
C.c - 01-225

Lectu re Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

225

Third 1 nternational Conference
on Logic Programming
Imperial College of Science and Technology,
London, United Kingdom, July 14-18, 1986
Proceedings

Edited by Ehud Shapiro

Spri nger-Verlag
Berlin Heidelberg New York London Paris Tokyo

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Editorial Board

D. Barstow W. Brauer P. Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wirth

Editor

Ehud Shapiro
Oepartment of Computer Science
The Weizmann Institute of Science
Rehovot 76100, Israel

CR Subject Classifications (1985): 0.1,0.3, F.1, F.3, 1.2

ISBN 3-540-16492-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-16492-8 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging-in-Publication Data. International Conference on Logic Program­
ming (3rd: 1986: Imperial College of Science and T echnology, London, England). Third Internatio­
nal Conference on Logic Programming, Imperial College of Science and Technology, London,
United Kingdom. (Lecture notes in computer science; 225) Includes bibliographies. 1. Logic
programming-Congresses. 1. Shapiro, Ehud Y. II. Title. III. Series.
0A76.6.15466 1986005.186-13477
ISBN 0-387-16492-8 IU.S.)

This work is subject to copyright. Ali ri9ht8 are reserved, wh ether the whole or part of the material
i5 concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under
§ 54 of the German Copyright Law where copies are made for ather than private use, a fee is
payable ta "Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
214513140-543210

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Foreword

This is the report on the proceedings of the Third International Conference on Logic Pro­
gramming, held on July 14-18, 1986, at Imperial College of Science and Technology. The two
previous conferences took place in Uppsala, Sweden, in 1984, and in Marseille, France, in 1982.

Around 140 papers were submitted to the conference. They were refereed by the members of
the program commit tee and by external referees, who are listed below. lt is a pleasure to thank
the authors who responded to the cali for papers. Unfortunately, only 56 could be accepted,
out of which 54 are included in this volume. In addition, seven speakers have responded ta
our invitation to lecture at the conference: K. Fuchi (keynote speaker), J. McCarthy (banquet
speaker), and T. Chikayama, J.L. Lassez, M. McCord, A. Takeuchi, and J.D. Ullman. Papers by
the invited speakers (except for the banquet speaker) are also included.

1 would like to thank the program commit tee members, who deliberated in an attempt ta
provide a high-quality and balanced program, the referees who reviewed several papers each
under a short schedule, and to Sarah Fliegelmann, Michael Codish, Michael Hirsch, and Steve
Taylor for helping with the management of the refereeing procedure. Thanks to John Conery for
the Prolog programs for maintaining the submissions database.

Rehovot, April 1986

General Chairman

Keith Clark, Imperial College, U .K.

Program Committee

Michel van Caneghem, University of Marseille-Aix, France
Keith Clark, Imperial College, U .K.
Veronica Dahl, Simon Fraser University, Canada
Maarten van Emden, University of Waterloo, Canada
Kazuhiro Fuchi, ICOT, Japan
Koichi Furukawa, ICOT, Japan
Ake Hansson, Uppsala University, Sweden
Kenneth M. Kahn, Xerox PARC, U.S.A.
Peter Koves, Logicware Inc., Canada
Giorgio Levi, University of Pisa, ltaly
John Lloyd, University of Melbourne, Australia
Frank G. McCabe, Imperial College, U.K.
Jack Minker, Maryland University, U.S.A.
David H.D. Warren, Manchester University, U.K.
Antonio Porto, University of Lisbon, Portugal
Ehud Shapiro, Weizmann Institute, Israel; Chairman

Ehud Shapiro

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

List of Referees

Abramson, Harvey Kaplan, Stephane Pnueli, Amir
Angluin, Dana Kasif, Simon Reddy, Uday
Barbuti, R. Keller, Robert M. Reeve, Mike
Ben-Ari, Mordechai Kibler, Dennis Robinson, Alan
Berkling, Klaus Kitakami, H. Roussel, Phillipe
Bowen, Ken Kodratoff, Yves Rudolph, Larry
Bruynooghe, Maurice Komorowski, Jan Safra, Shmuel
Byrd, Lawrence Kowalski, Robert Sammut, Claude
Carlsson, Mats Kusalik, Tony Saraswat, Vij ay
Chikayama, Takashi Lassez, J .L. Sato, Masahiko
Clocksin, William F. Levy, Jacob Sato, Taisuke
Codish, Michael Lieberman, Henry Sergut, M.
Cohen, Jacques Lindstrom, Gary Shamir, Adi
Cohen, Shimon Lowry, Andy Shertz, Zahava
Colmerauer, Alain Lusk, Ewing Shmueli, Oded
Conery, John Maher, Michael Snir, Mark
Crammond, Jim Malachi, Yonni Spacek, Libor
Darlington, John Maler,Oded Sridharan, N .S.
Davis, Al MartelE, Maurizio Sterling, Leon
DeGroot, Doug Matsumoto, Yuji Stickel, Mark E.
Dershowitz, Nachum McCord, Michael C. Takeuchi, Akikazu
Eggert, P. McDermott, Drew V. Tamaki, Hisao
Francez, Nissim Mellish, Christopher S. Tarnlund, Sten Ake
Futo, Ivan Miranker, Dan Taylor, Steve
Gallaire, Herve Miyazaki, T. Tick, Evan
Gaugin, J.A. Mizugochi, F. Ueda, Kazunori
Gostelow, Kim P. Naish, Lee Veinbaum, David
Goto, Atsuhiro Nakushima, H. Waldinger, R.
Gregory, Steve O'Keefe, Richard A. Walker, Adrian
Hammond, Peter Onai, Rikio Warren, David S.
Harel, David Overbeek, Ross Weiner, Jim
Haridi, Seif Pereira, Fernando Wilson, Walter
Harrison, P.G. Pereira, Luis M. Wise, Michael
Jchiyoshi, Nobuyuki Pinter, Ron Yokota, M.
Jaffar, J. Plaisted, David Yoshida, Hiroyuki B

IB
LI

O
TH

E
Q

U
E

 D
U

 C
E

R
IS

T

Contents

Tuesday, July 15

Keynote address: The role of logic programming in the Fifth Generation Computer Project
Kazuhiro Fuchi and Koichi Furukawa, ICOT . 1

Session la: Parallel implementations

An abstract machine for restricted AND-parallel execution of logic programs
Manuel V. Hermenegildo, University of Texas at Austin

Efficient management of backtracking in AND-Parallelism
Manuel V. Hermenegildo, University of Texas at Austin, and Roger 1. Nasr, MCC

An intelligent backtracking algorithm for paraUeI execution of logic programs
Yow-Jian Lin, Vipin Kumar and Clement Leung, University of Texas at Austin

Delta Prolog: a distributed backtracking extension with events
Luis Moniz Pereira, Luis Monteiro, Jose Cunha and Joaquim N. Aparicio, University Nova

25

40

55

de Lisboa .. 69

Session lb: Theory and complexity

OLD resolution with tabulation
Hisao Tamaki, Ibaraki University and Taisuke Sato, Sakuramura 84

Logic programs and alternat ion
Petr Stepanek and Olga Stepankova, MFF Prague 99

Intractable unifiability problerns and backtracking
D.A. Wolfram, Syracuse University 107

On the complexity of unification sequences
Heikki Mannila and Esko Ukkonen, University of Helsinki 122

Session 2a: Implementations and architectures

How to invent a Prolog machine
Peter Kursawe, GMD and University of Karlsruhe. 134

A sequential implementation of Parlog
Ian Foster, Steve Gregory, Graem Ringwood, Imperial College, and Ken Satoh, Fujitsu Ltd. 149

A GHC abstract machine and instruction set
Jacob Levy, Weizmann Inst. 157

A Prolog processor based on a pattern matching memory device
Ian Robinson, Schlumberger Palo Alto Res. 172

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Session 2b: Inductive inference and debugging

An improved version of Shapiro's mode! inference system
Matthew Huntbach, University of Sussex.

A framework for ICAI systems based on inductive inference and logic programming
Kazuhisa Kawai, Toyohashi University, Riichiro Mizoguchi, Osamu Kakusho and

... 180

J un 'iehi Toyoda, Osaka University . 188

Rational debugging in logie programming
Luis Moniz Pereira, University Nova de Lisboa

Using definite clauses and integrity constraints as the basis for a theory formation
approach to diagnostic reasoning
Randy Goebel, University of Waterloo, Koiehi Furukawa, ICOT, and David Poole,

.... 203

University of Waterloo. 211

Invited talk: Sorne issues and trends in the semanties of logie programming
J. Jaffar, Jean-Louis Lassez and M.J. Maher, IBM 223

Wednesday, July 16

Invited talk: Parallel logic programming languages
Akikazu Takeuchi and Koiehi Furukawa, ICOT 242

Session 3a: Concurrent logie languages

P-Prolog: a parallel logie language based on exclusive relation
Rong Yang and Hideo Aiso, Keio University 255

Making exhaustive search programs deterministic
Kazunori Ueda, ICOT . 270

Compiling OR-parallelism into AND-parallelism
Michael Codish and Ehud Shapiro, Weizmann Inst. 283

Shared memory execution of committed-choice languages
Jacob Levy, Weizmann Inst. 298

Session 3b: Theory and semantics

Logic program semantics for programming with equations
Joxan Jaffar and Peter J. Stuckey, Monash University 313

On the semantics of logic programming languages
Alberto Martelli and Gianfranco Rossi, University di Torino 327

Towards a formaI semantics for concurrent logic programming languages
Lennart Beckman, Uppsala University . 335

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

Thursday, July 11

Invited talk: Design of a Prolog-based machine translation system
Michael McCord, IBM . 350

Session 4a: Parallel applications and implementations

Parallel logie programming for numeric applications
Ralph Butler, Ewing Lusk, William McCune and Ross Overbeek, Argonne Nat!. Lab. . . 375

Sequential and concurrent deterministic logie grammars
Harvey Abramson, University of British Columbia 389

A parallel parsing system for natural language analysis
Yuji Matsumoto, ICOT . 396

Session 4b: Theory and higher-order functions

Equivalences of logie programs
Miehael J. Maher, University of Melbourne•....... 410

Qualified answers and their application to transformation
Phil Vasey, Imperial College . 425

Procedures in Horn-clause programming
M.A. Nait Abdallah, University of W. Ontario 433

Higher-order logic programming
Dale A. Miller and Gopalan Nadathur, University of Pennsylvania 448

Session 5a: Program analysis

Abstract interpretation of Prolog programs
C.S. Mellish, University of Sussex

Verification of Pro log programs using an extension of execution

............ 463

Tadashi Kanamori, Mitsubishi Electrie Corp., and Hirohisa Seki, ICOT 475

Detection and optimization of functional computations in Prolog
Saumya K. Debray and David S. Warren, SUNY at Stony Brook 490

, Control of logic program execution based on the functional relations
Katsuhiko Nakamura, Tokyo Denki University 505

Session 5b: Applications and teaching

Declarative graphies
Richard Helm and Kim MJ.rriott, University of Melbourne 513

Test-pattern generation for VLSI circuits in a Prolog environment
Rajiv Gupta, SUNY at Stony Brook. 528

Using Prolog to represent and reason about protein structure
C.J. Rawlings, W.R. Taylor, J. Nyakairu, J. Fox and M.J.E. Sternberg, Imperial Cancer Res.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Fund
and Birkbeck College 536

A New approach for introducing Prolog to naive users
Oded Maler, Zahava Scherz and Ehud Shapiro, Weizmann Inst. . .. 544

Invited talk: Prolog programming environments: Architecture and implementation
Takashi Chikayama, ICOT . 552

Friday, July 18

Invited talk: Design overview of the NAIL! system
Katherine Morris, Jeffrey D. Ullman and Allen Van Gelder, Stanford University 554

Session 6a: Implementations and databases

A superimposed codeword indexing scheme for very large Prolog databases
Kotagiri Ramamohanarao and John Shepherd, University of Melbourne 569

Interfacing Prolog to a persistent data store
D.S. Moffat and P:M.D. Gray, University of Aberdeen 577

A general model to implement DIF and FREEZE
P. Boizumault, CNRS . 585

Cyclic tree traversaI
Martin Nilsson and Hidehiko Tanaka, University of Tokyo 593

Session 6b: Theory and negation

Completeness of the SLDNF-resolution for a class of logie programs
R. Barbuti, University di Pisa, and M. Martelli, C.N.R., and Syracuse University 600

Choie es in, and limitations of, logic programming
Paul J. Voda, University of British Columbia 615

Negation and quantifiers in NU-Prolog
Lee N aish, University of Melbourne 624

Gracefully adding negation and disjunction to Prolog
David 1. Poole and Randy Goebel, University of Waterloo 635

Session 7a: Compilation

Memory performance of Lisp and Prolog programs
Evan Tick, Stanford University

The design and implementation of a high-speed incremental portable Prolog compiler
Kenneth A. Bowen, Kevin A. Buettner, Ilyas Cieekli and Andrew K. Turk, Syracuse

.. 642

University . 650

Compiler optimizations for the WAM
Andrew K. Turk, Syracuse University . 657

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IX

Fast decompilation of compiled Prolog clauses
Kevin A. Buettner, Syracuse University 663

Session 7b: Models of computation and implementation

Logic continuations
Christopher T. Haynes, Indiana University Ml

Cut and Paste - defining the impure primitives of Prolog
Chris Moss, Imperial College

Tokio: logic programming language based on temporal logic and its compilation to Prolog

686

M. Fujita, Fujitsu Labs. Ltd., S. Kono, H. Tanaka and T. Moto-oka, University of Tokyo 695

The OR-forest description for the execution of logic programs
Sun Chengzheng and Tzu Yungui, Changsha Inst.. 710

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

The Role of Logic Programming in the
Fifth Generation Computer Project

Kazuniro Fochi and Koichi Furukawa

ICOT Research Center
Institute for New Generation Computer Technology

1-4-28, Mita, Minato-ku, Tokyo 108 Japan

Abdraet. This paper describes the role of logic programming in the Fifth Gen­
eration Computer Project. We started the project with the conjecture that logic
programming is the "bridge" connecting knowledge information processing and
parallel computer architecture. Four years have passed since we started the
project, and now we can say that this conjecture has been substantially con­
firmed. The paper gives an overview of the developments which have reinforced
this foundational conjecture and how our "bridge" is being realized.

1. INTRODUCTION

The FGCS project started four years ago, but its roots go back three years before that.

More than a hundred representative researchers in J apan participated in the discussions

during those three years. A clear consensus emerged that logic programming should be

placed at the center of the project.

We announced this idea at FGCS '81 in the fall of 1981. It was the most controversial

issue at the conference, criticized as a reckless proposaI without scientific justification.

Why did we persist in our commitment to logic programming? Because we were inspired

by the insight that logic programming could become the newly unified principle in computer

science. At the conference, one of the authors pointed out that logic programming covers

computer architecture, new programming style, semantics of program language and database

semantics. It was also pointed out that logic programming is playing an important role in

linguistics and artificial intelligence.

Looking at the situation now, we can say that our conjecture has taken more concrete

shape. It is not too much to say that the successes of the project so far are in large measure

due to our adoption of logic programming. We would like to emphasize that the key feature

of our project is not knowledge information science or non von Neumann architecture, but

logic programming.

The results we have achieved seem to be quite natura!. Therefore, it may be more

appropriate to say that what we have here is a case of "discovery" rather than "invention."

Our approach may be compared to the process of solving a jigsaw puzzle. The process

of putting each piece of a jigsaw puzzle in the right place may correspond to the process of

discovering truth in our research. Also, the completed form of the jigsaw puzzle corresponds

to the highly parallel computer for knowledge information processing realized in VLSI. Logic

programming is the centerpiece of the jigsaw puzzle. To use Kowalski's expression [Kowalski

82], logic programming is the "missing link" connecting knowledge information processing

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

and highly parallel architecture. Once we realized this, the puzzle started falling into place

rapidly.

We often hear people say that our project ought to be more software-oriented rather

than hardware-oriented. But our perspective is the whole jigsaw puzzle, of which software and

hardware are certainly inseparable aspects, but neither takes priority as such. We proceed

step by step, with our vision of the new computer guiding our approach to solution of each

problem as it arises.

How much of this giant jigsaw puzzle have we solved in these four years? To answer

this question, we would like to describe the achievements of the FGCS Project in Section 2.

Section 3 is an attempt to summarize trends in research around the world and noteworthy

results. We will give the conclusion in Section 4. As a part the conclusion, we discuss

what research topics remain for the future, emphasizing the importance of international

cooperation.

2. MAIN RESULTS OF FGCS PROJECT SO FAR

The work of the FGCS project extends over four research are as: software research,

hardware research, development of software tools for R & D, and applications researches as

feasibility studies.

In this section, we survey the main results in each of the first three areas. With regard

to the fourth areas, we omit the description because of space limitation.

2.1. Software Research

2.1.1. Kernel Language

The most important issue III a programming language is its expressive power. The

reason we put logic programming languages at the he art of the project is because we realized

that logic programming is potentially very rich in expressive power.

When we started the project, we selected Prolog as a tentative target language and

proceeded with research. The fact was that for practical pur poses, Prolog was the only

logic programming langnage available at that time. It was weil known that Prolog possessed

superior database and solution-searching capabilities. For us, its suitability for algorithm

description, list processing and meta programming was actually more important. The im­

portance of these functions became even clearer over the four years research of the project.

By the way, when the project started, we had already recognized that what was lack­

ing in Prolog was the object-oriented programming facility. Object-oriented programming

mechanisms cannot be realized by simple call-return control structures. Interruptjresume

computation facilities are necessary for handling exchange of messages. What this means

is that we need the functions of parallel programming. Various studies have been carried

out to realize parallel programming in logic programming. The following three approaches

predominate in these studies: (1) Addition of parallel control primitives such as "wait" and

"resume" to Prolog. (2) Delay of evaluation of goals until the specific data arrives. (3)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

