
Ian Sornmerville Manfred Paul (Eds.) cZ~o1-;-f11-

Software Engineering
ESEC '93

4th European Software Engineering Conference
Garmisch-Partenkirchen, Germany
September 13-17, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitat Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe l
D-76131 Karlsruhe, Germany

Volume Editors

Tan Sommerville

J UIis Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Computing Department, Lancaster University
Lancaster LA1 4YR, UK

Manfred Paul
Institut für Infonnatik, Technische Universitiit München
Orleansstr. 34, D-81667 München, Germany

CR Subject Classification (199i): D.2-3, C.3, K.6

ISBN 3-540-57209-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57209-0 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Al! rights are reserved, whether the whole OI part
of the material is concerned, specifically the rights oftmnslation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the Gennan Copyright Law of September 9,
1965, in ils current version, and permission for use must always be obtained from
Springer -Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by authors
Printing and binding: Druckhaus Beltz, HemsbachlBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Foreword

Twenty-five years ago, the flfst of two NATO workshops to discuss the software crisis
was held at Garmisch-Partenkirchen. From these workshops, the discipline of software
engineering was bom. Now, the fourth European Software Engineering Conference
returns to Garmisch to celebrate this 25th anniversary and to look forward to the next
25 years.

More than 135 papers were submitted to ESEC'93 out of which the 27 papers in
these Proceedings were accepted. Papers were submitted from most European countries,
from the US, Canada, Japan and other Asian countries. Quality was the principal
selection criterion for selected papers but the Programme Committee also wanted to
ensnre that the papers presented included both advanced academic research and the
industrial use of software engineering technology.

We have therefore a mixture of themes. Sorne, such as Software Engineering and
CSCW, are forward looking and anticipate future developments; others, such as
Systems Engineering, are more concemed with the reports of practical industrial
applications. Sorne sessions, such as that on Software Reuse, reflect the fact that sorne
of the concems flfst raised in 1968 remain unsolved problems. The increasing
importance of requirements engineering is reflected by the inclusion of two sessions on
this topic. The long-term research objectives of understanding the software process and
the development of effective environmental support are also covered here.

The submitted papers are complemented by presentations from distinguished
invited speakers from Europe and North America. Invited papers coyer real-time
systems, software measurement and metrics, and indus trial software engineering
practice. We are particularly pleased to welcome our introductory speakers Professors
FL Bauer and J. Buxton who played a large part in 1968 and 1969 workshops and who
have made a major contribution to the development of software engineering.

The organisation of a major conference is impossible without a great deal of help
and support. We are grateful to the members of the Programme Committee and to other
reviewers for their time. Pere Botella and Johannes Siedersleben the Tutorial and the
Tools Fair organisers have made an important contribution to the success of ESEC'93.
Particular thanks also to Jacqui Forsyth at Lancaster University and to Uta Weber at the
Technical University of Munich who provided invaluable help with the technicaI and
the local organisation.

European work in software engineering is now comparable with the best in the
world and in sorne fields, such as the use of formai methods, it is generally recognised
that European work is pre-eminent. We believe that this series of ESEC conferences,
first established in 1987, has cOUitributed to this and we are confident that ESEC'93
will continue the higb standard of its predecessors.

July 1993 lan SommerviIIe
Manfred Paul

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Program Committee

Pro gram Chair

lan Sommerville, Lancaster University eUX)

General Chair

Manfred Paul, Technische Universitat München (Germany)

Tutorial Chair

Pere Botella, Universitat Politecnica Catalunya (Spain)

'rools Fair Chair

Johannes Siedersleben, sd &m (Germany)

D. Barstow (Frallœ)

J. Bishop (South Africa)

D. Bj~mer (Denmark)

P. Botella (Spain)

M. Emy (Germany)

J. Buxton (UX)

R. Conradi (Norway)

B. DOmolki (Hungary)

A. Endres (Germany)

J. Estublier (France)

C. Fernstrom (France)

}\. Fuggetta (Italy)

F. Gallo (Italy)

J. Gorski (Poland)

W. Hesse (Germany)

P. Hruschka (Germany)

G. Kaiser (USA)

M. Lacroix (Belgium)

lB. Lang (France)

K. Lohr (Germany)

B. Lenn~Itson (Sweden)

N. Madhavji (Canada)

C. Montangem (Italy)

P. Navrat (Czechoslovakia)

G.Oddy(UK)

H. ObbirJ:: (NetherJands)

RD. Rombach (Germany)

E. Rothauser (Switzerland)

A. Schultz (Austria)

M. Tedd(UK)

E. Tyugu (Estonia)

A.O. Ward (UK)

R.C. Welland (UK)

J. Wiukler (German y)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

Reviewers

Z.Banaszak A. Fuggetta M. Paul

D.Barstow F. Gallo J. Rowlands

W.Bartsch J. Gorski G. Riedewald

N. Belkhatir T. Gritzner T.Rodden

R. Bentley R. Grosu H.D. Rombach

J. Bishop J. Handke E. Rothauser

D. Bjproer W. Hesse K. Sandahl

G. Blair P. Hruschka T. Schafer

L. Blair H. Hussmann A. Schultz

P. Bochmann Y.Ismailov E. ShaIkawi

P. Botella G. Kaiser J. Sistac

A. Bradley M. Lacroix O. Slavkova

M. Broy B. Lang 1. Sommerville

X. Burgues K. Lohr K. Spiers

J. Buxton F. Long A. Spillner

S. Chobot B. Lennartson R. Steinbruggen

R. Conradi H.Loeper K. Stoelen

G.Dean N.Madhavji M.Tedd

A.Dix A. McGettrick E. Tyugu

B. Domolki C. Montangero B. Uologh

H. Ehler P.Navrat T. Uustalu

A. Endres D. Nazareth A.O.Ward

J. Estublier H.Obbink R.C. Welland

C. Facchi H. Oberguelle J.WinkIer

C. Femstrom G.Oddy

P. Forbrig A. Olive

M. Fuchs F. Orevas

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

Invited Papers

On the Decline of Classical Programming .. 1
JN. Buxton

Computers are not Omnipotent.. ... 10
D. Harel

Real-Time Systems: A Survey of Approaches to Formai Specification and
Verification ... Il
C. Ghezzi with M. Felder and C. Bellettini

Software Engineering in Business and Academia: How Wide is the Gap? 37
E.Denert

Software Faults in Evolving a Large, Real-Time System: A Case Study48
D.E. Perry with C.S. Stieg

The Experience Factory and its Relationship to Other Improvement Paradigm 68
V.R. Basili

Requirements Specification 1

Inconsistency Handling in Multi-Perspective Specifications 84
A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer and B. Nuseibeh

Requirements Engineering: An Integrated View of Representation, Process and
Domain ... 100
M. Jarke, K. Pohl, S. Jacobs, J. Bubenko, P. Assenova, P. Holm, B. Wang 1er,
C. Rolland, V. Plihon, J.-R. Schmitt, A. Sutcliffe, S. Jones, N. Maiden, D. Till,
Y. Vassiliou, P. Constantopoulos and G. Spanoudakis

Requirements Specification 2

Making Changes to Formai Specifications: Requirements and an Example 115
D.W. Bustard and A. C. Winstanley

Formai Requirements Made Practical127
J. Hagelstein, D. Roelants and P. Wodon

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Xli

Formai Aspects of Software Engineering

A Panna! Frllillework for ASTRAL Intm-Level Proof Obligations483
A. Coen-Porisini, R.A. Kemmerer and D. Mandrioli

Assertion-Based Debugging of Impemtive Programs by Abstract Interpretation501
F. Bourdoncle

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

On the Decline of ClassicaI Programming

Professor J.N. Buxtan

Chairrnan, Buxtan-Douglas Ltd
Chairrnan, Roorn Underwriting Systems Ltd

Professor of Information Technology, King's College

Abstract. The paper puts forward the view that we are in a period of
fundamenta] change in the nature of the I.T. business, in that the driving
pressures are shifting from the supplier side to the applications user side.
In part this is a long-term consequence of the unbundling of software
pricing (discussed at the NATO conferences 25 years ago), and in part the
consequence of the recent spectacular reductions in hardware costs. The
paper discusses the consequences for business, education and research and
it indicates the danger of rediscovering the problem of the "software crisis",
but at a new level of progrrunming by the applications owners.

1 Introduction

In this paper 1 shall put forward dhe view that we are in a period of far-reaching and
fundamental change in the practice of Information Technology. This has been a
graduaI though accelerating process during the 1980s and some of its effects are now
becoming apparent in the changes in the structure and activities of industry. The
change involves more than a development of maturity after some 40 years since the
tirst use of computers - a central aspect is me increasing shi ft to the design of
computing systems by non-specialists in IT and indeed by mose wim little interest in
the technology per se. The driving pressure on IT development is shifling From the
supply side to me user side.

Neeessary precursors for mis change to come about have been, tirslly the unbundling
of software priees From associated hardware and secondly, the spectacular drop in
hardware costs over the years. This revolution in electronics has given us the PC
level of equipment al prices accessible to individuals. In part also the change is
based on me development of new programming concepts which are nearer ta the
application field and which give the user direct access to the services of me machine

In my view a useful and helpful analogy can be drawn wim the developrnent of the
motor car industry. In the lirst era before, say 1914, cars were expensive, their
operation required the. services of specialist engineers, they were far [rom reIiable and
their possession was a mark of status and prestige. The "owner-driver" was a wealthy

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

eccentric or hobbyisL Ali tJJis was changed in û'Je 1920s by !he advent of !he Model
T Ford in the USA and of !he Austin 7 in the UK. The car wenl from being a status
symbol for the privileged and !he domain of experts te a necessity for ordinary lire.
Costs became highly competitive and user-friendly standardised interfaces were a
necessity for survival in the market. The crucial steps in this transition were an order
of magnitude reduction in cost of the hardware and improvements in reliability and
usability which made the car simple enough for a non-engineer to learn to use.

In the case of n, the introduction of spreadsheet systems provides a good example of
!he advent of technology which made the computer accessible te owners of problems
in an application field. These systems are "programmed", but in the language of the
accountant and without the services ofprofessional computer programmers. Their use
has transformed computing practice.

However, lhis new wave of applications which are programmed by the application
owners has brought its own problems. ln essence the activity involved is still
programming - though in a very high Icvel language - and in the longer term the
critieal issue is still that known as "maintenance". Al! is weil while applications are
small and personal, but when Ûley become large, complex and even integral ta the
conduct of the business, and then the author leaves, we have real problems.
There is an urgent requirement to bring to this new field of user-programmed PC
applications the same principles of good software engineering as those we need in the
more classical programming field. Even with spreadsheet applications and the Iike,
we need 10 develop well-engineered solutions, weIl documented and capable of
enhancements and maintenance for the fui! working life of Ûle requirement, by people
other than the original author.

In lhis paper we look firs! in somewhat more detail al the general features of this new
era. Then we tum te an analysis of sorne specifie developments in computer
programming and the role of the "professional programmer". Finally, we embark on
some speculation as te the future of programming support environments and of
research in the field.

2 The transition to the new era

The cEmate of the first era in computing was set above all by supply side dominance
and in particular by the cost of hardware. The early field of technical applications
was quickly overtaken by DP applications whieh became the principal area of use.
ln general terms, compUling was Laken on board as a new and expensive technology
which would at some lime in the future be of great importance. Companies bought
compUlers to reserve their future positions and in the short term there was a passive
acceptance of their unre!iabilily, lack of rcal cost benefits and user-hostile interfaces.

As hardware COSLS began ta fal! dramatically in the 1970s and beyond, software began

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

ta be seen as the dominant cost and also the major problem. We can quote a few
global estimates which have been widely circulated.

in typical corporate applications, software costs are some 3x
hardware costs;

some 70% of systems cost is in "maintenance" - ie in repair and in
enhancement lOf the software;

in the US DoD, some 80% of delivered software becomes
"shelfwarc" and is nevcr put into use;

the Japanese produced a national projeeted estimate of the need for
programmers which suggested that in Japan al one, some 970,000
werc needed by the ycar 2000.

These and many other observations combine lo suggest that in aggregate terms, a
scarce resource in programming skill is being utilised to a large extent ineffeetively,
in building expensive software which is of limited utility. This became generally
known as the "software crisis".

In the 1980s a view was widely adopted that the software problem could best be
addressed by a lTansformation of the industry, seen then as craft-intensive with
Inadequate basis in scientific thcory or in engineering practice, into a more soundly
based and capital-intensive inc1uslTy. This was to be brought about by the
inlToduction of betler methods and by investment in the use of software lOols -hence
the research into CASE tools, IPSEs, software factories, formaI methods and so on,
ail combined under the general title of "software engineering rescarch".

This perioc1 of development, when hardware costs became less significant than
software, was one when the supply side dominance of the market continued; though
the dominant supply technology was now that of software development.

It is the cenlTal thesis of this paper that we are now undergoing a fundamental shift
in the nature of the business: dominance of the suppl y sidc is now in cffeet
superseded. On tlie hardware side, the major engine of change has been the
development of the PC into the versatile and inexpensive professional workstation,
together with the software to enable the user to make effective and direct use of the
remarkable level of available computational power. The combination of the modem
PC together with networking and with software packages for wordprocessing,
spreadshcets, data bases and so on has transformed the appearance of computing and
has created a new and powerful user community throughout industry and commerce.

A further driving force for change in the CUITent economic climate especiaIly, is the
growing rcalisation of the poor results in cost-benefit terms from much CUITent IT use.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4.

A recent report by the consultants A.T. Kearney states that 89% of British firms do
not use technology successfully, and L1-je greatest waste is in computing administration
systems.

In other areas of industry the use of IT is an integral and necessary part of the
business, where computers have been in use for decades and form integral components
of products or production processes, eg in aerospace, banking and Ùle process
industries. Here also a process of change is going on, Ùlough less spectacular and
clear-cut in nature. The process is that of gradual acquisition, by industries where IT
is a necessary part of the business, of Ùlelr own IT skilled personnel. ln earlier days
such companies relied hcavily on the skil!s of their hardware suppliers te inslall their
systems and on the systems/software consullants to carry out their requirements
analysis and systems design. The result was the phcnomenon of "Iocking-in" te a
specifie set of hardware and to the continuing services for maintenance of a specifie
systems house.

The Tise of in-nouse skills, togelher with the speclacular development of a highly
competitive market in hardware components means that users are less content now lO

be locked in. The pressure [or opcn systems supply is now widespread and hardware
suppliers are responding Lo it. Systems houses begin te sec thdr future business as
being increasingly as experts in "systems integration", ie in helping users to configure
lheir systems from the best components available regardless of supplier. Users now
expcct te be able ta run their se\ecled packages or their own bespoke systems on new
hardware platforms. So, to sel! new hardware one must both offer transparent support
to old systems and a150 give freedom for the user to add more software and to
combine wilh hardware from other vendors.

The consequences in the service industry of systems, IT consultancy and software
nouses is aIso beginning to be considerable. Variations are wide, for instance
between countries, but there secms to be evidence for a drift from traditional areas
such as bespoke systems, WÎÜl conlinuing supplier maintenance, lOwards software
products which are parameterisable, user enhanceable or indccd programmable, in a
sense which we discuss later, by the user_

3 Models of computer programming

The tradilional mode! of software development was mat of a multi-stage proccss olten
illustrated by a "waterfall model". Firsùy, the analysis of user requirements was done
by dialogue between the user and the systems analyst. The analyst then specificd the
system and designed the dala structures and algorithms required for the solution. The
results includcd documentation in flow aharls, data layouts and so on. In the third
stage, the "coding" was done by a rcal programmer in assembly code at or close ta the
level of the hardware machine.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

The lirst great breakthrough in improvement of the process, was the development of
high levellanguages in the late 1950s. The adoption of HILS such as FORTRAN,
Cobol and their successors lOok many years but led to an order of magnitude increase
in productivity of the technical staff. In effect the analyst could now programme
direcùy from the level of algorithms and data structures. The grades of systems
analyst and programmer tended Ilo merge and the domain of the "real programmer" or
machine level expert is mainly now in the specialisms of operating systems or resource
critical applications design.

Despite the productivity gains of high levellanguage use, both per se in speeding up
coding and indirectly in enabling increased populations lo Iearn lo "program" without
having lo undcrstand detailed machine architecture, nevertheless the "software
bottieneck" problem remained endemic in the 19705 and 80s.

There was an increasing strain on the scarce technical staff resource of people - now
usually called "software engineers" - who are capable of thinking in IT terms of data
structures and a1gorithms and who can transform a user rcquirement into an IT
solution. The resource continues to be scarce beeause:

a) under this model of the process, the step of translation of rcquirements into
the design of algorithms is still essential;

b) the increasing numbers of existing systems in use need "maintenance" - ie
they must evolve with changing requirements, and they can only be
maintained by software cngineers.

There is limited scope for training more programmers. Though sorne largely
untapped labour pools exist, it may weil he that most of those with the ability lo think
in algorithms are already in the IT profession. Current directions of development in
the area of capital-intensive software factofies represent a response lo the increase of
demand fOf software skills togethcf with the scarcity of engineers able to respond to
the demand. The rationale for this response is that in other branches of engineering
capik11 invcsuncnt in the production line together with more rational approaches to the
process have transformed industries from craft status with substantial success. We
will suggest below that this strategy perhaps now looks somewhat outdated and
overtaken by events. Indecd, one cou Id take the view that it is based on a false
anal ogy in that building software is a design issue; production is already largely
automated by use of a programming language and compiler.

4 The next breakthrough

The developmcnt of the spreadsheet is the archetypical example of a next-generation
approach. The approach is to automate the closed language of a specific application
domain together with a gcncric algorithm for "solutions" of problems expressed in that

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

domain - with lhe spreadsheet, the language is mat of the rows and coiumns of figures
familiar ta accoul1lams, togelher with arithmelicaJ relationships amongst lhem, and the
system ensures these always bahmce. So, the user designs and maintains his own
"program" expressed directly in the language of the application domain and the
intermediate step of designing problem-specific IT algorithmic solutions goes away.
When combined with hardware cheap enough for ail to afford, the result is a real order
of magnitude change in computer use.

The spreadsheet can be regarded as an extreme position on a spectrum of computing
systems. At the other end is the classical single applications system, designcd and
bui!t by IT professionals ta meet a user requirement. In between are more flexible
approaches which in essence involve reuse of existing software intendcd to be of wider
use than one application - for example, parameterisable systems or systems built
around reusable kemels. Such approaches are now the norm for building customiscd
systems where the new design and coding is performed by lhe IT engineer.

Returning \0 the feal breakthrough area, typified by the spreadsheet, in which IT
professionals are not involved as intermediaries in specifie applications, we can cite
other areas where closed do mains have bcen automated and the user expresses his own
problems in domain-specifie forms. Wordprocessing is perhaps the widest used
example. Text processing in the desk-top publishing area is not far behind. There
are funhcr example systems in engineering design and in architecture and othcr fields.

We maintain thm any field in which rcal IT knowledge is essential ta build a computer
application is not an example in this class. Il is interesting as an intermcdime case
ta consider the eurrently fashionable iSsue of "object-orientedness" and ta enquire as
ta whether or not this eonstitules a breakthrough. The concepts of classes of objects
\Vith selS and attributes were invented as a means of representing real world entities
such as machines and vehides in the field of discrete event simulations in O.R; an
early example of the cntity - attribme-set model can be found in (2].

The [urther and important Step of the concept of class inheritance was added by Dahl
and Nygaard in SIMULA 67. Though objects, attributes, sets and inheritance provide
powerful modelling tools for describing, in language close to the users tcrms, the
entilies in a problem domain, lhcir mIes of hehaviour still have to he expressed in
algorithmic terms and so object-based applications still need IT designers.

Anolher major area in which a good case can be made for maintaining lhat the
programming approach of the ncw era has already arrivcd is lhat of DP applications,
using 4th generalion languages and database construction and enquiry languages. The
advance of 4th generation languages has gradually weakened the grip of traditional
Cobol programming in the DP field; and lhis has gone largely unobserved by more
technical groups a.'1d in panicular by acadcmic computer scicntists. As an examplc
of the shift ta a higher level style of application language domain programming,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

however, the 4th generation language area is still to sorne extent an intermediate case
as IT knowledge is still essential to consu-uct applications.

We do not propose to go on to consider further points on this specu-um of computer
applications such as hypertext, building and vehicle structure design systems etc -
suffice it to say that we think the point made that there is indeed a specu-um of a wide
and important range of applications where the generation of IT solutions involves less
than fully professionaI IT knowledge and indeed, at the spread sheet and word
processing end, needs very Iimited IT skills.

Conclusions

A cenu-ally important èonsequence of these developments concerns the projected
demand for increased numbers of SW Engineers. A decade ago the rate of demand
was increasing steadily and implausible predictions as to the eventual size of the
programming population were made. this apparent demand has bcen eroded as the
perceived nced to develop ever more specifie applications programs has heen rcplaced
in many areas by the use of domain-specifie packages and user-programmable
software. The quasi-potential increase in numbers has occurred: but it is in numbers
of problem owners programming their own solutions directly rather than in num bers
of software engineers acting as intermediaries between the problem owners and their
computers.

As a corollary to this development, the market for new equipment sui table for direct
use by problem owners has increased very substantially in order to provide the owners
with direct access to their own machines. Sales of PCs and work stations now exceed
by orders of magnitude in numbers the sales of main frames, and the PC business is
now probably dominant over the mainframe business in financial measures.

Meanwhile, the need for bespoke software systems has not gone away in aIl
application areas. There are many application domains not yet served by user­
programmable packages. In particular in the high technology industries the need for
large and highly application-specific software, for use in products or in production
continues LO grow and LO he crucial LO business success and even to survivaI.

1 think we have not yet taken on board the consequences of this changed pattern of
demand for software engineers in, for example, the education system. It may weIl
be that current provisions for training enginecrs at the higher professional levels will
turn out to be of the right order of magnitude, though at present one can only guess
as statistics are not yet available. It is rcasonably cIear, however, that we will need
LO train large sections, if not most of the population in simple Ievels of computer
familiarisation to aid them in access to the application specifie systems they will need.

A further area of interest in speculating on the consequence of these recent changes

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

is L'lat of the development of PSEs, integrated loolsets and methods for support of
software production. These were put forward during the 19805 as the essential
technical way ahead in tuming software production into a capital intensive industry,
thereby soIving the problem of the projccted shortage of software engineers. If the
above analysis is correct lhen the problcm for which PSEs were perceived as the
solution has in subslantial measure gone away. Incidemally the development of PSEs
to date has not proceeded as rapidly as was hoped - after sorne twelve yeaTS sinee the
publication of "Sloneman", [3J one sees very few rcal examples of [ully integrated
toolsets, lhough Ùlere are very useful CASE too]s on the market.

A more promising line of development in support systems and toolsets would now
seem ta be in Ùle support of flexible and rapidly eonfigurable CASE taolsets ta offer
support closely aligned to local needs wiÙlin an organisation which is capable of rapid
adaptation as businesses change. We nced ta pay more attention to Ùle engineering
process and to the central requirement for flexibility in thut process to meet changing
demand.

The need for support systems, and indeed for a more systematic approach ta building
software, clearly is still a fundamental part of Ùle business. The custom built systems
ta be supported now include not only the high-tech areas discussed abave but also the
relatively new and unexplored field of software package produetion. In this context
we include classieal pararnetrisabJe packages and also the new product ranges of user
programmable systems, spreadsheeLS, user driven database systems and so on. The
producers of these systems compete in a market place which demands high quality,
fast response to client wishes, low price (which depcnds on high volume sales) and
the market is not unaffected by the dictates of fashion. Here is an area whcre the
concept of Ùle "software factory" really has relevance, but it may require a different
sort of factory From those envisaged in carlier years.

Let us now turn to the consequences for rescarch in ÙlC IT field. The changes we
face now are due primarily 10 the developmcnt, in a few areas, of domain-specifie
ways of enabling the prob\em owner to utilise computers in implcmenting solutions
ta problems, expressed 10 Ùle system directly by the user wÎthoul the interrnediate
steps of algorithmic solution and bespoke programming. Urgent questions anse as
ta whether other areas can he found amenable to such approaches - Ùlis perhaps is the
prerogative of the IT entrepreneur rathcr than the academic. A proper question for
researeh howevcr is to delerminc what can be said at a more generic level about
domain-specifie high level programming. What if any, are ilS general characteristics,
whal hYPolheses ean one make and what Ùleories might be discovered ta bring order
ta Ùlis area?

Again and at the leve! of engineering development, the arca of construction of large
bespoke systems will continue - bOÙl for high-tech fields and in Ùle production of
package software product Enes - but lhese areas are also not immune from lhe need
for much decper involvement of Ùleir "users" - albeit lechnically very aware and

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

competent users - in ensuring that such systems really meet their requirements and can
be modified in step with changes to those requirements. We have here a major and
relalÎvely unexplored area for software engineering research: how do we build systems
which can be maintained, modified and enhanced by their users? Sorne CUITent work,
notably concerned with study of the software process, is already moving in this
direclÎon.

Perhaps the most important conclusion, however, is the realisation that the level of
suecess which we have achieved in the new area of very high level domain specific
programming techniques has itsclf opened up a whole new arca of emerging problems.
Even programming a sprcadsheet is still programming in the sense that an IT system
is designed and built to fulfil a business purpose which will inevitably evolve and
change in Lime. The sprcadshect modc1 will necd to be developed and maintained,
and il will tend to grow bOlh increasingly comp1cx and increasingly essential to the
business. In a word, we are aoout to embark on a rcdiscovery of ail the problems of
the software crisis - but at a new lcvel of programming.

It is clcar that application domain programming by users is still subject to the ailments
of classical amateur programming. We observe that unwieldy, opaque and non­
maintainable systems could now be even easier to produce than with classical
programming. Our most urgent requirement is to bring sorne grasp of the clements
of software engineering to this applicalÎon world. We need to sec the design of these
systems carried out by effective engineering techniques and recorded in accessible
documentation, so that such systems can be maintained and enhanced inLO the future.
The requiremenLS LO bring lhis about, for instance on the educalional system at all
levels, are formidable indeed.

References

1. Malcolm, R., private comm., 1991
2. Buxton, J.N. and Laski, J., "Control and Simulation Language", Computer J.

vol 5 no.3 (1962)
3. Buxton, J.N., "RequiremenLS for an Ada Programming Support Environment",

Department of Defence, 1980

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

