BIBLIOTHEQUE DU CERIST

Maurice Bruynooghe Jaan Penjam (Eds.)

Programming Language
Implementation
and Logic Programming

5th International Symposium, PLILP 93
Tallinn, Estonia, August 25-27, 1993
Proceedings

C(()”?’ :"I}?{}L

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapcst

BIBLIOTHEQUE DU CERIST

Series BEditors

Gerhard Geos Jugis Harimanis

Universitit Karlsruhe Comell University

Postfach 69 80 Department of Compuier Science
Vincenz-Priessnitz-Strale 3 4130 Upson Hall

D-76131 Karlsruhe, Germany Tthaca, NY 14853, USA

Volume Editors

Maurice Bruynooghe
Department of Computer Science, Katholicke Universiteit Leuven
Celestijnenlaan Z00A, B-3001 Heverlee, Belgium

Jaan Penjam
Software Department, Institute of Cybernetics
Akadeemia tee 21, EE0G26 Tallinn, Estonia

CR Subject Classification (1991): F4.1-2, D.3.1, D.3.4, F3.3, L.2.1 S
:331;’3’/

ISBN 3-34(-57186-8 Springer-Verlag Berlin Heidelberg New York
ISEN 0-387-57186-8 Springer-Verlag New York Berlin Heidelberg

Tis work s subject to copyright, AH rights are reserved, whether the whole o7 part
of the material is concetned, speciiically the rights of transietion, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in anv other
way, and storage in data banks. Duplcatien: of this publication or paris thereof is
permitted only under the provisions of the German Copyright Law of September 9,
£965, in s current version, and permission for use must always be chtained from
Springer-Verlag. Violations arc Hable for prosecution under the German Copyright
Law,

© Springer-Verlag Berlin Heidclberg 1993
Printed in Germany

‘Typesctting: Camera-ready by authors
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

The international Symposium on Programming Language Implementation and
Logic Programming (PLILP) is held every year. The series of PLILP sympo-
siums was established by Pierre Deransart, Jan Maluszyriski and Bernard Lorho
with the aim to promote contacts and information exchange among scientists
who share common interests in declarative programming techniques, logic pro-
gramming and programming languages implementation. Researchers {rom the
fields of algorithmic programming languages as well as logic, functional, ebject-
oriented and constraint programming constitute the audience of PLILP.

This volume contains the papers which have been accepted for presentation
at the Fifth International Symposium PLILP’93 held in Tallinn, Estonia, Au-
gust 25-27 1993. The preceding meetings took place in Orléans, France (May
16-18,1988), in Linképing, Sweden {August 20-22,1990}, in Passau, Germany
(August 26-28, 1991}, and in Dcuven, Belgivm (August 26-28,1992), and their
proceedings are published by Springer-Verlag as Lecture Notes of Computer Sci-
ence, volumes 348, 456, 528 and 631 respectively. One of the goals of organizing
PLILP’93 in Tallinn was to encourage scientific contacts between researchers
from Bastern and Central European countries and the Western community of
computer scientists,

In response to the call for papers 72 papers were submitted to the PLILP’93
by authors from all over the world. All submitted papers were reviewed by
2-4 experts. The program committee selected 241 papers on the basis of their
scientific quality and relevance to the symposium. At the symposium, four
invited talks were given by Alexander Dikovsky, Neil D. Jones, Uwe Kastens
and Andrel Mantsivoda. Several software systems and poster presentations
were presented, showing new developments in implementation of programming
languages and declarative programming.

This volume contains three of the invited presentations, selected papers and
absiracts of ihe selected system demonstrations.

On behalf of the program committee the program chairmen would like to
thank all those who submitted papers and the people involved in the reviewing
process. They are listed on the following pages.

‘I'he PLILIP’’93 will be hosted by the Institute of Cybernetics of the Estonian
Academy of Scicnces. The support of Kathofieke Universiteit Leuven, INRIA
{Institut National de Recherche en Informaligue ef en Automatique), Estonian
Informatics Fund and Siemens AG is gratefully acknowledged.

We thank all who contributed to the Symposium and its organisation.

Tallinn - Leuven, M .Bruynooghe
June 1993 J.Penjam

BIBLIOTHEQUE DU CERIST

wi

Conference Chairmen

Jaan Penjarm, Institute of Cybernetics, Tallinn {Estonia)
Maurice Bruynocoghe, Katholicke Universiteit, Leuven (Belginm)

Program Committee

John Darlington, Imperial Coliege, London (UK)

Saamva Debray, Univ. of Arizona, Tuscon (USA)
Wledzimierz Drabent, Linképing Univ. {Sweden)

Gérard Ferrand, Université ¢'Orléans (France)

Manuel Hermencgildo, Techrical Undv. of Madrid (Spain}
Bharat Javaraman, State Univ. of New York, Bulfalo (USA)
Feliks Kluzniak, Warsaw Univ. {Poland)

Brian Maych, Univ. of Aarhus (Denmark}

Alan Mycrefi, Cambridge (UK)

Lee Maish, Univ, of Melbourne {Australia)

Jukka Paakld, Linkdping Univ, (Sweden)

Peter Pepper, Technical Univ, of Berlin (Germany)

Igor Potiosin, Institute of Informatics Systems {Russia)
Antoine Rauzy, Laberaloire de Recherche en Informatigue (France)
Jiro Tanaka, Fujitsi Laboratories, Tokyo (Japan)

Franco Turini, Universita di Pisa ([taly)

Andrey Voronkov, Uppsala Univ. (Sweden)

David Scott Warren, State Univ. of New York, Buffalo (USA)

Organizing Commiftee

Rein Laugas, Institute of Cybametics, Tatlinn
Monika Perkmann, Institute of Cybernetics, Tallinn
Ahto Kalia, Institute of Cybernetics, Tallinn

Kaur Kiisler, Institute of Cybernetics, Tallinn

Anne Tavast, Instifute of Cybernetics, Tallinn

BIBLIOTHEQUE DU CERIST

Vil

List of Referees

Many other referecs helped the Program Committee in evaluating papers. Their
assistance is gratefully acknowledged.

Asperti, Andrea Kigedal, Andreas Vain, Jiiri
Ballesteros, Francisco Kasyanov, Victor Vandecasteele, Henk
Banda, Maria Jose G. Kessler, Robert R, Virot, Bernard
Barklund, Jonas Krepski, Artur Weemeeuw, P,
Bigot, Peter A. Launchbury, John Zachary, Joe
Boye, Johan Lindstrom, Gary

Bueno, Francisco Maeder, Christian

Bulyonkov, Michail Maluszynski, Jan

Burn, Geoffrcy Marién, A.

Cabeza, Daniel Marino-Carballo, Julio

Carro, Manuel Matskin, Michail

Chakravarty, Manuel Menste, Merik

Chassin de Kergommeaux, J. Moorc, Marcus

Clementc, Isabel G. Moreno-Navarro, J. J.

Clocksin, W. F. Mulkers, A

Codish, Michael Nakagawa, Koji

Codognet, Christian Nesi, M.

Codognet, Philippe Nielsen, Flemming

Coen, Mariin Nilsson, Ulf

Corsini, M-M. Niwiriski, Damian

Dart, Philip Qlsen, Hans

Davison, Andrew Osorio, M.

Dec Schreye, Danny Paiva, Valeria de

Degerstedt, Lars Palmer, Doug

Democn, Bart Paterson, Ross

Diaz, Daniel Plandowski, Wojcicch

Didrich, Klaus Proebsting, Todd

Ducasse, M. Poial, Jaanus

Ewvstigneev, Vladimir Roomeldi, Raul

Exner, Jirgen Sabelfeld, Victor

Faulhaber, Joachim Sastry, A. V. 8.

Ferran, Guy Schultz, J. W.

Garcia de 1a Banda,Maria Shepherd, John

Garcia-Clemente, Isabel Sondergaard, Harald

Garcia-Martin, J. Stuckey, Peter

Grieskamp, Wolfgang Sundararajan, R.

Grudzinski, Grzegorz Swanson, Mark

Guo, Yike Szczepanska-Waserztrum

Ida, T. Sidholt, Mario

Janssens, Gerda Thomassct, Francois

Jourdan, Martin Tupaile, Sergei

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

Table of Contents

Invited Talk

Executable Specifications for Language Implementation
U . Kaslens e

Session: Integration of Different Paradigms [

Avoiding Dynamic Delays in Functional Logic Programs
JoBaye ..o e e

A Debugging Model for Functional Logic Programs
M. Henus, B. Josephs

Session: Constraint Programming

A Conservative Approach to Meta-Programming in Constrainl Logic
Programming
P. Lam, J. Schimpfo

The Versatility of Handling Disjunctions as Constraints
Jo Jourden, T. Sola Lo, e

Session: Static Analysis and Abstract Interpretation 1

Eflicient Botiom-up Abstract Inierpretation of Prolog by means of
Ceonstraint Solving over Symbolic Finite Domains
M.-M. Corsini, K. Musuimbu, A. Rauzy, B. L. Charlier

Improvements in Compile-Time Analysis for Ground Prolog
A. Kdgedal

Session: Grammars

A New Top-Down Parsing Algorithm for Left-Recursive DCGs
M-J Nederhof o 0 0 0 0 e e e

Specification and Implementation of Grammar Couplings Using Attribute
Grammars
M. Jourdan, C. L. Bellec, D. Parigot, G. Roussel

Programming Language Specification and Protolyping Using the MAX
System

A. Poetzsch-Heffter e

BIBLIOTHEQUE DU CERIST

Invited Talk

Flang and its Impiementation

A Mantsiveda e 131

Session : Narrowing I

Efficient Lazy Narrowing Using Deimnendednzss Analysis

. J. Moreno-Navarre, H. Kuchen, J. Mariio-Carballo, 5. Winkier,

W. Hans o e e 167

A Demand Driven Computation Strategy for Lazy Narrcwing
R. Loogen, F. L. Fraguas, M. Rodrigues-Artalejo 184

Scesion: Intcgration of hifferent Paradigms II

Functional Programming Languages with Logtcal Variables: A Linear
Logic View

J. Darlinglon, Y. Gueo, M. Kéhler 201
Objects with State in Contextual Logie Programming

A Natali, A. Omicind o 220

Session: Parallalisin I

A Novel Method for Parallel Implementaiion of findall
K A M Al R, Karlsson i o 235

A Parailel Implementation for AKL
AR. Moolennar, B. Demoen 246
Session: rnplementation Technigues

lulining to Reduce Stack Space
O Keser . . . o e e 262

A WAM-Based Implementation of a Logic Language with Sets
A. Dovier, &, Pontelli 275
Session: Parallelism IT

An OR Parallel Prolog Model for Distabuted Memory Systems
V. Benjumea, J. M. Troya 291

Executing Bounded Quantifications on Shared Memory Multiprocessors
o Barklund, J. Bevemyr Lo 362

BIBLIOTHEQUE DU CERIST

Xl

Session: Static Analysis and Abstract Interpretation IT

A Lattice of Abstract Graphs

D. Clark, C. Hankin e 318
Higher-Order Chaotic Iteration Sequences
M. Resendahl e 332

Proving the Correctness of Compiler Optimisations Based on Strictness
Analysis
G. Burn, D. L. Mélayer 3146

Invited Talk

Abstract Complexity of Prolog Based on WAM
A Y. Ddkousky . _ L L e e e 365

Session: Narrowing 11

Development of Rewriting Strategies
A Letichenskyo 378

Narrowing Approximations as an Optimization for Equational Legic
Programs
M. Alpuente, M. Falaschi, M. J. Ramis, G. Vidal 391

Abstracts of Systern Demonstrations and Posters

PAGODE: A Back End Generator
P. Canalda, L. Cognard, A. Despland, M. Mazaud 410

SelfLog: Language and Implementation

M. Bugliesi, G. Nardiello 412
Embedding Declarative Subprograms into Imperative Constructs

M. Jourdan, F. Lagnier, F. Maraninchi, P. Raymond 414
Stack Management of Runtime Structures in Distributed Implementations

G. Hogen, R. Loogen e ~ .. 416
Efficient. Register Allocation for Large Basic Blocks

C. W. Kefller, T. Rauber 418

Generation of Synchronization Code for Parallel Compilers
M. AR, G. Sender, B, Wilhelm 420

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

Executable Specifications for Language
Implementation

Uwe Kastens

Fachbereiclh Mathematik/Informatik
Universtiy of Paderborn, D-4790 Paderborn, F.R. Germany

Abstract. Generating programs {rom specifications is an ambitious task
that is solved at most for restricted application domains. Gencral solu-
tions which are practically satisfying as well are hard to achieve., Lan-
guage implementation is a field, where tools and tcolsets are available
which process executable specifications and derive language implement-
ing programs (compilers or interpreters) from them.

In thie paper we will study specification principles that contribute to the
success of program generation in this application domain. Examples are
taken from the specification technigues of the Eli-System. The task of
langnage implementation is decomposed into subtasks which have well
understood and sufficiently general algonthmic sclutions. Hence the in-
stances of subtasks for a particular language can be specified. Certain
language concepts like scope rules can be understood as a combination
and variation of some basic rules, This situation allows specifications on
a rather high level and rense of precoined solntions. Dowmain specific ex-
pert know-how embedded in a toolset can further raise the specification
level. The presentation of such specification principles in language im-
plementation may raise discussion whether and how they can be applied
to ather areas as well.

1 Introduction

In the reference manual of Z [8] Spivey characterizes formal specifications as
follows:

“Formal specifications use mathematical notation to describe in a precise
way the properties which an implementation must have, without unduly
constraining the way in which these properties are achieved. They de-
scribe what the systermn must do without saying how it is to be done.”

The abstraction of the whaet from the Aew shall achieve specifications that
have a small cognitive distance to the system requirements and a large distance
to an umnplementation. Such specifications are declarative rather than operational

Specifications have an important role in the software life-cycle: They are a
reference point for both requirements analysis and implementation, and are a
valuable means of promoting a common understanding among all those con-
cerned with the system.[8] Speeifications serve for proving an implementation
against the requirements with respect to certain properties, e. g. invariants on

BIBLIOTHEQUE DU CERIST

the systern stales, I/Q rclation of a funciion, or mutual exclusion of critical
operations in a paralle) system.

The role of specifications in software development is furiher increased if an
implementation is derived by relinement of the specification. Each refinement
step introduces a design decision moving towards an impleinentation while keep-
ing the specified properties intach. If we conld get to an implermnentation without
aungmenting the specification of system properties by design decisions explicitly
we had an erecutable specification. It could serve either for prototyping or for
generating software products, depending on the software quality of the imple-
mentation.

Executable specifications especially for rapid prototyping is the goa! of spee-
ification languages classificd as Very High Level Language (VHLL). Krueger [7]
discusses VHLL like SETL, PAISLey, and MODEL under the aspect of software
reuse. The reuse effect is achieved by the specification language compiler or in-
terpreter, It makes the implementation decisions without involving the author
of the specification.

General purpose specification {anguages, as those mentioned so far, are based
on elermnentary mathematical concepts: sets, functions, and sequences for mod-
elling data, and predicate logic for modelling properties of operations. Systems
that interpret or compile such specifications have to use generally applicable im-
plementation strategies. So on the one hand all aspects of a system have to be
specified and refined down to those elementary concepts. On the other hand the
efficiency of the automatically achieved implementation is at best acceptable for
protoiyping.

This situation can be dramatically improved i the problemn domain is re-
stricted to a certain application area: A system of that domain can be described
in terms of a dedicated specification language. An applicafion genercior trans-
lates such a specification into an implementation [1]. Krueger {7] characterizes
dornains appropriate for application generators, if “many similar software sys-
tems are written, one software systein is modified or rewritten many times during
its lifetime, or many prototypes of a system are necessary to converge to a us-
able product”. Report generators for data bases are a typical arca for application
generators {3].

Narrowing the problem domain yields important advantages for specification
design and execution:

— A specification may refer to concepts thas are well-understood in the domain
and hence need not be further refined.

— A domain specific model for problem decomposition can induce a modular
structure of the implementation without being specified explicitly for each
system,

- Duomain specific implementation technigues can be applied automatically.

Hence systems are described on a high level and the specifications are executable.
In this paper we discuss strategies for executable specifications in the domain
of language implementation. Translator generation can also be considered as an

BIBLIOTHEQUE DU CERIST

instance of the application generator principle, although this research is much
older than the application generator idea. More than forty years of research and
practice in compiler construction have resulted in common understanding of task
decomposition and of subproblems, powerful formal ethods for problemn de-
scription, and in systematic implementation techniques. Tools are available that
generate implementations from specifications, hence achieve their executability,
The domain is very broad, ranging from compilers and source-to-source transla-
tors for programming languages to the implementation of dedicated specification
languages, as used for application generalors.

In the following sections we emphasize the discussion of specification strate-
gies applied in this application domain to achieve executability. We use Eli [2] [4]
as an example for a systemn which integrates many geoerating tools, precoined
solutions, and domain specific knowledge. A major design goal of Eli is to achieve
executable specifications that have a small cognitive distance to requirements of
its problem area. We have learned many aspects of the specification strategies
discussed here from the experience in developing and using the Eli system.

2 Domain Specific Decomposition

Decomposition of problems into subproblems is a natural method for analysis
and design. Different. aspects of a problem are separated and deseribed on a suit-
able level of ahstraction. Solutions can be found for smaller units using different
techniques suitable for the particular subtask. Modular structure of the imple-
mentation and its intetfaces can be derived from the decomposition structure.

If the problem space is restricted Lo a certain application domain specification
and solution can be supported by a domain specific decomposition model that
can be applied for any particular problem instance of that domain. Many years
of experience in the language implementation domain led to a generally accepted
model for decomposition of compilation tasks, as shown in Figure 1 taken from
[2]. That model is not restricted to programming language compilers: In case of
arbitrary language translation or interpretation the transformation phase usually
yields the final result, the encoding phase is left cut. '

The existence of a suitable domain specific decomposition model simplifies
the development of particular problem specifications: The description of the
model leads to a structured way of reasoning about the problem - even if users
are not experienced in language design and translation: It becomes obvicus that,
for example, the form of tokens of the input language has to be specified, or rules
Tor name analysis must be chosen if the language has named ohjects. The model
suggests thal these properties of the problem refer to different subtasks and that
they are related by the representation of name tokens.

A domain specific decomposition also allows one to specify different subtasks
via dedicated formal models using suitable specification languages: E. g. the form
of tokens is described by regular expressions like

Ident: $[a-zA-Z][a-zA-Zo-91%*

