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Foreword 

This is the report on the proceedings of the Third International Conference on Logic Pro­
gramming, held on July 14-18, 1986, at Imperial College of Science and Technology. The two 
previous conferences took place in Uppsala, Sweden, in 1984, and in Marseille, France, in 1982. 

Around 140 papers were submitted to the conference. They were refereed by the members of 
the program commit tee and by external referees, who are listed below. lt is a pleasure to thank 
the authors who responded to the cali for papers. Unfortunately, only 56 could be accepted, 
out of which 54 are included in this volume. In addition, seven speakers have responded ta 
our invitation to lecture at the conference: K. Fuchi (keynote speaker), J. McCarthy (banquet 
speaker), and T. Chikayama, J.L. Lassez, M. McCord, A. Takeuchi, and J.D. Ullman. Papers by 
the invited speakers (except for the banquet speaker) are also included. 

1 would like to thank the program commit tee members, who deliberated in an attempt ta 
provide a high-quality and balanced program, the referees who reviewed several papers each 
under a short schedule, and to Sarah Fliegelmann, Michael Codish, Michael Hirsch, and Steve 
Taylor for helping with the management of the refereeing procedure. Thanks to John Conery for 
the Prolog programs for maintaining the submissions database. 

Rehovot, April 1986 
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The Role of Logic Programming in the 
Fifth Generation Computer Project 

Kazuniro Fochi and Koichi Furukawa 

ICOT Research Center 
Institute for New Generation Computer Technology 

1-4-28, Mita, Minato-ku, Tokyo 108 Japan 

Abdraet. This paper describes the role of logic programming in the Fifth Gen­
eration Computer Project. We started the project with the conjecture that logic 
programming is the "bridge" connecting knowledge information processing and 
parallel computer architecture. Four years have passed since we started the 
project, and now we can say that this conjecture has been substantially con­
firmed. The paper gives an overview of the developments which have reinforced 
this foundational conjecture and how our "bridge" is being realized. 

1. INTRODUCTION 

The FGCS project started four years ago, but its roots go back three years before that. 

More than a hundred representative researchers in J apan participated in the discussions 

during those three years. A clear consensus emerged that logic programming should be 

placed at the center of the project. 

We announced this idea at FGCS '81 in the fall of 1981. It was the most controversial 

issue at the conference, criticized as a reckless proposaI without scientific justification. 

Why did we persist in our commitment to logic programming? Because we were inspired 

by the insight that logic programming could become the newly unified principle in computer 

science. At the conference, one of the authors pointed out that logic programming covers 

computer architecture, new programming style, semantics of program language and database 

semantics. It was also pointed out that logic programming is playing an important role in 

linguistics and artificial intelligence. 

Looking at the situation now, we can say that our conjecture has taken more concrete 

shape. It is not too much to say that the successes of the project so far are in large measure 

due to our adoption of logic programming. We would like to emphasize that the key feature 

of our project is not knowledge information science or non von Neumann architecture, but 

logic programming. 

The results we have achieved seem to be quite natura!. Therefore, it may be more 

appropriate to say that what we have here is a case of "discovery" rather than "invention." 

Our approach may be compared to the process of solving a jigsaw puzzle. The process 

of putting each piece of a jigsaw puzzle in the right place may correspond to the process of 

discovering truth in our research. Also, the completed form of the jigsaw puzzle corresponds 

to the highly parallel computer for knowledge information processing realized in VLSI. Logic 

programming is the centerpiece of the jigsaw puzzle. To use Kowalski's expression [Kowalski 

82], logic programming is the "missing link" connecting knowledge information processing 
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2 

and highly parallel architecture. Once we realized this, the puzzle started falling into place 

rapidly. 

We often hear people say that our project ought to be more software-oriented rather 

than hardware-oriented. But our perspective is the whole jigsaw puzzle, of which software and 

hardware are certainly inseparable aspects, but neither takes priority as such. We proceed 

step by step, with our vision of the new computer guiding our approach to solution of each 

problem as it arises. 

How much of this giant jigsaw puzzle have we solved in these four years? To answer 

this question, we would like to describe the achievements of the FGCS Project in Section 2. 

Section 3 is an attempt to summarize trends in research around the world and noteworthy 

results. We will give the conclusion in Section 4. As a part the conclusion, we discuss 

what research topics remain for the future, emphasizing the importance of international 

cooperation. 

2. MAIN RESULTS OF FGCS PROJECT SO FAR 

The work of the FGCS project extends over four research are as: software research, 

hardware research, development of software tools for R & D, and applications researches as 

feasibility studies. 

In this section, we survey the main results in each of the first three areas. With regard 

to the fourth areas, we omit the description because of space limitation. 

2.1. Software Research 

2.1.1. Kernel Language 

The most important issue III a programming language is its expressive power. The 

reason we put logic programming languages at the he art of the project is because we realized 

that logic programming is potentially very rich in expressive power. 

When we started the project, we selected Prolog as a tentative target language and 

proceeded with research. The fact was that for practical pur poses, Prolog was the only 

logic programming langnage available at that time. It was weil known that Prolog possessed 

superior database and solution-searching capabilities. For us, its suitability for algorithm 

description, list processing and meta programming was actually more important. The im­

portance of these functions became even clearer over the four years research of the project. 

By the way, when the project started, we had already recognized that what was lack­

ing in Prolog was the object-oriented programming facility. Object-oriented programming 

mechanisms cannot be realized by simple call-return control structures. Interruptjresume 

computation facilities are necessary for handling exchange of messages. What this means 

is that we need the functions of parallel programming. Various studies have been carried 

out to realize parallel programming in logic programming. The following three approaches 

predominate in these studies: (1) Addition of parallel control primitives such as "wait" and 

"resume" to Prolog. (2) Delay of evaluation of goals until the specific data arrives. (3) 
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