
Edited by G. Goos and J. Hartmanis

TAPSOFT '87

Proceedings of the International Joint Conference
on Theory and Practice of Software Developmenf
Pisa, ltaly, March 1987

Volume 2:
Advanced Seminar on Foundations of
Innovative Software Development n an
Colloquium on Funetional and Logic
Programming and Specifications (CFLp)

Editec\.by Hartmut Ehrig, Robert Kowalski,
Giorgio LevI and Ugo Montanari

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

PREFACE

TAPSOFT '87 is the Second International Joint Conlerence on Theory and Practice 01

Software Developmen!.

TAPSOFT '87 is being held Irom March 23to March 27, 1987 in Pisa. TAPSOFT '87 has

been organized by Dipartimento di Inlormatica (Università di Pisa), 1.E.1. - C.N.A. and

CNUCE - C.N.R., and has been supported by AICA and EATCS.

TAPSOFT '87 consists 01 three parts:

Advanced Seminar on Foundations of Innovative Software Development

New directions in software development have been proposed, on the basis 01 recent

technological and theoretical advances. Following the se trends, the software production

process should be made more rigorous, and its result should be expressed in a more

abstract and understandable lorm.

The aim 01 the Advanced Seminar is to bring together leading experts in the various

lields which lorm the loundations 01 this renovation still in progress and to provide a

lorum to discuss the possible Integration 01 available theories and methods in view 01

their applications.

The Advanced Seminar will consist 01 a number 01 invited talks, two panel discussions

and several working groups. The invited talks will be either long, i.e. comprehensive and

general, or short, i.e. dedicated to hottopics.

Invited Speakers
E. Astesiano (Univ. Genova)

K. Clark (Imp. C., London)

K. Furukawa (ICOT, Tokyo)

J. Goguen (SRI, Menlo Park)

G. Huet (INRIA, Paris)

Panels

A. Milner (Univ.Edinburgh)

M. Nivat (LlTP, Paris)

J. Thatcher (IBM, Yorktown Heights)

D. Warren (Univ. Manchester)

• On Industrial Activity and Trends. Chairman: J. Goguen (SRI, Menlo Park)
• The Future of Software Engineering. Chairman: D. Bjorner (Lyngby)

The seminar organizers are H. Ehrig (Tech. Univ. Berlin) G. Levi (Univ. Pisa)

A. Kowalski (Imperial College, London) U. Montanari (Univ. Pisa)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IV

Colloquium on Trees in Aigebra and Programming

Traditionally, the topics of the Colloquium coyer a wider area of tl1eoretical Computer

Science than that indicated by the title. Actually, topics include the formai aspects and

properties of trees and, more generally, of combinatorial and algebraic structures in ail

fields of Computer Science.

Besides the customary topics, in keeping with the overall theme of TAPSOFT, the

program will include contributions related to specifications, communicating systems and

type theory.

The preceding eleven colloquia were held in France and Italy as autonomous

conferences, except in Berlin 1985, when for the first time CAAP was integrated into the

TAPSOFT Conference.

ln keeping with the tradition of CAAP as weil as with the overall theme of the TAPSOFT

conference, the selected papers are presented in the sections listed below.

• Aigorithms

• Proving techniques

• Aigebraic specifications

• Concurrency

• Foundations

The program committee for CAAP '87 is the following:

A. Arnold, Bordeaux

J. de Bakker, Amsterdam

B. Buchberger, Linz

J. Diaz, Barcelona

Ph. Flajolet, Paris

H. Ganzinger, Dortmund

P. Mosses, Aarhus

J. Thatcher, Yorktown Heights

M. Wirsing, Passau

G. Ausiello, Roma

A. Bertoni, Milano

M. Dauchet, Lille

H. Ehrig, Berlin

N. Francez, Haifa

U. Montanari, Pisa (Chairman)

M. Nivat, Paris

G. Winskel, Cambridge

Colloquium on Funclional and Logic Programming and Specifications

ln keeping with the overall theme of the TAPSOFT conferences, CFPL focuses on those

aspects of Functional and Logic Programming which are most important in innovative

software development. The Integration of formai methods and practical aspects of

software production is also stressed.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

v

The selected papers are presented in six sessions covering the following topics.

• Theory and Semantics of Functional Languages

• Types, Polymorphism and Abstract Data Type Specifications

• Unification of Functional and Logic Programming Languages

• program Proving and Transformation

• Language Features and Compilation in Logic Programming

• Implementation Techniques

The Programme Committee for CFLP is the following

C. Bëhm, Roma

K. Furukawa, Tokyo

C. Ghezzi, Milano

G. Huet, Paris

R. Kowalski, London

B. Mahr, Berlin

R. Milner, Edinburgh

E. Sandewall, Linkëping

D. Warren, Manchester

K. Clark, London

H. Gallaire, München

J. Goguen, Menlo Park

G. Kahn, Sophia Antipolis

G. Levi, Pisa (Chairman)

A. Martelli, Tonno

L. Moniz Pereira, Lisboa

E. Shapiro, Rehovot

The TAPSOFT '87 Conference proceedings are published in advance of the conference

in two volumes. The first volume includes the final versions of 17 papers from CAAP '87,

selected from a total of 51 submitted papers. The second volume includes the final

versions of 17 papers from CFLP, selected from a total of 80 submitted papers. Invited

papers from the Advanced Seminar are divided between the two volumes.

We would like to extend our sincere thanks to ail the Program Committee members as

weil as to the referees listed below for their care in reviewing and selecting the submitted

papers:

J. Alegna, A. Alfons, S. Anderson, J.L. Balcazar, F. Barbic, R. Barbuti, M. Bellia, R. Bird, E.

Bërger, P.G. Bosco, A. Bossi, G. Boudol, K. Broda, D. Brough, D. Chan, L. Carlucci Aiello,

G. Castelli, T. Chikayama, T. Chusho, E. Ciapessoni, N. Cocco, L. Colussi, M. Coppo, T.

Coquand, B. Courcelle, G. Cousineau, W. Coy, P.L. Cunen, A. Davison, P. Degano, R. De

Nicola, M. Dezani, M. Dincbas, M. Ducassé, P. Dufresne, J. Ebert, B. Eggers, P. van

Emde Boas, R. Enders, G. Engels, K. Estenfeld, E. Fachini, A. Fantechi, 1. Foster, D.

Frutos, J. Gabarro, D. Gabbay, F. Galdbay, G. Gambosi, G. Ghelli, P. Giannini, M.

Goldwurm, A. Goto, S. Goto, G. Guida, C. Gunter, T. lato, H. Habel, M. Hagiya, N.

Halbwacks, H. Hansen, S. Haqqlund, J. Heering, P. Henderson, R. Hennincker, D. Henry

de Villeneuve, C. Hogger, F. Honsell, M. Huntback, H. Hussmann, P. Inverardi, R.C.L.

Koymans, L. Kott, H.J. Kreowski, F. Kriwaczek, S. Kunifuji, Y. Lafont, B. Lang, R. Lasas, A.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Laville, P. Le Cheradec, K. Leeb, B. Lennartsson, J.J. Levy, M. Lindqvist, A. Llamosi, G.

Lolli, G. Longo, J.A. Makowski, V. Manca, P. Mancarella, D. Mandrioli, M. Manny, A.

Marchetti Spaccamela, 1. Margaria, M. Martelli, L. Mascoet, Y. Matsumoto, G. Mauri, B.H.

Mayoh, F. McCabe, J. Meseguer, J.J.Ch. Meyer, C. Moiso, B. Mailer, C. Montangero, K.

Moody, A. Mycroft, F. Nickl, M. Nielsen, F. Nielson, F. Nürnberg, M.E. Occhiuto, F.J. Oies,

F. Ore jas, M. Ornaghi, R. Orsini, P. Padawitz, C. Palamidessi, D. Pedreschi, P. Pepper, A.

Pettorossi, A. Poigné, A. Porto, M. Protasi, G. Ringwood, J. Roman, S. Ronchi Della

Rocca, G. Rossi, 1. Kott, T. Sakurai,D. Sannella, D. Sartini, T. Sato, R. Schuster, M.

Sergot, D. Siefkes, M. Smyth, T. Streicher, A. Suarez, Y. Takayama, J. Tanaka, A.

Tarlecki, W. Thomas, M. Tofte, S. Tomura, J. Toran, M. Torelli, J.V. Tucker, F. Turini, T.

Yuasa, F.W. Vaandrager, B. Vauquelin, B. Venneri, M. Venturini Zilli, H. Wagener, E.G.

Wagner, M. Wallace, P. Weis, M. Zacchi, B. Zimmermann

We gratefully acknowledge the financial support provided by the following Institutions

and Companies:

• Comune di Pisa

• C.N.R. • Presidenza

• Comitato Nazionale per l'Ingegneria

• Comitato Nazionale per le Scienze Matematiche

• CNUCE
• I.E. 1.

• Dipartimento di Informatica, Università di Pisa

• Eisag, Genova

• Enidata, Milano

• IBM Italia, Roma

• List, Pisa

• Olivetti, Ivrea

• Selenia, Roma

• Sipe, Roma

• Systems & Management, Torino

• Tecsiel, Roma

• Università di Pisa

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

We wish to express our gratitude to the members 01 the Local Arrangement Committee:

P. ASirelli, R. Barbuti, P. Degano (Chairman), A. Fantechi, P. Mancarella, M. Martelli, F.

Tarini and F. Turini. Without their help, the Conlerence would not have been possible.

Pisa, March 1987

Hartmut Ehrig

Institut für Software und Theoretische Inlormatik

Technische Universitat Berlin

Giorgio Levi

Dipartimento di Inlormatica

Università di Pisa

Robert A. Kowalski

Dept 01 Computing and Control

Imperial College London

Ugo Montanari

Dipartimento di Inlormatica

Università di Pisa

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

CONTENTS OF VOLUME 2

Session AS1 Chairman: H. Ehrig (Berlin)

J. A. Goguen & J. Meseguer (SRI, Menlo Park)
Models and Equality for Logical Programming

K. Furukawa (ICOT, Tokio)
Fifth Generation Computer Project:
Current Research Activity and Future Plans

Session CFLP 1 Chairman: C. Bëhm (Roma)
Theory and Semant/cs of Funetional Languages

A. Piperno (Univ. La Sapienza, Roma)
A Compositive Abstraction Aigorithm for Combinatory Logic

J. Y. Girard (CNRS & Univ. Paris VII)
& Y. Lalont (INRIA; Rocquencourt)
Linear Logic and Lazy Computation

D. Clément (SEMA METRA & INRIA, Sophia Antipolis)
The Natural Dynamic Semantics of Mini-Standard ML

Session CFLP 2 Chairman: K. Clark (London)
Language Features and Compilation
ln Logle Programmlng

Z. Farkas (SZKI, Budapest)
Listlog - a Prolog Extension for List Processing

R. Barbuti, P. Mancarella, D. Pedreschi
& F. Turini (Univ. 01 Pisa)
Intensional Negation of Logic Programs:
Examples and Implementation Techniques

P. Van Roy (Univ. Leuven, Heverlee),
B. Demoen (BIM, Everberg) &
Y.D. Willems (Univ. Leuven, Heverlee)
Improving the Execution Speed of Compiled Prolog
with Modes, Clause Selection, and Determinism

23

39

52

67

82

96

111

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

Session CFLP 3 Chairman: D.Warren (Manchester)
Implementation Techniques

C. Percebois, 1. Fut6, 1. Durand, C. Simon
& B. Bonhoure (Univ. Toulouse)
Simulation Results of a Multiprocessor Prolog
Architecture Based on a Distributed AND/OR Graph

G. Lindstrom, l. George & D. Yeh (Univ. Utah)
Generating Efficient Code from Strictness Annotations

S. Finn (Univ. Stirling)
Hoisting: Lazy Evaluation in a Cold Climate

SessiOn CFLP 4 Chairman: G. Kahn (Sophia Antipolis)
program Proving and Transformation

W. Drabent & J. Maluszynski (Univ. Linkëping)
Inductive Assertion Method for Logic programs

A. Pettorossi (IASI-CNR, Roma) & A. Skowron (PKiN, Warsaw)
Higher Order Generalization in program Derivation

M. Thomas (Univ. Stirling)
Implementing Algebraical/y Specified Abstract Data Types
in an Imperative Programming Language

Session AS3 Chairman: R. Kowalski (London)

K. l. Clark & 1. T. Foster (Imperial College, London)
A Declarative Environment for Concurrent Logic Programming

D. H. D. Warren (Univ. Manchester)
Or-ParaI/el Execution Models of Prolog

Session CFLP 5 Chairman: J. Goguen (Menlo Park)
Unification of Functlonal
and Loglc Programming Languages

M. Bellia (Univ. of Pisa)
Retractions: a Functional Paradigm for Logic Programming

P. G. Bosco, E. Giovannetti & C. Moiso (CSEL T, Torino)
Refined Strategies for Semantic Unification

126

140

155

167

182

197

212

243

260

276

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

Session CFLP 6 Chairman: B. Mahr (Berlin)
Types, Polymorphlsm
and Abstract Data Type Specifications

v. Breazu-Tannen (MIT, Cambridge)
& T. Coquand (INRIA, Rocquencourt)
Extensional Models for Polymorphism

R. Harper, R. Milner & M. Totte (Univ. Edinburgh)
A Type Discipline for program Modules

C. Beierle & A. Voss (Univ. Kaiserslautern)
Theory and Practice of Canonical Term Functors
in Abstract Data Type Specifications

Author Index

291

308

320

335

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

CONTENTS OF VOLUME 1

Session CAAP 1 Chairman: J. Diaz (Barcelona)
Algorithms

1. Wegener (J.w. Goethe Univ., Frankfurt a. M.)
On the Complexity of Branching programs and Decision Trees
for Clique Functions

W. Szpankowski (Purdue Univ.)
Average Complexity of Additive Properties for Multiway Tries:
A Unified Approach

M. Crochemore (LlTP, Rouen & Univ. Paris-Nord)
Longest Common Factor of Two Wolds

Session CAAP 2 Chairman: B. Buchberger (Linz)
Provlng Techniques

S. Ronchi della Rocca (Univ. Torino)
A Unification Semi-Algorithm for Intersection Type Schemes

B. Steffen (Univ. Kiel)
Optimal Run Time Optimization
Proved by a New Look at Abstract Interpretations

F. Bellegarde & P. Lescanne (CRIN, Nancy)
Transformation Ordering

Session CAAP 3 Chairman: M. Wirsing (Passau)
Algebraic Specifications 1

M. Gogolla (Tech. Univ. Braunschweig)
On Parametric Aigebraic Specifications
with Clean Error Handling

D. Sannella (Univ. Edinburgh) & A. Tarlecki (PKiN, Warsaw)
Towald Formai Development of programs
From Aigebraic Specifications: Implementations Revisited

G. Marongiu (Univ. Bologna) & S. Tulipani (Univ. Camerino)
Finite Aigebraic Specifications
of Semicomputable Data Types

13

26

37

52

69

81

96

111 B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XIII

Session CAAP 4 Chairman: G. Winskel (Cambridge)
Concurrency

G. Boudol & 1. Castellani (INRIA, Sophia Antipolis)
On the Semantics of Concurrency:
Partial Orders and Transition Systems

R. De Nicola (I.E. 1. , Pisa) &
M. Hennessy (Univ. Sussex)

CCS without ,/:'s

Ph. Darendeau & B. Gamatie (IRISA, Rennes)
A Fully Observational Model
for Infinite Behaviours of Communicating Systems

Session AS4 Chairman: R. Milner (Edinburgh)

E. Astesiano & G. Reggio (Univ. Genova)
SMoLCS-Driven Concurrent Calculi

Session CAAP 5 Chairman: H. Ganzinger (Dortmund)
Aigebraic Specifications II

M. Navarre (Euskal-Herriko Univ., San Sebastian)
& F. Ore jas (Univ. Pol. de Catalunya, Barcelona)
Parameterized Horn Clause Specifications:
Proof Theory and Correctness

F. Parisi-Presicce (USC, Los Angeles)
Partial Composition and Recursion of Module Specifications

Session CAAP 6 Chairman: A. Arnold (Bordeaux)
Foundations

G. Gambosi, M. Talamo (IASI-CNR, Roma)
& J. Nesetril (Charles Univ. Prague)
Efficient Representation of Taxonomies

J.-J. Ch. Meyer & E. P. de Vink (Free Univ. Amsterdam)
Applications of Compactness
in the Smyth Powerdomain of Streams

M. C. Browne, E. M. Clarke & O. Grümberg (CMU, Pittsburgh)
Characterizing Kripke Structures in Temporal Logic

123

138

153

169

202

217

232

241

256

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Session AS5 Chairman: G. Levi (Pisa)

R. Milner (Univ. Edinburgh)
Dialogue with a Proof System

G. Huet (INRIA, Paris)
Induction Principles Formalized
in the Calculus of Constructions

XIV

Session AS2 Chairman: U. Montanari (Pisa)

J. Thatcher (IBM, Yorktown Heights)
A/gebraic Semantics (Abstract)

M. Nivat (LlTP, Paris)
Tree Codes (Paper not received in time)

Author Index

271

276

287

288

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Models and Equality for Logieal Programmingl

Joseph A. Goguen and José Meseguer
SRI International, Menlo Park CA 04025

Center for the Study of Language and Information, Stanford University 04305

Abstraet: We argue that some standard tools from model theory provide a better semantic
foundation than the more syntactic and operational approaches usually used in logic
programming. In particular, we show how initial models capture the intended semantics of both
Cunctional and logic programming, as weil as their combination, with existential queries having
logieal variables (Cor both Cunctions and relations) in the presence of arbitrary user-deCined
abstract data types, and with the full power of constraint languages, having any desired built-in
(computable) relations and functions, including disequality (the negation of the equality relation)
as weIl as the usual ordering relations on the usual built-in types, such as numbers and strings.
These results are based on a new completeness theorem Cor order-sorted Horn clause logic with
equality, plus the use of standard interpretations Cor rlXed sorts, Cunctions and relations. Finally,
we deCine "logical programming," based on the concept of institution, and show how it yields a
general Cramework Cor discussions oC this kind. For example, this viewpoint suggests that the
natural way to combine Cunctional and logic programming is simply to combine their logics,
getting Horn clause logic with equality.

1 Introduction

This paper argues that sorne very signiCicant beneCits are available to logic programming Crom using
certain concepts Crom Cirst order model theory, namely:

• order-sorted logic and models;

• initial models;
• interpretation into rlXed models Cor certain rlXed sorts, functions and relations; and
• true semantic equality.

These techniques, which are ail standard in the theory oC abstract data types [17, 22, 141, provide an
attractive alternative to the more syntactical and operational approaches generally Cavored in logic
programming. Moreover, they provide a powerCul approach that supports:

• user-deCined abstract data types;
• built-in data types;
• combined logic and Cunctional programming; and
• constraint-based programming, in a way that can utilize standard algorithms Cor standard

problems, such as linear programming.

In addition, we suggest that the more recent theory of institutions [101 may provide conceptual insight
and clariCication, as weil as a broadening of the general scope oC logic programming, so as to
encompass any logical system satisCying certain simple restrictions.

In a sense, this paper is an attempt to explicate our previous paper on Eqlog [1I1, by giving a fuIler
account oC its mathematical semantics, as weil as further details, polemics, and comparisons with the

ISupported in part by Office 01 Naval Reacarcb Contracts NOOOI4-85-C-0417 and NOOOI4-86-C-0450, and a Silt Irom
the System Development FoundatioD.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

existing literature. One reason that [11] may have been obscure to many readers, lB the large number
of new iaeas that it tried to introduce aU at once; here, wc attempt to highlight certain ideas by
ignoring others. Among the features of Eqlog deliberately downplayed here are: modules, both
hierarchical and generic; theories and views; and "attributes" of operators (e.g., associativity and
commutativity). Although these features greatly increase the expressive power of Eqlog, they would
also distract from the basic foundational and semantic issues that we wish to emphasize here. For
similar reasons, this paper does not develop most issues concerning the operational semantics of the
various system< that are discussed. Thus, unification, term rewriting, narrowing and resolution are
only touched upon. They are discussed in somewhat more detai! in [11], and will receive full
treatment in [23] and [26].

1.1 Orde Sorted Logle

Ordinary unsorted logic offers the dubious advantage that anything can be applied to anything; for
example,

3 • first-n&llle (age (faln» < 2blrth-placo(to.perature(329»

is a well-formed expression. Although beloved by hackers of Lisp and Prolog, unsorted logic is too
permissive. The trouble is that the usual alternative, many-sorted logic, is too restrictive, since it does
not support overloading of function symbols such as _+_ for integer, rational, and complex numbers.
In addition, an expression like

(-4 1 -2)!

does not, strictly speaking, parse (assuming that factorial only applies to natural numbers). Here, we
suggest that order-sorted logle, with subsorts and operator loading, plus the additional twist of
retraets (although they are not discussed here; see [14]), really does provide sufficient expressiveness,
while still banishing the truly meaningless.

Although the specialization of many-sorted logic to many-sorted algebra has been very successfully
applied to the theory of abstract data types, many-sorted algebra can produce some very awkward
specifications in practice, primarily due to difficulties in handling erroneous expressions, such as
dividing by zero in the ration ais, or taking the top of an empty stack. In fact there ;8 no really
satisfactory way to define either the rationals or stacks with MSA. However, order-sorted algebra
overcomes these obstacles through its richer type system, which supports subsorts, overloaded
operators, and total functions that would otherwise have to be partial. Moreover, order-sorted algebra
is the basis of both OBJ [Q] and Eqlog [111. Finally, order-sorted algebra solves the
eonstructor-selector problem, which, roughly speaking, is to define inverses, called selectors, for
constructors; the solution is to restrict selectors to the largest subsorts where they make sense. For
example, pop and top are only defmed for non-empty stacks. [15] shows not only that order-sorted
algebra solves this problem, but also that many-sorted algebra cannot solve it.

The essence of order-sorted logic is to provide a subsort partial ordering among the sorts, and to
interpret it semantically as subset inclusion, among the carriers of a model, and to support operator
overloading that is interpreted as restricting functions to subsorts. Two happy facts are that order­
sorted logic is only slightly more difficult than many-sorted logic, and that essentially ail results
generalize from the many-sorted to the order-sorted case without complication. See [141 for a
comprehensive treatment of order-sorted algebra. This paper broadens the logical framework to allow

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

not only algebras, but also models of arbltrary first-order signatures, witb botb funchon and predicate
symbols, including equality, and gives rules of deduction for Horn clauses in such a logic, provmg their
completeness and several otber basic results tbat are directIy relevant to our model-tbeoretic account
of logic and functional programming, including initiality and Herbrand tbeorems.

1.2 Models

Perbaps tbe origins in proof tbeory explain tbe obsession of logic programming tbeorists witb syntactic
and proof tbeoretic constructions. In any case, we believe tbat more semantic and more abstract tools
provide a basis tbat is botb broader and more powerful. In particular, we feel tbat tbe usual Herbrand
Universe construction is too syntactic and is also unnecessarily restrictive, because:

1. it does not provide for built-in types, sucb as numbers and infmite trees;
2. it does not provide for user-defined abstract data types;
3. it does not (directIy) address tbe pbenomenon of representation independence for terms and for

data types, wbetber built-in or user-defined; and
4. tbe proofs are more con crete and computational tban necessary2.

Of course, tbese dericiencies can ail be patcbed witbout great dirriculty - for example, [I9J sbows bow
to include built-in numbers - but arter a few sucb patcbes, you bave sometbing enougb like tbe initial
model approacb tbat you migbt as weil, or better, take advantage of tbe powerful macbinery
associated witb tbat tradition.

Tbe reason for being interested in models is just tbat a standard model can provide tbe implementer
witb a clear standard for correctness, and can also provide tbe programmer and user witb a clear
model for wbat to expect wb en programs are actually run.

Tbe reason for being interested in standard interpretations into particular semantic domains on sorne
sorts, functions and relations (wbile leaving otbers free) is tbat tben one can use standard algoritbms
to solve particular problems over sucb domains, for example, linear programming algoritbms over tbe
real numbers. Tbis gives a great deal or fiexibility, since one can still use initiality (i.e., abstraction)
over otber sorts. We argue below tbat tbis provides an elegant roundation ror constraint-based

programming.

1.3 Equality

Equationallogic, wbic~ is essentially tbe logic or substitution or equals ror equals, provides a
foundation for runctional programming languages. For example: [I8J gives (wbat can be seen as) an

equational description or Backus' FP [2J; (24J describes an "equational programming" language3;

and (9J describes OBJ2, a language tbat combines initial algebra semantics ror executable "objects"
(derined by very general sets or user-supplied conditional order-sorted equations), witb "Ioose" algebra
semantics for non-executable "tbeories" (defmed by arbitrary sets or equationsJ.

2Not everyooe will regard this M a. deficiency!

3Tbis language hM sorne very 8trOD& restrictioDs, including: no repeated variables 00 lertband sides, no overlap among
equatioDS, ooly one sort or data, no conditionaJ equatioD8, and a atroo& sequentiality condition; on tbe other band, it is
much easier to compile efficient code from sets of equatioD8 that !!atiBly 8uch restrictioDs.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

ln the context of first or der logic, equality \S generally treated as a specÎal relation, mterpreted as reai
semantie equality in models, rather than merely axiomatized. This is the sense in which one speaK. of
"first order logic with equality" and of "Horn clause logic with equality." Complete sets of rules of
deduction are well-known for these logical systems, and the latter has been used to combine logic and
functional programming IllJ. This paper later gives corresponding rules for order-sorted Horn clause
logic with equality.

Equality is also useful in understanding constraint-based programming, because equations can be used
to define the basic data structures, and then various relations of special interest can be defined
recursively over these data structures, and/or provided as built-ins.

1.4 Initlallty

Initial models free one from commitment to any particular representation; that is, they support
ab.traction. In particular, initiality handles abstract data types for logical programming langnages
with great nuency and convenience, and similarly it can be used to defme functions and relations over
built-in types I11J. Initial models also provide an account of the conceptual world of a program, in the
sense of being "closed worlds" or "standard models." ln particuhr, they provide a standard of
correctness for the implementer, as weil as a model for what results to expect for the programmer.

Finally, initiality is a so-called "universal property," that there exists a unique mapping satisfying
certain conditions, and it is well-known that, in many cases, one gets a much cleaner mathematical
theory, with simpler and more conceptual praofs, from using universal characterizations of objects of
interest, as compared to using concrete constructions for them [21J. In fact, the familiar
cbaracterization of "free" by the existence of a unique mapping with certain properties that extends
another, is a special case of initiality.

One can better understand initiality through the so-called "no junk" and "no confusion" conditions
(originally from 17]); these can also be seen as "completeness" and "soundness" conditions,
respectively. Assume that signatures provide symbols for construcing sentences, including functions
and constants (in E) and relations (in n), and that models contain "data elements." Given a signature
E,n and a set C of E,II-sentences, cali a E,II-model standard if and only if:

1. No junk: Every data itcm is denoted by a term using the function (and constant) symbols in E.
(A data item tbat cannot be so constructed is "junk.")

2. No confusion: a predicate holds of some data elements if and only if it can be proved from the
given sentences; in particular, two elements are identified if and only if they can be proved equal
from the given sentences. (Two data items that are equal but cannot be proved so are
"confused. ")

For Horn clause logic, either with or without equality, either order-sorted, many-sorted, or unsorted,
these two conditions define the data items Ilniqllely up to renaming, i.e., they define a model up to
isomorphism. Moreover, "no junk" is equivalent to structural induction over the signature, and the
two conditions together are equivalent to the "unique homomorphism" condition called Inltlallty
(see 122J for details).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

1.6 Constralnts

ln its general sense, a eonstralnt is a logical relation that one wishes to impose on a set or potential
solutions. In principle, such constraints could be arbitrary flfSt order sentences involving arbitrary
(interpreted and uninterpreted) relations; but in practice, constraints are !imited to sets or atomic

sentences, sucb as

a*X+b*Y<c*Z+d,

a*X*X+b*X+c=O,

a*X*YUb*X+cç:Z,

where the variables in the first two constraints range over sorne kind or number (e.g., integers, or
rationals, or complexes), and in the second range over sets or strings rrom sorne fixed alphabet (* is
multiplication in the first two, and is concatenation, extended to sets, in the third). Although Prolog
would, in principle, be ideal ror con8traint-ba8ed programming, it does not suffice in practice, because
or the limited capabilities or the built-in relations. Moreover, the usual semantic basis or Prolog does
Ilot extend to built-ins without sorne extra russ and awkwardness (e.g., as in [10]).

We rerer to sorts, runctions, and relations upon which interpretation into a fixed (standard) model are
imposed as bullt-lns. Two obvious examples or such models are numbers and infinite trees, with their

usual runctions and relations. The pioneering work oC JaCCar and Lassez [10] and oC JaCCar and
Michaylov [20] treat these and a number oC other examples, in the context oC s constrsint logic
programming language called CLP. These authors also treat a number oC other topics, some oC which
are not considered here, inc1uding negation as Cailure and compactness conditions [10].

1.6 Logleal Programmlng

Various aspects oC programming languages are captured by various aspects oC logic. The Cunctional
aspect or programming is captured by equationallogic [g]. Strong typing is captured by many-sorted
logic. Logic programming (which might be less misleadingly called relational or Horn clause
programming) is captured by Horn clause logic. Object-oriented programming is captured by
reflective logic, in which there is an abstract data type oC program texts built into the language [12].
The perspective oC logical programming suggests that the right way to combine various programming
paradigrns is to discover their underlying logics, combine them, and then base a language upon the
combined logic. This permits one to mix and match various programming language Ceatures. For
example, combined Cunctional and logic programming is captured by Horn clause logic with
equality [U]. Combined Cunctional and object-oriented programming is captured by reflective
equationallogic (we cali this language FOOPS, see [12]). We currently Ceel that reflective order-sorted
Horn clause logic with equality is a good candidate Cor uniCying the Cunctional, relational and object­

oriented paradigrns into a single simple programming language which aIso has powerCul database
capabilities.

The theory or institutions [10] can provide a formai basis for the notion of logical programming.
InCormally, an institution is a logical system, with formai notions of sentence, model, and satisfaction.
Then, a logleal programmlng language L has an associated 10gicaI system (Le., institution) l such
that:

• the statements of L are sentences from 1;
• the operation al semantics of L is (a reasonably efficient) deduction in 1; and

• the denotational semantics of L is given by a c1ass of modeis in 1 (prererably initial models,l,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

