
Maurice Bruynooghe Jaan Penjam (Eds.) 

Programming Language 
Implementation 
and Logic Programming 

5th International Symposium, PLILP '93 
Tallinn, Estonia, August 25 -27, 1993 
Proceedings 

Springer-Verlag 
Berlin Heidelberg New York 
London Paris Tokyo 
Hong Kong Barcelona 
Budapest 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Series Editors 

Gerhard Goos J uns Hartmanis 
Cornell University Universitat Karlsruhe 

Postfach 6980 
Vincenz-Priessnitz-StraBe 1 
D-76131 Karlsruhe, Gennany 

Department of Computer Science 
4130 Upson Hall 

Volume Editors 

Maurice Bruynooghe 

Ithaca, NY 14853, USA 

Department of Computer Science, Katholieke Universiteit Leu ven 
Celestijnenlaan 200A, B-3001 Heverlee, Belgium 

Jaan Penjam 
Software Department, Institute of Cybernetics 
Akadeemia tee 21, EEOO26 Tallinn, Estonia 

CR Subject Classification (1991): FA. 1-2, D.3.l, D.3.4, F.3.3, 1.2.1 

ISBN 3-540-57186-8 Springer-Verlag Berlin Heidelberg New York 
ISBN 0-387-57186-8 Springer-Verlag New York Berlin Heidelberg 

/~ 

b,~~ 

This work is subject to copyright. AH rights are reserved, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, re-use 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other 
way, and storage in data banks. Duplication of this publication or parts thereof is 
pennitted only under the provisions of the Gennan Copyright Law of September 9, 
1965, in ils CUITent version, and pennission for use must always be obtained from 
Springer-Verlag. Violations are liable for prosecution under the German Copyright 
Law. 

© Springer-Verlag Berlin Heidelberg 1993 
Printed in Gennany 

Typesetting: Camera-ready by authors 
Printing and binding: Druckhaus Beltz, HemsbachIBergstr. 
45/3140-543210 - Printed on acid-free paper 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Preface 

The international Symposium on Programming Language Implementation and 
Logic Programming (PLlLP) is he Id every year. The series of PLILP sympo
siums was established by Pierre Deransart, Jan Maluszynski and Bernard Lorho 
with the aim to promote contacts and information exchange among scientists 
who share common interests in declarative programming techniques, logic pro
gramming and programming languages implementation. Researchers from the 
fields of algorithmic programming languages as weil as logic, functional, object
oriented and constraint programming constitute the audience of PLILP. 

This volume contains the papers which have been accepted for presentation 
at the Fifth International Symposium PLlLP'93 held in Tallinn, Estonia, Au
gust 25-27, 1993. The preceding meetings took place in Orléans, France (May 
16-18,1988), in Linkëiping, Sweden (August 20-22,1990), in Passau, Germany 
(August 26-28, 1991), and in Leuven, Belgium (August 26-28,1992), and their 
proceedings are published by Springer-Verlag as Lecture Notes of Computer Sci
ence, volumes 348, 456, 528 and 631 respectively. One of the goals of organizing 
PLlLP'93 in Tallinn was to encourage scientific contacts between researchers 
from Eastern and Central European countries and the Western community of 
computer scientists. 

In response to the cali for papers 72 papers were submitted to the PLlLP'93 
by authors from ail over the world. Ali submitted papers were reviewed by 
2-4 experts. The program commit tee selected 24 papers on the basis of their 
scientific quality and relevance to the symposium. At the symposium, four 
invited talks were given by Alexander Dikovsky, Neil D. Jones, Uwe Kastens 
and Andrei Mantsivoda. Sever al software systems and poster presentations 
were presented, showing new developments in implementation of programming 
languages and declarative programming. 

This volume contains three of the invited presentations, selected papers and 
abstracts of the selected system demonstrations. 

On behalf of the program committee the program chairmen would like to 
thank ail those who submitted papers and the people involved in the reviewing 
process. They are listed on the following pages. 

The PLILP'93 will be hosted by the Institute of Cybernetics of the Estonian 
Academy of Sciences. The support of Katho/ieke Universiteit Leuven, INRIA 
(Institut National de Recherche en Informatique et en Automatique), Estonian 
Informatics Fund and Siemens AGis gratefully acknowledged. 

We thank ail who contributed to the Symposium and its organisation. 

Tallinn - Leu ven, 
June 1993 

M.Bruynooghe 
J.Penjam 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



VI 

Conference Chairmen 

Jaan Penjam, Institute of Cybernetics, Tallinn (Estonia) 
Maurice Bmynooghe, Katholieke Universiteit, Leuven (Belgium) 

Program Committee 

John Darlington, Imperial College, London (OK) 
Saumya Debray, Univ. of Arizona, Tuscon (USA) 
Wlodzimierz Drabent, Linkoping Univ. (Sweden) 
Gérard Ferrand, Université d'Orléans (France) 
Manuel Hermenegildo, Techrucal Uruv. of Madrid (Spain) 
Bharat Jayaraman, State Univ. of New York, Buffalo (USA) 
Feliks Kluzniak, Warsaw Univ. (Foland) 
Brian Mayoh, Univ. of Aarhus (Denmark) 
Alan. Mycroft, Cambridge (OK) 
Lee Naish, Dniv. ofMelboume (Australia) 
Jukka Paakki, Linkoping Univ. (Sweden) 
Peter Pepper, Technical Dniv. of Berlin (Germany) 
Igor Pottosin, Insütute of Informatics Systems (Russia) 
A.ntoine Rauzy, Laboratoire de Recherche en Informatique (France) 
Jiro Tanaka, Fujitsi Laboratories, Tokyo (Japan) 
Franco Turini, Universita di Pisa (Italy) 
Andrey Voronkov, Uppsala Uruv. (Sweden) 
David Scott Warren, 8tate Univ. of New York, Buffalo (USA) 

Organizing Committee 

Rein Lougas, Institute of Cybemetics, Tallinn 
Monika perkmann, Insütute of Cybemetics, Tallinn 
Ahto Kalja, Institute of Cybemetics, Tallinn 
Kaur Kiisler, Institute of Cybemetics, Tallinn 
i\nne Tavast, Institute of Cybernetics, Tallinn 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



VII 

List of Referees 

Many other referees helped the Program Comnùttee in evaluating papers. Their 
assistance is gratefully acknowledged. 

Asperti, Andrea 
Ballesteros, Francisco 
Banda, Maria Jose G. 
Barklund, Jonas 
Bigot, Peter A. 
Boye, Johan 
Bueno, Francisco 
Bulyonkov, Michail 
Bum, Geoffrey 
Cabeza, Daniel 
Carro, Manuel. 
Chakravarty, Manuel 
Chassin de Kergommeaux, 1. 
Clemente, Isabel G. 
Clocksin, W. F. 
Codish, Michael 
Codognet, Christian 
Codognet, Philippe 
Coen, Martin 
Corsini, M-M. 
Dart, Philip 
Davison, Andrew 
De Schreye, Danny 
Degerstedt, Lars 
Demoen, Bart 
Diaz, Daniel 
Didrich, Klaus 
Ducasse, M. 
Evstigneev, Vladimir 
Exner, Jürgen 
Faulhaber, Joachim 
Ferran, Guy 
Garcia de la Banda,Maria 
Garcia-Clemente,Isabel 
Garcia-Martin, 1. 
Grieskamp, Wolfgang 
Grudzinski, Grzegorz 
Guo, Yike 
Ida, T. 
Janssens, Gerda 
Jourdan, Martin 

Kâgedal, Andreas 
Kasyanov, Victor 
Kessler, Robert R 
Krepski, Artur 
Launchbury, John 
Lindstrom, Gary 
Maeder, Christian 
Maluszynski, Jan 
Mariën, A. 
Marino-Carballo, Julio 
Matskin, Michail 
Meriste, Merik 
Moore, Marcus 
Moreno-Navarro, J. 1. 
Mulkers, A 
Nakagawa, Koji 
Nesi, M. 
Nielsen, Flemnùng 
Nilsson, Ulf 
Niwifiski, Damian 
Olsen, Hans 
Osorio, M. 
Paiva, Valeria de 
Palmer, Doug 
Paterson, Ross 
Plandowski, Wojciech 
Proebsting, Todd 
Poial, Jaanus 
Roomeldi, Raul 
Sabelfeld, Victor 
Sastry, A. V. S. 
Schultz, J. W. 
Shepherd, John 
Sondergaard, Harald 
Stuckey, Peter 
Sundararajan, R 
Swanson, Mark 
Szczepanska-Waserztrum 
Südholt, Mario 
Thomasset, Francois 
Tupailo, Sergei 

Vain, Jüri 
Vandecasteele, Henk 
Virot, Bernard 
Weemeeuw, P. 
Zachary, Joe 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Table of Contents 

Invited Talk 

Executable Specifications for Language Implementation 
U. Kastens ...................... . 

Session: Integration of Different Paradigms 1 

A voiding Dynamic Delays in Functional Logic Programs 
1. Boye ........................ . 

A Debugging Model for Functional Logic Programs 
M. Hanus, B. Josephs . ............... . 

Session: Constraint Programming 

A Conservative Approach to Meta-Programming in Constraint Logic 
Programming 
P. Lim, J. Schimpf 

The Versatility of Handling Disjnnctions as Constraints 
J. Jourdan, T. Sola ................... . 

Session: Static Analysis and Abstract Interpretation 1 

Efficient Bottom-up Abstract Interpretation of Prolog by means of 
Ceonstraint Solving over Symbolic Finite Domains 
M.-M. Corsini, K. Musumbu, A. Rauzy, B. 1. Charlier ... 

Improvements in Compile-Time Analysis for Gronnd Prolog 
A. Kagedal ........................... . 

Session: Grammars 

A New Top-Down Parsing Algorithm for Left-Recnrsive DCGs 
M.-J. Nederhof .......................... . 

Specification and Implementation of Grammar Couplings Using Attribute 
Grammars 

1 

12 

28 

44 

60 

75 

92 

108 

M. Jourdan, C. L. Bel/ec, D. Parigot, G. Roussel. . . . . . . . . . . . .. 123 

Programming Language Specification and Prototyping Using the MAX 
System 
A. Poetzsch-Heffter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 137 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



x 

Invited Talk 

Flang and Hs Implementation 
A. Mantsivoda ..... . . ............ 151 

Session: Narrowing l 

Efficient Lazy Narrowing Using Demandedness Analysis 
J. J. Moreno-Navarro, H. Kuchen, J. Mariiio-Carballo, S. Winkler, 
W. Hans ........................... . .. 167 

A Demand Driven Computation Strategy for Lazy Narrowing 
R. Loogen, F. L. Fraguas, M. Rod,Îgues-Artalejo . . . . . . . . . . . . . . 184 

Session: Integration of Different Paradigms II 

Fundional Programming Languages with Logical Variables: A Linear 
Logic View 
J. Darlingtan, Y. Guo, M. Kahler . . . . . . . .. ........... 201 

Objects with State in Contextual Logic Programming 
A. Natali, A. Omicini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 

Session: ParaHelism l 

A Novel Method for Parallellmplememation of findall 
K. A. M. Ali, R. Karlsson .......................... 235 

A Parallel Implementation for AKL 
R. Moolenaar, B. Demoen ..... . ................. 246 

Session: Implementation Techniques 

Inlining to Reduce Stack Space 
O. Kaser ........... . 262 

A WAM-Based Implementation of a Logic Language with Sets 
A. Do vier, E. Pontelli ...................... . . . 275 

Session: ParaUelism II 

An OR Parallel Prolog Model for Distributed Memory Systems 
V. Benjumea, J. M. Troya ................... . . 291 

Executing Bounded Quantifications on Shared Memory Multiprocessors 
J. Bal'klund, J. Bevemyr ........................... 302 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



XI 

Session: Statie Analysis and Abstraet Interpretation II 

A Lattice of Abstract Graphs 
D. Clark, C. Hankin ..... .................. 318 

Higher-Order Chaotic Iteration Sequences 
M. Rosendahl .............. . 

Proving the Correctness of Compiler Optimisations Based on Strictness 
Analysis 

332 

G. Hum, D. L. Métayer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 

Invited Talk 

Abstract Complexity of Prolog Based on WAM 
A. Y. Dikovsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 

Session: Narrowing II 

Development of Rewriting Strategies 
A. Letichevsky ........... . 

N arrowing Approximations as an Optimization for Equational Logic 
Programs 
M. Alpuente, M. Falaschi, M. J. Ramis, G. Vidal 

Abstracts of System Demonstrations and Posters 

PAGODE: A Back End Generator 

. .. 378 

... 391 

P. Canalda, L. Cogn a rd, A. Despland, M. Mazaud . . . . . . . . . . . . . 410 

SelfLog: Language and Implementation 
M. Hugliesi, G. Nardie/lo ....... . . .... 412 

Embedding Declarative Subprograms into Imperative Constructs 
M. Jourdan, F. Lagnier, F. Maraninchi, P. Raymond ..... . 414 

Stack Management of Runtime Structures in Distributed Implementations 
G. Hagen, R. Loogen .............................. 416 

Efficient Register Allocation for Large Basic Blocks 
C. W. KejJler, T. Rauber .............. . . ....... 418 

Generation of Synchronization Code for Parallel Compilers 
M. Ait, G. Sander, R. Wilhelm . . . . . . . . . . . . . . . . . . . . . . . . 420 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Executable Specifications for Language 
Implementation 

Uwe Kastens 

Fachbereich Mathematikjlnformatik 
University of Paderborn, D-4790 Paderborn, F.R. Germany 

Abstract. Generating programs from specifications is an ambitious task 
that is solved at most for restricted application domains. General solu
tions which are practically satisfying as weIl are hard to achieve. Lan
guage implementation is a field, where tools and toolsets are av ail able 
which proeess executable specifications and derive language implement
ing programs (compilers or interpreters) from them. 
In this paper we will study specification principles that contribute to the 
suceess of program generation in this application domain. Examples are 
taken from the specification techniques of the Eli-System. The task of 
language implementation is decomposed into subtasks which have weIl 
understood and sufliciently general algorithmic solutions. Henee the in
stances of subtasks for a particular language can be specified. Certain 
language concepts like scope rules can be understood as a combination 
and variation of sorne basic rules. This situation allows specifications on 
a rather high level and reuse of precoined solutions. Domain specific ex
pert know-how em bedded in a toolset can further raise the specification 
level. The presentation of snch specification principles in language im
plementation may raise discussion whether and how they can be applied 
to other areas as weIl. 

1 Introduction 

In the reference manual of Z [8] Spi vey characterizes formaI specifications as 
follows: 

"FormaI specifications use mathematical notation to describe in a precise 
way the properties which an implementation must have, without unduly 
eonstraining the way in whieh these properties are achieved. They de
scribe whai the system must do without saying how it is to be done." 

The abstraction of the whai from the how shall achieve specifications that 
have a small cognitive distance to the system requirements and a large distance 
to an implementation. Such specifications are declaraiive rather thanoperaiional. 

Specifications have an important role in the software life-cycle: They are a 
reference point for both requirements analysis and implementation, and are a 
valu able means of promoting a common understanding among ail those con
cerned with the system.[8] Specifications serve for proving an implementation 
against the requirements with respect to certain properties, e. g. invariants on 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



2 

the system states, 1/0 relation of a function, or mutual exclusion of criticai 
operations in a parallel system. 

The role of specifications in software development is further increased if an 
implementation is derived by refinement of the specification. Each refinement 
step introduces a design decision moving towards an implementation while keep
ing the specified properties intact. If we could get to an implementation without 
augmenting the specification of system properties by design decisions explicitly 
we had an executable specification. It could serve either for prototyping or for 
generating software products, depending on the software quality of the imple
mentation. 

Executable specifications especially for rapid prototyping is the goal of spec
ification languages classified as Very High Level Language (VHLL). Krueger [7] 
discusses VHLL like SETL, PAISLey, and MODEL under the aspect of software 
reuse. The reuse effect is achieved by the specification language compiler or in
terpreter. ft makes the implementation decisions without involving the author 
of the specification. 

General purpose specification languages, as those men tioned 50 far, are based 
on elementary mathematical concepts: sets, functions, and sequences for mod
elling data, and predicate Iogic for modelling properties of operations. Systems 
that interpret or compile such specifications have to use generally applicable im
plementation strategies. So on the one hand ail aspects of a system have to be 
specified and refined down to those elementary concepts. On the other hand the 
efliciency of the automatically achieved implementation is at best acceptable for 
prototyping. 

This situation can be dramatically improved if the problem domain i9 re
stricted to a certain application area: A system of that domain can be described 
in terrus of a dedicated specification language. An application generator trans
lates su ch a specification into an implementation [1]. Krueger [7] charaGterizes 
domains appropriate for application generators, if "man y similar software sys
tems are written, one software system is modified or rewritten many times duriTIg 
its Iifetime, or many prototypes of a system are necessary to converge to a us
able product". Report generators for data bases are a typical area for application 
generators [3]. 

N arrowing the problem domain yields important advantages for specification 
design and execution: 

A specification may refer to concepts that are well-understood in the domain 
and hence need not be further refined. 
A domain specifie model for problem decomposition can induce a modular 
structure of the implementation without being specified explicitly for each 
system. 
Domain specifie implementation techniques can be applied automatically. 

Hence systems are described on a high level and the specifications are executable. 
In this paper we discuss strategies for executable specifications in the domain 

of language implementation. Translator generation can also be considered as an 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



3 

instance of the application generator principle, although this research is much 
older than the application generator idea. More than fort y years of research and 
practice in compiler constructÏlon have resulted in common understanding of task 
decomposition and of subproblems, powerful formai methods for problem de
scription, and in systematic implementation techniques. Tools are available that 
generate implementations from specifications, hence achieve their executability. 
The domain is very broad, ranging from compilers and source-to-source transla
tors for programming languages to the implementation of dedicated specification 
languages, as used for application generators. 

In the following sections we emphasize the discussion of specification strate
gies applied in this application domain to achieve executability. We use Eli [2] [4] 
as an example for a system which integrates many generating tools, precoined 
solutions, and domain specifie knowledge. A major design goal of Eli is to achieve 
executable specifications that have a small cognitive distance to requirements of 
its problem area. We have learned many aspects of the specification strategies 
discussed here from the experience in developing and using the Eli system. 

2 Domain Specifie Decomposition 

Decomposition of problems into subproblems is a natural method for analysis 
and design. Different aspects of a problem are separated and described on a suit
able level of abstraction. Solutions can be found for smaller units using different 
techniques suitable for the particular subtask. Modular structure of the imple
mentation and its interfaces can be derived from the decomposition structure. 

If the problem space is restricted to a certain application domain specification 
and solution can be supported by a domain specific decomposition model that 
can be applied for any particular problem instance of that domain. Many years 
of experience in the language implementation domain led to a generally accepted 
model for decomposition of compilation tasks, as shown in Figure 1 taken from 
[2]. That model is not restricted to programming language compilers: In case of 
arbitrary language translation or interpretation the transformation phase usually 
yields the final result, the encoding phase is left out. 

The existence of a suitable domain specifie deeomposition model simplifies 
the development of particular problem specifications: The description of the 
modelleads to a structured way of reasoning about the problem - even if users 
are not experienced in language design and translation: It becomes obvious that, 
for example, the form of tokens of the input language has to be specified, or rules 
for name analysis must be chosen if the language has named objects. The model 
suggests that these properties of the problem refer to different subtasks and that 
they are related by the representation of name tokens. 

A domain specifie decomposition also allows one to specify different subtasks 
via dedicated formaI models using suit able specification languages: E. g. the form 
of tokens is described by regular expressions like 

Ident: $ [a-zA-Z] [a-zA-Zo-9]* 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T




