature. In fact begof{i,g,1) brings into the logic programming environment
the fundamental mathematical operation of parameterized cornprehension, which
can be, in the first approximation, expressed by the comprehension

{#X) | o(X,Y) }.

where now however the variables Y are free—they are the parameters, and
what necds to be represented is not only the collection but also its dependence
on values of parameters. An approximate model theoretic specification is then:
compute (a finite representation of) the set

S(b} = {(a) | = g(a,b) }

in its dependence on parameters b.

A proof-theoretic analysis has to proceed more gradually here, keeping how-
ever the assumption of finiteness of the computation tree. If we fix parameter
values b, the proof-theoretic approach of the previous section gives us the mul-
tiset _

B(b) = {toipiri|ai=o(m), =g, Youpi =b)

where 1, m;,0; are defined as in the previous section, p; is the (minimal) ground
substitution instantiating Ye; to b {i.e. their mgu). The renamings #; rename
(freshiy) ouly those bound variables, occuring in fo;, which are not instantiated
by p;.This mecans those X’'s, that do not occur in Yoy, i.e. are not linked to
parameters by the answer substitutions. No Y’s are renamed here, which reflects
their role of pargmeters; their identity must be preserved -across alternative
soluticns and wrt to the calling environment-—formally they are free in the call
of bagaf. As in the case of findell, of course, the distinction of free vs. bound is
a runtime property.

For reference, let us note that domains and ranges of p;,7;, as defined above,
are pairwise disjoint, thus

Lemma 1. Substitutions p;,r;, as defined in B(b}, commute.
We have the obvious

Proposition 2. A ground lerm is an element of S(b) iff it is a (ground) instance
of some elemeut of B(b).

if our approximate specification is refined to ‘computing a finite represen-
tation of B(b) in its dependence on b’, we are led to the following (tentative)

requirements:

Requirement 1. If there are no free variables, bagof(t, g,!) behaves exactly as
findall(t, g, 1), given that ¢ has a solution at all {cf. below).

Requirement 2. In gencral, bagof(¢, g,{) may have alternative solutions.
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Bequirement 3. Alternative solutions to bagof(t, g, {) should reflect depeindence
of B(b) on b. :

Requirersers 1 ig due Lo the ohservation that, in case of no free variables, we
are really talking about B from the previous section, Requirement 2 then follows,
since it is easy to concoct examples yielding drastically different bags for different
instantiations of ¢, Requirement 3, however, does have a model-theoretic 8avoar,
which may not be quite appropriate in this proof-theoretic context---what is
computed in proofs, namely, are not ground instances of parameters, b, but,
‘computed parameter values’ Yo;. Hence requirement 3 may be moderated by

Requirement 4, Alternative solutions to begof{{, g, {} shouid refiect alternasive
computed parameter values. '

From the wording of Requiremen 4 it is clear why we had o put an additional
coadition on Requirernent 13 if g had no solutions, Requirement 4 would prohibit
us to return an empty bag, since it would not reflect any computed parameter

value (see also [Warren 82]). Thus,
Requirement 4'. If g has nc solutjon, dagof (¢, g,1) should fail.

Requirements 3 and 4 should not be taken too literally; they would namely
be contradictory. Requirement 3, taken literally, would lead to the {following
collection procedure: take B(b)’s, sirip away the ground substitutions p;, and
provide the finitely many (up to renaming of nonparametric varizhles) hags
as alternative solutions. Equivalently, we could define alterpative results to bLe
{some renamings and unifications of, cf. Definition 3§ below)

B = {toir; hier

where T ranges over all mazimal nonempty index sete such that all computed
parameter values Yoy, ¢ € T are mutually consistent, i.e. unifying. It is easy ko
see that every B(b) is, elementwise, an instance of an .

This wonld, however, destroy Requirement 4 completely. Same computed
parameter values would reappear in different solutions, and it is pessible for
some different (but consistent) values to appear always together (if there is no
further alfernative to separate them).

How is Requirement 4 then to be nnderstood? If we take ‘alternative’ com-

puted parameter values literally, as coming from different proofs, then ali col-
lecting is lost {as all bags would be singleton), contradicting even Requirement
1. We thus have to abstract from proofs here. and look elsewhere for 2 criterion
of ‘being alternative’.

There seems to be (almost) a consensus in the Prolog community about

where to look—to model theory. From model theoretie point of view, computed

parameter values are different if they have different sets of (ground) instances. It
is known [Apt 90] to be equivalent to the following eriterion: computed parameter
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values Yei, Yo; are alternative if they are not variants. The decision, to group
into one alternative solution (bag) those proofs which yield variant parameter
values, is then expressed by

Definition 1. Answer substitutions ¢, o; are equivalent if Yoy, Yo; are variants.
Denote by X' the equivalence class of o.

For later use, let us record

Lemma 2. For a parameter ¥

(a) Y € vars(Yoi) = Yo, =Y
(b) Y & vars(Yo;) = Y € vars(Yo;)
at exactly the same position, for o;,0; € 5.

Proof. Statement {a) follows from answer substitutions being idempotent—cf.
[Apt 90]. Statement (b) follows from (a), observing that sequences

LAY )Y sand L (.. Z.0) . YL

cannot be variants, for any Z which is not Y.
Definition 2. B(b,Y) = {toipir; | Yoip;i == b, 0; € X);
Proposition 3. B(b) = V{B(b, 2| bis an instance of Yo}

A solution to bagef(#,g,1) will then be defined, up to ordering, by

Definition 3. B(X) = (toiririf | 0; € Z'}; where 8 is the mgu of Y and
all Yo;r] with o; € I, where r{ are fresh renamings of those bound variables
occuring in {o; and ¥Ya; (and Lherefore not renamed by r;).

This untfication is necessary to preserve the identity of parameters—unin-
stantiated variables, distinct from X, Y and possibly brought into ¥o; by SLI-
resolution, are all distinct, but should be matched across proofs contributing to
the same bag. Thus Y& now provides a cannanical representative of ‘computed
parameter values’. The p;'s of Definition 2 and p of Definition 3 are linked by

Lemma 3. Let p; = mgu{Yo;,b), p = mgu(¥Y8,b). Then the equation p; = r/fp
holds when both sides are restricted to vers(to;) U vers(Ye;).

Proof. A parameter ¥ not occurring in Yoy, is necessarily included in the
domain of &;, and therefore by idempotence cannot occur in its range, and hence
not in Zey. Thus the lemma does not claim anything about Y, and the following
cases remain to be proved:
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Case Y € vars(Yo;} Then Yl =Y since V is not in the domain f;
: Y9 =Y by Lemma 2 {a) and the definition of #.
Therefore Yp; = Yp = Yrifp by definition of p;, p.

Case 7 & vars{Yo;)  Then Zp; = Z by definition (and relevance) of p;;
Zr] = Z since Z is not in the domain of rf;
Z8 = Z by definition (and relevance) of 8;
Zp = Z by definition (and relevance) of p, 6,
stnce Z ¢ vars{'Y%).

Case  Z £ vars(Yo;!  Then Zrl8 is a variable (because all Yo; are
variants) occurring, in Y2, at exactly the same
positions in which Z oceurs, in Yoy. Then the claim
Zp; = Zritlp follows by definition of p;, p.

B(Z) covers exacily all the B(b, ) via instantiations of parameter values
to ground terms, as shown hy

Proposition 4, Each B(b, ¥) is ideatical ta B(L)p for p = mpgu{ YO b).

Corollary. For each substitution 7 such that Yér is ground, B{X)r is an in-
stance of B(¥ér, I). '

Proof. The equations

topiry = toprgp; = toimiridp
Yop: = Ycﬁ_{?‘;ﬁp = Yip

follow, respectively, from Lemma 1, Lemima 3, Lemima 3 and the definition of 4,

In 2 call of bagef(1,g,f), g is usually allowed to be a guantified goal, ie. 2
form Zy...Z; g1, where g1 is a goal, understanding the variables Z1,..., 2, to
be exisientially quantified. That would, in a first model thecretical forrulation,
mean S = {t|37,...2, g1 ¥ The simple remnark, that quantified vartables are
bound, suffices to make our treatruent verbatim correct for quantified geals too.

The logical specification, resulting from the above deasion, is then:

Specification of bagef(t, ¢,!). Given an ordering criterion, for {alternative) so-
lytion corresponding to equivalence class I, compute the representation of B{X)
and unify it with 1§, This unifier, composed with §, is the answer substitution,

For languages based on some sequential proof search strategy, we rust specify
the ordering of appearance of alternative solutions—-the natural choice is the
solution ordering of first elemeonts of their representations. For languages with
side effects we must specify also the side effects of bagef (¢, g, 1. In case of Prolog,
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the decision of ISQ WG17 seers to be ‘follow the usual implementations’, i.e.
execute all side effects of findali(t, g, 1), before reporting any solutions of dagof
(cf. also Section 3).

Propositions 3 and 4 might help explain some of the uszal difficulties in
understanding fagof. It namely violates the lifting property of SLD-resolution
[Apt 90]: a solution of an instance of a goal is an instance of a solulion of that
goal. Ilere, as shown, the solution B(b) (given that g ilself has the lifting prop-
erty) for an instance of ¢ may only be patched together from instances B(b, X)
of alternative solutions for g. For instance, if predicate g, checking whether at
least two of its three argumerts unify, was defined by clauses

g(E,E, A). g(E. A, E). ¢(A,E, E).

a call of begef{1, g(¥1, Y4, Ya), L) would yield three alternative solutions, each of
them unifying L with [ 1], whereas a call of bagef(1,¢(¥,Y¥,Y), L) would have
only one solution, unifying L with [1,1, 1]. Given the lifting properly of SLD-
resolution, we have

Proposition 5. Given any ordering criterion, a predicate satisfying the above
specification of bagef cannot be defined by SLD--resolution alone.

This proposition confirms that scine interleaving of model-theoretical! and
proof-theoretical arguments, in- deriving a logical description of baegef, was in-
evitable. It also makes vigible that the notion of declarative semantics, if we are
to analyze real phenomena such as bagof, canuol be understood in a very narrow
sense (say only in terms of simple fixpoint constructions like classical 7Tp)?

3 Correctness of Demoen’s specification of bagof

In case of Prolog, several descriptions of bagof have been put forward in the con-
text of the standardization effort in ISO W17 [Demoen 91, Dodd 91, WGIT 92].
The cnly specification which, to us, seems to be clear and precise enough to be
related to our specification by a proof, is due to Bart Demoen, and comes in the
form of the following elegant piece of Prolog code [Democen 91].

bagof (Term, Goal, Bag) - —
Jree_variables( Goul, Term, Vars),
findall{ Vars — Term, Goal, Answerlist),
produce( Answerlist, Answer, Vars),
Beg = Answer.

* Proposition 5. applies, strictly speaking, to findall as well, bit, as shown by the
above example, ‘less strikingly so’.
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produze{] Params — Term | Rest], Bag, Vars) . —
splil( Rest, Params, Terms, Bags),
{Bag = | Terin | Terms], Vurs = Params

produce( Bags, Bag, Vars)).

Qp‘ﬁ\[1~-:r]:[])‘ )
split([ Params — Term | Resi], Perams], | Term | Terms!}, Bags) : —
varionis{ Parems, Params]), '
]
split( Rest, Paramisl, Terms, Brgs).
split([ Term | Terms), Params, Bag, [ Term | Bags]) : —
split( Terms, Params, Bag, Bogs).

We have not listed the code for predicates free_sariables, varianis - of them
we shall assume the following,

{1} free_variables(Goal, Term, Vars) unifies Vare with the list of all
variables free in Goeal wrt Term, i.e. of those unguantified
variables in Goal which do mot occur in Term;

{il) warienis{X,Y) fails if X and ¥ are not variants, and unifics
them together otherwise.

Noie thai, in the algonthm, the free variables are detected only at ruptime,
after hagef has been called, as they should be. Since implementations of Pro-
log usually do not provide the occur—check, semantic reasoning about Prolog
programs usnally applies only to situations satisfying the following additional
general assumption:

(it All unifications executed are not subject to the occur-check.

It view of the fact that the draft Prolog standard proposal [WGLT 927 does nof
specify behaviour of systems when tlis assumption i8 violated, there is little
shat can be said in that case. In particular, since most implementaticns produce
idempotent and relevant mgu’s as soon as assumption (iii) tolds, we will in this
section rely or that, Under assumptions {1}, (i), {iii} we have

Propo‘ntxon 5. Demoen’s Prolog code is correct wrt to specification of bagoef
in Section 2.

Proof, We have to prove that, on alternative backtracking calls, the algorithm
computes the representation of each 5(X) and urifies it with Bag. Given (the
code under) usuial operational understanding of Prolog, i.2.of the way it searches
the SLD-tree, following remarks are true:

(a) The only point where the SLD-trce can branch into alternative solutions
{choicepoint, in WAM jargon) is the one indicated by the semicolon in code for
produece—backtracking will use it. only afier a solution has been produced;
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(b)Y Witnesses’ Vars (generated by free_variables, cf. assumption (1)) repre-
sent the Yo;’s. In case that some Y remains uninstantiated by (some iff all, cf.
Lemma 2) oy’s, it will, in this algorithm, get renamed by findall. To see this
does not affect the compuled B(X), consider definition 3 with the renamings ]
extended so as to rename such uninstaniiated ¥7s as well. 8 however undoes this
extra renaming by unifying all such ¥'r{ logether and with the original ¥'s.

(c) # is created incremnentally, propagating unification along the list as it
is being split by wvariants (cf. assumption (ii)}, unifying Yo;’s together, and
completed after a solution is preduced by explicit unification Bag = Answer,
unifying them with Y.

Then a simple induclion over the size of B(X') proves that the algortihm finds
the (next) B(Z’) in the right ordering, and an equally simple induction over the
number of X’ (solutions) shows that it finds them all.

For the reader who finds this proof to be handwaving, and requires a ‘more
formal® argument, we would have to substitute ‘the usual operalional under-
standing’ of Prolog (i.e. of the way it searches the SLD-tree) with a mathemat-
ical model. Our tree model [BoeRos 91, BoeRos 92] adheres so closely to this
‘usual operational understanding’ that a transfer of the preceding proof to the
mathematical model is nothing but an excercise, which we may leave to the
interested reader. The primary purpose of operational semantics was, after all,
precisely to provide operational arguments of this kind with some certainty and
dignity of mathematics.

4 Analysis of sefof

From the set theoretical point of view, a bag is just a redundant representation
of a set. The predicate setofis thus usually explained as being the same as bagof,
with

(a) removing duplicates from solutions;

(b) sorting the solutions, providing unique list representation.

Both (a) and (b) are simple and well justified in case of ground terms. In case
of uninstantiated variables in tezms however, both (a) and (b) require definition.

Trying to find a common demoninator of current practice, SO WG17 has
decided [WG17 92] to interprete duplicales as identicel ierms in sense of Prolog
predicate == /2. However obvious this choice may seern, in case of not fully
instantiated terms it is impossible to justify logically, as sensed also by O’ Keefe:

(setof is) ...only sound when the free variables and template variables
are bound to sufficiently instantiated terms ... [O’Keefe 90]

Consider a database with facts
p-p-e(Z,2). 44, 2).

The calls setof (1, p, 1.1), setof (X, p, L2}, setof (X, g(X,Y), Lg) provide, under this
semantics, the solutions Ly = (1], Lz = [X’,X”], L3 = [Y]. L» has two ele-
ments only due Lo renaming of bound variables (by r; of section 2} —X‘, X" are
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just placehoiders, nameless dummies which cannot occur anywhere elge. In light

of model theoretic discussion of Section 1, X’ stands here for
£ 3K = X},

but then X', X" stand for the sarne thing {even the same expression, cf. below).
The fallacy of collecting them here as dl_bi;ll’](‘f objects may originate from the fact
thal the binding comprehension operator is not visible any morc. Tt is notorious
in logic that no meaninghil distinction can be made hetween expressicns which
differ oniy wrt the names of their bound vauahles—they are considered as being
syntactically identical. Yor instance, Jfo z?dz = f g2 dy is not a theotrem of the
integral caleijus—the two sides are stmply the same expression. For systematic
discussion in the context of A-caleulus, of [Barendregt 84].

To define duplicates by == /2 amounts to collecting sets of names. Even
without drawing on the vast literature on the perils of confusing neming and
meaning, mention and use, nofe that collecting names is surcly not what the
user is led to think of when writing a sefof expression.

From the logical point of view Lhen the terms being collected by begof should
at least be considered as duplicates when they are variants, modulo (variables
linked by amswer substitution to) parameters.

From the (classical) model theoretic point of view it would even be natu-
ral to consider as redundant also instances of terms which already exist in the
tepresentation—they add only (ground) elements which are already represented.

Ii both cases it is simple to adapt our specification of bagef, to yield an
appropriate seiof , without complicaiing the implementation excessively.

As to sorting crilerion, it is really the fixation on names which must have
led to ferm ordering as a snpposedly natural choice [WG17 92]—cven though
different implementations cannot be feasonably expected to agree on ordering of
uninstantiated variables. In some cases the ordering is thus left undefined, mak-
ing it implementation dependent and not portable, In addition, term ordering is
not preserved by instaniiation, which is apother, this time unnecessary, violation
of the lifting property.

"Apt 90] K.R.Api, Logic Programming, n: I. van Leeawen (ed.), Formual
Models and Semantics. Handbook of Theoretical . Computer Science,
Vol. B, Elsevier 1290, pp. 483-574

{Barendregi 84] H.P‘Barcndreg_i,, The Lambda Caleulus, Elsevier 1984

BoeRos 91} E.Borger, D.Rosenzweig, A Formal Specification of Prolog by Tree
Algebras, in: V.Ceri€ et.al. (eds.), Procesdings of The Third Inter-
national Conference on Information Technology Interfaces, SRCE,
Zagreb 1891, pp. 513-51%

[BoeRas 92 5.Bérger, D.Rosenzweig, The WAM-—-Defirition. and Compiler Cor-
vectress, Technieal report TR-14/92, Dipartimento di Informatica,
Universitd di Pisa 1992





