BIBLIOTHEQUE DU CERIST

Ian Sommerville Manfred Paul (Eds.) Ce o /i_:-'//j}

Software Engineering _
ESEC 93

4th Buropean Software Engineering Conference
Garmisch-Partenkirchen, Germany

September 13-17, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Varis Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Bditovs

Gerharg Goos ‘uris Harimanis

Universitdl Karlsvithe Cornell University

Postfach €9 8¢ Department of Computer Science
Vincenz-Priessnitz-Stralle 1 4130 Upson Hall

D-76131 Karlsrohe, Germany ithaca, NY 14853, USA

Yoluime Bditors

fan Sommerville
Computing Departmeni, Lancaster University
Lancaster LAY 4YR, UK

Manfred Paul
Institat fiir Informatik, Technisciue Universitiy Miinchen
Orleansstr. 34, D-81667 Miinchen, Germany

5y

CR Subiect Classification (19%15: 3.2-3, T3, K6

ISBN 3-540-57209-0 Springer-Veriag Beriin Hoidelberg New York
ISBN 0-387-57204-0 Springer-Verlag New York Berlin Heidelberg

This work is subject 10 copyright. All rights are reserved, whather the whole or pari
of the matenal is concerned, specifically the righis of translation, reprinting, re-use
of illustrations, recifation, broadcasting, reproduction an microfilms or in any other
way, and storage in data barks. Duplication: of this publication or parts thersof is
parmitied only under the provisions of the German Copyright Law of September 9,
1963, in its corrent version, and permission for use must always be obtained from
Springer-Veriag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-teady by avtheors
Printing and binding: Druckhaus Beliz, Hemsbach/Bergsir.
45/3140-543210 - Printed on acid-free peper

BIBLIOTHEQUE DU CERIST

Foreword

Twenty-five years ago, the first of two NATO workshops to discuss the software crisis
was held at Garmisch-Partenkirchen. From these workshops, the discipline of software
engincering was borm. Now, the fourth Ewropean Software Engineering Conference
retums to Garmisch to celebrate this 25th anniversary and to look forward to the nexi
25 years,

More than 135 papers were submilted to ESEC93 ount of which the 27 papers in
these Proceedings were accepied. Papers were submitted from most European counries,
trom the US, Canada, Japan and other Asian countries. Quality was the principal
scleetion criterion for selected papers but the Programme Committee also wanted o
ensure that the papers presented included both advanced academic research and the
industrial use of software engineering technology.

We have therefore a mixture of themes, Some, such as Software Engineering and
CSCW, are forward leoking and anticipate future developments; others, soch as
Systems Engineering, arc more concerned with the reports of practical industrial
applications, Some scssions, such as that on Software Reuse, reflect the fact that some
of the concems first raiscd in 1968 remain unsolved problems. The increasing
importance of requirements engineering is reflected by the inclusion of two sessions on
this topic. The long-term research objectives of understanding the software process and
the development of effective environmental support are also covered berc.

The submitied papers are complemented by presentstions from distinguished
invited speakers from Furope and North America. Invited papers cover real-time
systems, software measurement and metrics, and industrial software engineering
practice. We are particularly pleased to welcome our infroductory speakers Professors
F.I. Bauer and I. Buxton who played a large part in 1968 and 1969 workshops and who
have made a major contribution 1o the development of software engineering.

The organisation of a major conference is impossible without a great deal of help
and support, We are grateful to the members of the Programme Committee and to other
teviewers for their time. Pere Botella and Johannes Siedersleben the Tutorial and the
Toois Fair organisers have made an important contribution to the success of ESEC'93.
Particular thanks also to Jacqui Forsyth at Lancaster University and 1o Uta Weber at the
Technical University of Munich who provided invaluabie help with the technical and
the Jocal organisation.

European work in software engineering is now comparable with the best in the
world and in some fields, such as the use of formal methods, it is generally recognised
that European work is pre-eminent. We believe that this series of ESEC conferences,
first established in 1987, has contributed to this and we are confident that ESEC’93
will continue the high standard of its predecessors.

July 1953 Ian Sommervilie
Manfred Paul

BIBLIOTHEQUE DU CERIST

Program Commitiee

Pragram Chair

Tan Sommoerville, Lancastey University UKD

General Chair

Manfred Papl, Techniscne Universitdt Minchen (Ganpany)

Tuterial Chair

Pere Botella, Universitat Politeenica Catalurya (Spain)

Tooly Fair Chair

fohannes Siedersieben, sd gom {Gennany)

iempers

1. Bagstow (France)

1. Bishop (South Africa}
B, Bjgmer (Denmark)
P. Botella {Spain)

. Broy (Germany)

J. Buxton (JK)

. Conradi (Norway)
3. Domélki (Hungary)
A. Endres (Germany)

I Estublier (France)

. Fernstrom (Franee)
A, Foaggetta (Ttaly)

A, Gallo {Italy)

5. Gorski (Poland)

W. Hesse (Germany)}

2. Hruschka (Germany)
3. Kaiser (115 A}

M. Lacroiz (Belgium}

B. Lang (Trance)

K. Lohr {(Germany)

B. Lennartson (Sweden)

N. Madhavii (Canads)

. Montangero (Iraly}

P. Navrat {Czechoslovakiaj
G, Qddy (UK)

i, Obbirk {Netherlands)
H.D. Rombuch {Germany)
L Rothauser (Switzerland)
&, Schultz {Austria)

8. Tedd (UK)

E. Tyugu (Estonia)

AL Wazd (UK)

R.C. Welland (UK)

I, Winkler (Germuny)

BIBLIOTHEQUE DU CERIST

Z. Banaszak
D. Barstow
W. Bartsch
N. Belichatir
R. Benlley
J. Bishop
D. Bjgmer
G. Blair

L. Blair

I, Bochmann
P. Botella
A. Bradlcy
M. Broy

X. Burgues
1. Buxton
S. Chobot
R. Conradi
G. Dean

A, Dix

E. Domdlki
H. Ehler

A. Endres

J. Estublier
C. Facchi
C. Femstrom
P. Forbrig
M. Fuchs

Vil

Reviewers

A. Fuggetta
F. Gallo

J. Gorski

T. Gritzner
R. Grosu

1. Handke

W. Hesse

P. Hruschka
H. Hussmann
Y. Ismailov
QG. Kaiser

M. Lacroix
B. Lang

K. Lohr

F. Long

B. Lennartson
H. Loeper

N. Madhavji
A. McGettrick
C. Montangcro
P. Navrat

D. Nazareth
H. Obbink

H. Oberguclle
G. Oddy

A Olive

F. Orevas

M. Paul

J. Rowlands
G. Riedewald
T. Rodden
IL.D. Rombach
E. Rothauser
K. Sandahl

T. Schafer

A. Schultz

E. Shartkawi

J. Sistac

0. Slavkova

I. Sommerville
K. Spiers

A, Spillner

R, Steinbruggen
K. Stoelen

M. Tedd

E. Tyugu

B. Uologh

T. Unstaln
A.O. Ward
R.C. Welland
J. Winkler

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

Table of Contents

Invited Papers

On the Decline of Classical Programmingccovviiimiiinriiiisi i eensns 1
JN. Buxion

Computers are not QmOIPOtENE..........occoveieiiiiraen e e e eeres s vsssstes eeeesesniensns 10
D. Harel

Real-Time Systems: A Survey of Approache@ to Formal Specrﬁcahon and
Verification... creves e vemrarrenrnrimenruaerasranenrriranes 11
C. Ghezzi with M Fekier and C Bet!ertzm

Software Engincering in Business and Academia; How Wide is the Gap? 37
F. Denent

Sofiware Faults in Evolving a Large, Real-Time System: A Case Study 48
DLE. Perry with C.8. Stieg

The Expericnee Factory and its Relationship to Other Improvement Paradigm 68
V.R. Basili

Requirements Specification 1

Inconsistency Handling in Muili-Perspective Specificationscccooceeeienne 84
A, Finkelsiein, D. Gabbay, A. Hunter, J. Kramer and B. Nuseibeh

Requirements Engineering: An Integrated View of Representation, Process and

DHOMUAIILL ..oy ue et et s e s et eevva o vab s e ee e s s st s ase e smen s eabassasann s eanbaata b ratsnreans 100
M. Jarke, K. Pohl, 8. Jacobs, J. Bubenko, P. Assenova, P. Holm, B. Wangler,

C. Rolland, V. Plthon, J.-R. Schmitt, A. Sutcliffe, S. Jones, N. Maiden, D. Till,

Y. Vassiliou, P. Constantopoulos and G. Spanoudakis

Requirements Specification 2

Making Changes to Formal Specifications: Requirements and an Example.............115
D.W. Busiard and A.C. Winstanley
Formal Requirements Made Practical ... 127

J. Hagelstein, D. Roelants and P. Wodon

BIBLIOTHEQUE DU CERIST

AT

Formal Aspeects of Software Engineering

4 Formal Framewoik for ASTRAL Intra-Lovel Proof OBliganions,
A, Coen-Porisini, R.A. Kepunerer and D. Mandriofi

Assertion-Based Debugging of Imperative Programs by Abstract Inferpretation
F, Bourdencle

433

ceeeen 50T

BIBLIOTHEQUE DU CERIST

On the Decline of Classical Programming

Pirofessor I.N. Buxton

Chairman, Buxton-Douglas Ltd
Chairman, Room Underwriting Systems Lid
Professor of Information Technology, King's College

Abstract. The paper puts forward the view that we are in a peried of
fundamental change in the natre of the LT. business, in that the driving
pressures are shifiing from the supplier side to the applications user side.
In part this is a Iong-ierm consequence of the unhundling of software
pricing {discussed at the NATO conferences 25 ycars ago}, and in part the
consequence of the recent spectacular reductions in hardware costs. The
paper discusses the consequences for business, education and research and
it indicates the danger of rediscovering the problem of the “software crisis”,
but at a new level of programming by the applications owners.

1 Introduction

In this paper I shall put forward the view that we arc in a period of far-reaching and
fundamemal change in the practice of Information Technology. This has been a
gradual though accelcrating process during the 1980s and some of its effects are now
becoming apparent in the changes in the structure and activitics of industry. The
change involves more than a development of maturity afier some 40 years since the
first use of computers - a central aspect is the increasing shilt to the design of
computling systems by non-specialists in IT and indced by those with liztle interest in
the technotogy per se. The driving pressure on IT development is shifting from the
supply side to lhe user side.

Necessary precursors for this change to come about have been, firstly the unbundling
of software prices from associated hardware and secondly, the spectacular drop in
hardware costs over the years. This revolution in electronics has given us the PC
level of equipment at prices accessible to individuals. In part also the change is
bascd on the developsnent of new programming concepts which are nearer to the
apptication field and which give the user dircct access to the services of the machine

In my view a useful and helpful analogy can be drawn with the development of the
motor car industry. In the first cra before, say 1914, cars were expensive, their
operation required the scrvices of specialist engincers, they were far from reliable and
their possession was a mark of status and prestige. The "owner-driver” was a wealthy

BIBLIOTHEQUE DU CERIST

ecceniric or hobbyisi. All this was changed in the 1920s by the advent of the Modcl
T Ford in the USA and of the Austin 7 in the UK, The car went from being a stalus
symbol for the privileged and the domain of experts to a necessity for ordinary life.
Costs became highly competilive and user-friendly standardised interfaces were a
necessity for survival in the market, The crucial steps in this transition were an order
of magniude reduction in cost of the hardware and improvements in reliability and
usability which made the car simple eacugh for a non-engineer 16 learn to use.

in the case of IT, the introduction of spreadsheet systems provides a good example of
the advent of technology which made the computer accessibie 1o owners of problems
in an application ficld. These systems are "programmed”, but in the language of the
accountant and without the services of professionat computer programmers. Their use
nas ransformed computing practice,

However, this new wave of applications which are programmed by the application
owners has brought its own problems. In essence the activity involved is sull
programming - though in a very high level language - and in the longer term the
critical issuc is sliil that known as “mainienance”. All is well while appilications arc
smali and persenal, but when they becoms large, complex and cven integral (o the
conduct of the hasiness, and then the author leaves, we have real problems,

There is an urgent requirement 1o bring 1o this new field of user-programmed PC
applications the same principles of good sofiware engineering as those we need in the
more clagsical programming field. Even wilh spreadsheet applications and the like,
we need to develop well-engincered solutions, well documented and capable of
enhancements and maintenance for the full working life of the requirement, by people
other than the original anthor,

In this paper we look first in somewhat more detail at the general features of this pew
era. Then we trn to an analysis of some specific developments in compuler
nrogramming and the role of the "professicnal programmer”. Finally, we embark on
some speculation as to the futare of programming support environments and of
research in the feld,

~

Z The transition {o the new erg

The climate of ihe first era in compuiing was set above all by supply side deminance
and in particolar by the cost of hardware, The sarly field of wechnical applications
wag quickly overtaken by DP applications which bscame the principal area of use,

in gencral terms, compuling was taken on board as a new and expensive lechnology
which would at some time in the future be of great imporlance. Companies bought
compulers to reserve their future positions and in the short 1em there was a passive
accepiance of their unreliability, lack of rezl cost benefits and user-hostile interfaces,

As hardware costs began to fall dramatically in the 1970s and beyond, software began

BIBLIOTHEQUE DU CERIST

to be secn as the dominant cost and also the major problem, We can quote a few
global estimates which have been widely circulated.

- in typical corporaie applications, software costs arc some 3x
hardware costs;

- some 70% of systems cost is in "maintenance” - ie in repair and in
enhancement of the software;

- in the US DoD, some 80% of delivered sofiware becomes
"shelfware” and is never put into use;

- the Japanese produced a national projected estimate of the need for
programmers which suggested that in Japan alone, some 970,000
were needed by the year 2000.

These and many other observalions combine to suggest that in aggregate terms, a
scarce resource in programming skill is being utilised to a large extent ineffectively,
in building expensive software which is of limited utility. This became generally
known as the "soltware crisis”.

In the 1980s a view was widely adopted that the software problem could best be
addressed by a transformation of the industry, seen then as craft-intensive with
imadequate basis in scientific theory or in enginecring practice, intg a more soundly
based and capital-intensive industry. This was 10 be brought about by the
introduction of better methods and by investment in the use of soflware tools -hence
the research into CASE tools, IPSEs, sofiware factortes, formal methods and so on,
all combined under the general title of "sofiware engineering research”.

This period of deveiopment, when hardware costs became less significant than
software, was one when the supply side dominance of the market continued; though
the dominant supply technology was now that of software development.

It is the central thesis of this paper that we are now undergoing a fundamental shift
in the nature of the business: dominance of the supply side is now in effect
supersedcd. On the hardware side, the major engine of change has been the
development of the PC into the versalile and inexpensive professional workstation,
together with the software 10 enable the user to make effective and direct use of the
remarkable level of available computational power. The combination of the modem
PC together with networking and with sofiware packages for wordprocessing,
spreadshects, databases and so on has transformed the appearance of compuling and
has created a new and powerful user community throughout industry and commerce.

A Turiher driving force [or change in the current economic climale especially, is the
growing realisation of the poor results in cost-berefit terms from much current IT use.,

BIBLIOTHEQUE DU CERIST

A recent repori by the consuitants A.T. Keamey states that 89% of British firms do
not ase technology successfully, and the greatest waste is in computing administraiion
syslems.

In other areas of industry the use of IT is an integrai and necessary part of the
busingss, where computers have been in use for decades and form integral components
of products or production processes, eg in gerospace, banking and the process
industries. Here also a process of change {s going on, though less spectacular and
clear-cut in nature. The process is that of gradval acquisition, by industries where 1T
is a necessary part of the business, of their own IT skilled personnel. In earlier days
such companies relicd heavily on the skills of their hardware suppliers (0 install their
systems and on the sysiems/scitware consuliants to carry oul their requirements
analysis and sysiems design, The result was the phenomenon of "locking-in" to a
specific set of hardware and to the continuing services {or maintenance of a specific
systems house.

The rise of in-house skills, together with the spectacular development of a highly
competitive markst in hardware componenis means that users are less content now 10
ve locked in. The pressure [or open sysiems supply is now widespread and hardware
suppliers are responding to it. Systems houses begin wo see their future business as
being increasingly as experts in "systems integration”, ie in helping uscrs w configurs
their systemns from the best components available regardiess of supplier. Users now
expect to be able to run their selected packages or thexr own bespoke systems on new
hardware platforms. 5o, 10 sell new hardware one must both offer wransparent support
o old systems and also give freedom for the user to add more soltware and to
combine with hardware from other vendors.

The consequences in the service industry of systems, IT consuitancy and software
houses is also beginning o be considerable. Variations are wide, for instance
between countries, bot there scems to be evidence for a drift from iraditional areas
such as bespeke systems, with continuing supplier maintenance, towards software
products which are parameterisable, user enhanceable or indecd programmable, ina
scnse which we discuss tater, by the user,

3 Models of computer programming

The traditional model of softwars development was that of a mulii-stage process often
illustrated by a "waterfall medel”. Firstly, the analysis of user requirements was done
by dialogoe between the user and the systems analyst. The analyst then specified the
system and designed the data structures and algorithms required for the solution. The
results includzad docomentation in {low charts, data fayouts and so on. In the third
stage, the "coding” was done by a real programmer in assembly code at or close to the
igvel of the hardware machine,

BIBLIOTHEQUE DU CERIST

The first great breakthrough in improvement of the process, was the development of
high level languages in the late 1950s. The adoption of HLLS such as FORTRAN,
Cobol and their successors ok many years but led to an order of magnitude increase
in productivity of the technical staff, In effect the analyst could now programme
direcly from the level of algorithms and data structures. The grades of sysiems
analyst and programmer tcnded to merge and the domain of the "real programemer” or
machine lecvel expert is mainly now in the specialisms of operating systems or resource
critical applications design.

Despite the produclivity gains of high level language use, both per se in specding up
coding and indircetly in enabling increased populations to learn 1o "program” without
having to understand detailed machine architeclure, nevertheless the "software
boitleneck” problem remained endemic in the 1970s and 80s.

There was an increasing strain on the scarce technical stalf resource of people - now
usually called "software engincers” - who are capable of thinking in IT terms of data
structures and aigorithms and who can transform a user requirement into an 1T
solution, The resource conlinues to be scarce because:

a) under this model of the process, the step of translation of requirements into
the design of algorithms is still essenrial;

b} the increasing numbers of existing systems in use need "maintenance” - ie
they must evolve with changing requirements, and they can only be
mainlaincd by soflware engineers.

There is limited scope for (raining more programmers. Though some largely
untapped labour pools exist, it may well be that most of those with the ability to think

in algorithms are alrcady in the IT profession. Current directions of development it

the arca of capilal-intensive soliware {actories represent a response (o the increase of
demand for softwarc skills ogether with the scarcity of engincers able to respond to
the demand. The rationale for this response is that in other branches of engineering
capital investment in the production line together with more raticnal approaches to the
process have wansformed industrics from craft status with substantial success. We
will suggest below that this stralegy perhaps now looks somewhat outdaied and
overtaken by events. Indeed, one could take the view that it is based on a false
analogy in that building software is a design issue; production is already largely
autornaied by use of a programming language and compiler.

4 The next breakthrough

The development of the spreadsheet is the archetypical example of a nexi-generation
approach. The approach is to automale the closed language of a specific application
domain together with a generic algorithm for "solutions" of problems expressed in that

BIBLIOTHEQUE DU CERIST

demain - with the spreadsheet, e language is that of the rows and colamns of figures
familiar 10 accountants, togeiher with arithmetical relationships amongst them, and the
system ensures these always balance. So, the user designs and maintaing his own
“program” expressed directly in the language of the appiication domain and the
intermediate step of designing problem-specific IT algonthmic solutions gocs away.
When combined with hardware cheap enough for all to afford, the result is a real order
of magnitude change in computer use.

The spreadshect can be regarded as an extreme posilion on a spectrum of computing
systems. At the other end is the classical single applications system, designed and
built by IT profcssionals to meet a user requirement. In between are more fiexible
approaches which in essence involve reuse of existing software intended to be of wider
use than one application - for example, parameierisable syslems or systems built
around reusable kernels. Such approaches are now the norm for building customiscd
systems where the new design and coding is performed by the IT engineer,

Returning to the real breakthrough area, typified by the spreadshect, in which IT
professionals are not involved as imermediarics in specific applicalions, we can citc
other arcas where closed domains have been aatomated and the user expresses his own
problems in domain-specific forms. Wordprocessing is perhaps the widest used
example, Text processing in the desk-top publishing area is not far behind. There
are funhier example systems in engineering design and in architecture and other fields.

We maintain that any field in which reat [T knowledge is essential 1o buiid a computer
application i3 not an example in (his class. It is inleresting as an intermediate case
to consider the currently Tashionable igsue of "object-orientedness” and w enquire as
0 whether or not (his constituies a breakthrough, The concepis of classes of objects
with sels and atiributes were invented as a means of representing real world entities
sach as machines and vehicles in the field of discrele event simulations in O.R; an
zarly example of the cntity - auribute-set model can be found in {21,

The further and impoenant step of the concept of class inheritance was added by Dahl
and Mygaard in SIMULA 67, Though ohjects, aliributes, sets and inheritance provide
powerful modeliing tools for describing, in language clase to the users terms, the
entities in a problem domain, their rules of behaviour still have to be expressed in
algorithmic terms and so object-based applications still need IT designers.

Agother major arca in which a good case can be made for maintining that the
nrogramming approach of the now era has already arrived is that of DP applicaticns,
using 4th generalion languages and dalabase consiruction and enquiry languages. The
advance of 4th generaiion lungnages has gradually weakened the grip of waditional
Cobol programming in the DP field; and this has gone largely unobserved by more
iechnical groups and in particular by academic compaicr scientists. As an example
of ihe shift o a higher level style of applicaton language domain programming,

BIBLIOTHEQUE DU CERIST

however, the 41k generation language arca is still to some extent an intermediate case
as IT knowledpe is still essenlial to consiruct applications.

We do not propose to go on o consider further points on this spectrum of computer
applications such as hyperiext, building and vehicle structure design systems eie -
suffice it 1o say that we think the point made that there is indeed a spectrum of a wide
and important range of applications where the generation of 1T solutions invelves less
than fully professional IT knowledge and indeed, at the spread sheet and word
processing end, needs very Jimiled 1T skills.

Conclusions

A cenrrally important consequence of these developments concerns the projected
demand for increased numbers of SW Engincers. A decade ago the rate of demand
was increasing steadily and implausible predictions as to the eventual size of the
programming population were made. this apparent demand has been eroded as the
perceived need Lo develop ever more specific applications programs has been replaced
in many areas by the use of domain-specific packages and user-programmable
software. The quasi-potential increase in numbers has occurred: but it is in numbers
of problem owners programming their own solutions dircclly rather than in numbers
of software engineers acting as intermediaries between the problem owners and their
computers.

As a corollary to this development, the market for new equipment suitable for dircct
use by problem owners has increascd very substantially in arder to provide the owners
with direct access to their own machines. Salcs of PCs and work stations now excecd
by orders of magnitude in numbers the sales of main {rames, and the PC business is
now probably dominant over the mainframe business in financial measures.

Meanwhile, the need for bespoke sollware systems has not gone away in all
application arcas. There are many application domains not yet served by user-
programmable packages. In particular in the high technology industries the necd for
large and highly application-specific soliware, for use in products or in produclion
continues to grow and 10 be crucial to business success and cven (o survival.

[think we have not yet taken on board the consequences of this changed pattern of
demand for software engincers in, for example, the education system. It may well
be that currcnt provisions for training engincers a2 the higher professional levels will
iurn out to be of the right order of magnitude, though al present one can only guess
as siatistics arc not yet available. It is reasonably clear, however, that we will need
to train large sections, if not most of the population in simple levels of computer
familiarisation to aid them in access 1o the application specific systems they will need.

A Tfurther area of intercst in speculating on the conseguence of these recent changes

BIBLIOTHEQUE DU CERIST

is that of the dovelopment of PSEs, injegrated toolsets and methods for support of
scftware production. These were pwt forward during the 1980s as the cssential
techrical way shead in turning scftwars production into a capital intensive industry,
thereby solving the problem of the projected shoriage of softwars engineers. If the
above analysis is comrect then the probiem for which PSEs were perceived as the
solution has in substantial measure gone awzay. Incidemally the development of PSEs
io date has not proceeded as rapidly as was hoped - afier some wwelve years since the
publication of "Stoncman”, [3] one sees very few real examples of fully integrated
toolsets, though there are very useful CASE tools on the market.

A more promising line of development in support systems and tootseis would now
seem to be in the support of fexible and rapidly configurable CASE woolscts w cffer
support closely aligned to local necds within an organisation which is capable of rapid
adaptation as businesses change. We nced 10 pay more atiention o the engineering
process and 10 the central requiremcnt for fexibility in thal process to meet changing
demand.

The need for supporl systeins, and indeed for a more sysiematic approach 10 building
software, clearly is still a fundamenial part of the business. The custom built systems
io be supported now include not only the high-tech areas discussed above but alsg the
relatively new and vnexplored ficld of sofiware package production. In this context
we inciude classical paramectrisable packages and alse the new product ranges of user
programmable syslems, spreadsheeis, user driven database sysiems and so on, The
producers of these systems compele in 8 market place which deraands high quality,
fast response 10 client wishes, low price (which depends on high volume sales) and
ihe market is not unaifected by the dictates of fashion, Here is an area where the
concept of the "software factory"” really has relevance, but it may require a different
sort of faclory from those envisaged in eatlier years,

Lef us now tirn L0 the consequences for rescarch in the IT field. The changes we
face now are due primarily to the develepment, in a [ew areas, of domain-specific
ways of enabling the problem owner (o ulilise computers in implementing solntions
o problems, expressed to the systern directly by the user without the intermediate
steps of algorithmic solution and bespoke programming. Urgent questions arise as
t0 whether other areas can he found amenable to such approaches - this perhaps is the
prerogative of the IT entrepreneur rather than the academic. A proper questien for
sesearch however is 10 determine what can be said at a more generic level about
domain-specific high tevel programming. Whal if any, are its general characteristics,
whal hypotheses can one make and what theorics might be discovered 1o bring order
10 this area?

Agam and at the level of enginssring development, the area of construction of large
bespoke systems will continue - both for high-tech fields ard in the production of
package software product lines - but these arcas are also not immune from the need
for much decper involvement of their "users” - albeil tcchnically very aware and

BIBLIOTHEQUE DU CERIST

competent users - in ensuring that such systems really megt their requirements and can
be modified in step with changes 10 those requirements. We have here a major and
relatively unexplored arca for software engineering research: how do we build sysiems
which can be maintaincd, modificd and enhanced by their users? Some current work,
notably concerned with study of the soliware process, is already moving in this
direction,

Perhaps the most important coaclusion, however, is the realisation that the level of
success which we have achicved in the new area of very high level domain specific
programming techniques has itself opencd up a whole new area of emerging problems,
Even programming & spreadsheet is siill programming in (he sense that an IT system
is designed and built to fulfil a business purpese which will inevitably evolve and
change in time. The spreadshect model will necd 1o be developed and maintained,
and it will tend 10 grow both increasingly complex and increasingly essential 1o the
business. In a word, we are about 10 embark on a rediscovery of all the problems of
the software crisis - but at a new level ol programming.

It is clear that application domain programming by users is still subject to the atiments
of classical amateur programming, We observe that unwieldy, opaque and non-
mainiainable systems could now be even casier to produce than with classical
programming. Our most urgenl requircmient 1 te bring some grasp of the clements
of software engineering 10 this application world. We need to see the design of these
systems carried out by effective engineering techniques and recorded in accessible
documentation, se that such syslems can be maintained and enhanced into the fulure.
The requirements 10 bring this about, for insiance on the educational system at all
icvels, are formidable indeed.

References

1. Malcolm, R., private comm., 1991

2, Buxion, J.N. and Laski, 1., "Control and Simulation Language”, Computer }.
vol 3 no.3 (1962)

3. Buxton, IN., "Requirements for an Ada Programming Support Environment”,

Dcpartment of Defence, 1980

