~—

Lecture Notes In

Computer Science

Edited by G. Goos and J. Hartmanis

250

TAPSOFT '87

Proceedings of the International Joint Conference
on Theory and Practice of Software Development
Pisa, ltaly, March 1987

Volume 2:

Advanced Seminar on Foundations of
Innovative Software Development |l and
Colloquium on Functional and Logic
Programming and Specifications (CFLP)

~ Edited by Hartmut Ehrig, Robert Kowalski,
. Giorgio Levi and Ugo Montanari

BIBLIOTHEQUE DU CERIST

PREFACE

TAPSOFT '87 is the Second International Joint Conference on Theory and Practice of
Software Development.

TAPSOFT "87 is being held from March 23 to March 27, 1987 in Pisa. TAPSOFT '87 has
been organized by Dipanimento di Informatica {Universita di Pisa), LE.L. - C.N.R. and
CNUCE - C.N.R., and has been suppcried by AICA and EATCS.

TAPSOFT '87 consists of three parts:
Advanced Seminar on Foundations of Innovative Software Development

New diractions in software development have been proposed, on the basis of receni
technglogicat and theoretical advances. Following thase trends, the software production
process should he made more rigerous, and its resuit should be expressed in a more
abstract and understandable form.

The aim of the Advanced Seminar is to bring together leading experts in the various
fields which form the foundations of this renovation still in progress and 1o pravide a
forum to discuss the possible integration of available theogries and methods in view of
their applications.

The Advanced Seminar will consist of a number of invitad talks, two panel discussions
and several working groups. The invited talks will be either long, i.e. comprehensive and
general, ar short, i.e. dedicated to hot topics.

Invited Speakers

E. Astesianc (Univ. Genova} R. Milner {Univ.Edinburgh)

K. Clark (Imp. C., London) M. Nivat (LITP, Paris)

K. Furukawa (ICOT, Tokyo) J. Thatcher (IBM, Yorktown Heights)
J. Goguen (SRI, Menlo Park) D. Warren (Univ. Manchester)

G. Huet {INRIA, Paris)

Panels
+ On Industrial Activity and Trends. Chairman: J. Goguen {SRI, Menio Park)
» The Future of Software Engineering. Chairman: D. Bjarner {Lyngby)

The seminar organizers are H. Ehrig (Tach. Univ. Berlin} G. Levi {Univ. Pisa)
R. Kowalski {Imperial Colfege, London) U. Montanari (Univ. Pisa)

BIBLIOTHEQUE DU CERIST

Y

Colloquium on Trees In Algebra and Programming

Traditionally, the topics of the Colloquium cover a wider area of theoreticat Computer
Science than that indicated by the title. Actually, topics include the format aspects and
properties of trees and, more generally, of combinatorial and algebraic structures in gl
fialds of Computer Science.

Besides the customary topics, in keeping with the overall theme of TAPSOFT, the
program will include contributions related to specifications, communicating systems and

type theory.

The preceding eleven colloquia were held in France and ltaly as autonomous
conferances, except in Berlin 1985, when for the first time CAAP was integrated into the
TAPSOFT Conference.

In keeping with the traditicn of CAAP as well as with the overall theme of the TAPSOFT
conferencs, the selected papars are presanted in the sactions listed balow.

« Algarithms

* Proving techniques

+ Algebraic specifications

« Concurrency

« Foundations

The program committee for CAAP "87 is the following:

A. Amold, Bordeaux G. Ausiello, Roma

J. de Bakker, Amsterdam A. Bertoni, Milano

8. Buchberger, Linz M. Dauchet, Lille

J. Diaz, Barcelona H. Ehrig, Berlin

Ph. Flajolet, Paris N. Francez, Haifa

H. Ganzinger, Dortmund U. Mentanart, Pisa {Chairman)
P. Mosses, Aarhus M. Nivat, Paris

J. Thatchar, Yorktown Heights G. Winsket, Cambridge

M. Wirsing, Passau
Colicquium on Functional and Logic Programming and Speclfications

in keeping with the overall thame of the TAPSOFT conferencas, CFPL focuses on thosa
aspects of Functional and Logic Programming which are most important in innovative
software development. The integration of formal methods and practical aspacts of
software production is also stressed.

BIBLIOTHEQUE DU CERIST

The selected papers are presented in six sassions covering the following topics.

» Theory and Semantiecs of Functicnal Languages

« Types, Polymorphism and Abstract Data Type Specifications
» Unification of Functional and Logic Programming Languages
* Program Proving and Transformation

» Language Features and Compilation in Logic Programming
» Implemantation Techniques

The Programme Committee for CFLP is the foliowing

C. Bdhm, Roma K. Clark, Londen

K. Furukawa, Tokyo H. Gallaire, Minchen

C. Ghezzi, Milano J. Goguen, Menlo Park
G. Huet, Paris G. Kahn, Sophia Antipolis
R. Kowalski, Landon G. Levi, Pisa (Chairman)
B. Mahr, Berlin A. Marntelli, Tarino

R. Milner, Edinburgh L. Moniz Persira, Lisboa
E. Sandewall, Link&ping E. Shapiro, Rehavot

D. Warren, Manchester

The TAPSOFT 87 Confarence proceedings are published in advance of the conference
in two valumes. The first volume includes the final versions of 17 papers from CAAP '87,
selected from a total of 51 submitted papers. The second volume includes the final
versions of 17 papers from CFLP, selected from a total of 80 submitted papers. Invited
papers from the Advanced Seminar are divided between the two volumes.

We would like to extend our sincere thanks to all the Program Committee membars as
well as to the referees listed below for their care in reviewing and selecting the submitted
papers:

dJ. Alegria, A. Alfons, 8. Anderson, J.L. Balcdzar, F. Barbic, R. Barbuti, M. Bellia, R. Bird, E.
Bérger, P.G. Bosco, A. Bossi, G. Boudol, K. Broda, D. Brough, D. Chan, L. Carlucci Aiello,
G. Caste¥i, T. Chikayama, T. Chusho, E. Ciapesseni, N. Cocco, L. Colussi, M. Coppo, T.
Cogquand, B. Courcelle, G. Cousineau, W. Coy, P.L. Curien, A. Davison, P. Degano, R. De
Nicola, M. Dezani, M. Dincbas, M. Ducassé, P. Dufresre, J. Ebert, B. Eggers, P. van
Emde Boas, R. Enders, G. Engels, K. Estenfeld, E. Fachini, A. Fantechi, |. Foster, D.
Frutos, J. Gabarro, D. Gabbay, F. Galdbay, G. Gambosi, G. Ghelli, P. Giannini, M.
Goldwurm, A. Goto, S. Goto, G. Guida, C. Gunter, T. lato, H. Habsel, M. Hagiya, N.
Halbwacks, H. Hansen, 8. Hagqglund, J. Heering, P. Hendarson, R. Hennincker, D. Henry
de Villeneuve, C. Hogger, F. Honsell, M. Huntback, H. Hussmann, P. Inverardi, R.C.L.
Koymans, L. Kott, H.J. Kreawski, F. Kriwaczek, S. Kunituji, Y. Lafont, B. Lang, R. Lasas, A.

BIBLIOTHEQUE DU CERIST

vl

Laville, P. Le Cheradec, K. Leeb, B. Lennartsson, J.J. Levy, M. Lindgvist, A. Liamosi, G.
Lolli, G. Lengo, J.A. Makowski, V. Manca, P. Mancarella, D. Mandrioli, M. Manny, A.
Marchetti Spaccamela, I. Margaria, M. Martelli, L. Mascoat, Y. Matsumotoe, G. Mauri, B.H.
Mayoh, F. McCabe, J. Maseguar, J.J.Ch. Meyer, C. Moiso, B. Mafier, C. Montangero, K.
Moady, A. Mycrcft, F. Nickl, M. Nielsen, F. Nielson, F. Nirnberg, M.E. Occhiuto, F.J. QOles,
F. Orejas, M. Ornaghi, R. Crsini, P. Padawitz, C. Palamidessi, D. Pedraschi, P. Pepper, A.
Pettorossi, A. Paigné, A. Porto, M. Protasi, G. Ringwood, J. Roman, S. Ronchi Della
Rocca, G. Rossi, |. Kott, T. Sakurai,D. Sannella, D. Sartini, T. Sato, R. Schuster, M.
Sergot, D. Siefkes, M. Smyth, T. Streicher, A. Suarez, Y. Takayama, J. Tanaka, A.
Tarecki, W. Thomas, M. Tofte, 5. Tomura, J. Toran, M. Torelli, J.V. Tucker, F. Turini, T.
Yuasa, F.W. Vaandrager, B. Vauquelin, B. Venneri, M. Venturini Zilli, H. Wagener, £.G.
Wagner, M. Wallace, P. Weis, M. Zacchi, B. Zimmermann

We gratefully acknowledge the financial support provided by the following Institutions
and Companies;

» Comune di Pisa

«C.N.R * Presidenza
« Comitato Nazianale per I'Ingegneria
« Comitato Nazionale per ls Scienze Matematiche
* CNUCE
< LE.L

» Dipartimento di Informatica, Universita di Pisa

= Elsag, Genova

« Enidata, Milano

+ |IBM ltalia, Roma

+» List, Pisa

» Olivetti, Ivrea

« Selenia, Roma

+ Sipe, Roma

+» Systems & Management, Torino

« Tecsiel, Roma

» Universita di Pisa

BIBLIOTHEQUE DU CERIST

Wil

We wish to exprass our gratitude to the members of the Loca! Arrangement Committee:
P. Asirglli, R. Barbuti, P. Degano {Chairman), A. Fantechi, P. Mancarella, M. Manelli, F.
Tarini and F. Furini. Without their help, the Conference weould not have been possible.

Pisa, March 1287

Hartmut Ehrig Robert A, Kowalski

Institut fir Software und Theoretische Informatik Dept of Computing and Control
Technische Universitdt Berlin Imperial College Londan
Giorgio Levi Ugo Montanari

Dipartimento di informatica Dipartimento di Informatica
Universita di Pisa Universita di Pisa

1SI430 NA INO3IHLOI1dId

BIBLIOTHEQUE DU CERIST

CONTENTS OF VOLUME 2

Sesslon AS1 Chairman: H. Ehiig (Berlin)

4. A. Goguen & J. Mesaguer (SRI, Menlo Park}
Models and Equality for Logical Programming

K. Furukawa (ICOT, Tokic)
Fifth Generation Computer Project:
Current Research Activity and Future Plans

Session CFLP 1 Chairman: C. B&hm {Roma}
Theory and Semantics of Functional Languages

A. Piperno (Univ. La Sapienza, Roma)
A Compositive Abstraction Algorithm for Combinatory Logic

J. Y. Girard (CNRS & Univ. Paris Vi)
& Y. Lafont (INRIA, Rocquencourt)
Linear Logic and Lazy Computation

D. Clément {SEMA METRA & INRIA, Sophia Antipolis)
The Natural Dynamic Semantics of Mini-Standard ML

Session CFLP 2 Chairman: K. Clark {London)
Language Features and Compliation
in Loglc Programming

Z. Farkas (SZKI, Budapast)
Listlog - a Prolog Extension for List Processing

R. Barbuti, P, Mancarella, D. Pedreschi

& F. Turini (Univ. of Pisa}

Intensional Negation of Logic Programs:
Examples and implementation Techniques

P. Van Roy (Univ. Leuven, Heverlee),

B. Demoen {BIM, Everberg) &

Y.D. Willems (Univ. Loeuven, Haverlee)

Improving the Execution Speed of Compiled Frolog
with Modes, Clause Salection, and Determinism

23

39

52

67

82

g6

111

BIBLIOTHEQUE DU CERIST

Sesston CFLP 3 Chairman: D.Warren {Manchester)
implementation Technigues

C. Parcebois, |. Futé, 1. Durand, C. Simon

& B. Bonhoure (Univ. Toulouse)

Simulation Results of a Multiprocessor Prolog
Architecture Based on a Distributed AND/OR Graph

G. Lindstrom, L. George & D. Yeh (Univ. Utah)
Generating Efficient Code from Strictness Annotations

S. Finn {Univ. Stirling)
Hoisting: Lazy Evaluation in & Cold Climate

Sesslon CFLP 4 Chairman: G. Kahn {Sophia Antipolis}
Program Proving and Transformation

W. Drabent & J. Maluszynski {(Univ. Link&ping)
Inductive Assertion Method for Logic Programs

A. Pettorossi {IASI-CNR, Roma) & A. Skowron (PKiN, Warsaw)
Higher Order Generafization in Program Derivation

M. Thomas (Univ. Stirling)
Implemanting Algebraically Specified Abstract Data Types
in an Impsarative Programming Language

Session AS3 Chairman: R. Kowalski (London)

K. L. Clark & | T. Foster {Imperial College, London)
A Declarative Environment for Concurrent Logic Programming

L. H. D. Warren (Univ. Manchester)
Qr-Parallel Execution Models of Prolog

Session CFLP 5 Chairman: J. Goguen (Menlo Park)
Unification of Functional
and Logic Programming Languages

M. Bellia {Univ. of Pisa)
Retractions: a Functional Paradigm for Logic Programming

P. G. Baosco, E. Giovanretti & C. Meiso (CSELT, Torino)
Refined Slrategies for Semantic [nification

1286

140

155

167

182

197

212

243

260

276

BIBLIOTHEQUE DU CERIST

Xl

Session CFLP 6 Chairman: 8. Mahr {Berlin}
Types, Polymorphism
and Abstract Daia Type Speciflications

V. Breazu-Tannen {MIT, Cambridge)
& T. Coquand (INRIA, Rocquencourt)
Extensional Modefs for Polymorphism

R. Harper, A. Milner & M. Tofte {Univ. Edinburgh)
A Type Discipline for Program Modules

C. Beiarle & A. Voss (Univ. Kaiserslautern}
Theory and Practice of Canonical Term Functors
in Abstract Data Type Specifications

Author Index

291

308

320

335

BIBLIOTHEQUE DU CERIST

CONTENTS OF VOLUME 1

Session CAAP 1 Chairman: J. Diaz (Barcelona)
Algorithms

L. Wegener (J.W. Gosthe Univ., Frankfurt a. M.)

On the Complexity of Branching Programs and Decision Trees

for Clique Functions

W. Szpankowski (Purdue Univ.)

Average Complexity of Additive Properties for Multiway Tries:

A Unified Approach

M. Crochemore (LITP, Rouen & Univ. Paris-Nord)
Longest Common Factor of Two Words

Session CAAP 2 Chairman: B. Buchberger {Linz)
Proving Techniques

8. Ronchi della Rocca (Univ. Torino)
A Unification Semi-Algorithm for Intersection Type Schemes

B. Steffen (Univ, Kial)
Optimal Run Time Optimization
Praoved by a New Look at Abstract Interpretations

F. Bellegarda & P. Lescanne {CRIN, Nancy)
Transformation Ordering

Session CAAP 3 Chairman: M. Wirsing (Passau)
Algebraic Specifications |

M. Gogoalla (Tech. Univ. Braunschweig)
On Parametric Algebraic Specifications
with Clean Error Handling

D. Sannalla (Univ. Edinburgh) & A. Tarlecki (PKiN, Warsaw)
Toward Formal Development of Programs
From Algebraic Specifications: Implementations Revisited

G. Marongiu (Univ. Bologna) & S. Tulipani {Univ. Camarino)
Finite Algebraic Specifications
of Semicomputable Data Types

13

26

37

52

69

81

g8

BIBLIOTHEQUE DU CERIST

XHI

Sassion CAAP 4 Chairman: G. Winskel {Cambridge)
Concurrency

G. Boudol & I. Castellani {INRIA, Sophia Antipolis)
On the Semantics of Concurrency:
Partial Orders and Transition Systams

R. De Nicola (L.E.L, Pisa) &
M. Hennessy (Univ. Sussex)

CCS without t's

Ph. Darondeau & B. Gamatie (IRISA, Rennes)
A Fully Observational Mode!
for Infinite Behaviours of Communicaling Systems

Session AS4 Chairman: R. Milner (Edinburgh)

E. Astesiano & G. Reggio (Univ. Genova)
SMol CS-Driven Concurrent Calculi

Session CAAP 5 Chairman: H. Ganzinger (Dortmund)
Algebralc Specifications I

M. Navarro {(Euskal-Herriko Univ., San Sebastian)
& F. Orejas (Univ. Poi. da Catalunya, Barceiona)
Parameterized Horn Clause Specifications:

Proof Theory and Correctness

F. Parisi-Presicce {USC, Los Angeles)
Fartial Comnposition and Racursion of Module Specifications

Session CAAP 6 Chairman: A. Arnold (Bordeaux)
Foundations

G. Gambosi, M. Talamo {IAS1-CNR, Rorna)
& J. Nesetril {Charles Univ. Prague)
Efficient Represantation of Taxonomies

J.-J. Ch, Meyer & E. P. de Vink (Free Univ, Amsterdam)
Applications of Compactness
in the Smyth Powerdomain of Streams

M. C. Browns, E. M. Clarke & ©. Griimberg {CMU, Pittsburgh)
Characterizing Krnpke Sitructures in Temporal Logic

123

138

153

169

202

217

232

241

256

BIBLIOTHEQUE DU CERIST

XY

Session ASS Chairman: G. Levi {Pisa)

R. Milner {Univ. Edinburgh)
Dialogue with a Proof System

G. Huet {INRI1A, Paris)

Induction Principles Formalized
in the Caleulus of Constructions

Session AS2 Chairman: U. Montanari (Pisa)

J. Tharcher (IBM, Yorktown Heights)
Algebraic Semantics (Abstract)

M. Nivat {LITP, Paris)
Tree Codes {Paper not received in time)

Author Index

271

278

287

288

BIBLIOTHEQUE DU CERIST

Models and Equality for Logical Programming!

Joseph A. Goguen and José Meseguer
SKI International, Menlo Park CA 94025
Center for the Study of Language and Information, Stanford University 94305

Abstraet: We argue that some standard tools from mode] theory provide a better semantic
foundation than the more syntactic and operational approaches usually used in logic
programming. In particular, we show how initial models capture the intended semantics of both
functional and Jogic programming, as well as their combination, with existential queries haviag
logical variables (for both functions and relations) in the presence of arbitrary user-defined
abstract data types, and with the full power of constraint languages, having any desired built-in
{computable} relations and functions, including disequality (the negation of the equality relation)
as well as the usual ordering relations on the usual built-in types, such as numbers and strings.
These results are based on a new completeness theorem for order-sorted Horn clause logic with
equality, plus the use of standard interpretations for lixed sorts, functions and relations. Finally,
we define “logical programming,"” based on the concept of lnstitution, and show how it yields a
general framework for discussions of this kind, For example, this viewpoint suggests that the
natural way to combine furetional and logic programming is simply to combine their logics,
getting Horn elause logic with equality.

1 Introduction

This paper argues that some very significant benefits are available to logic programming from using
certain concepts from first order model theory, namely:

s order-sorted logic and models;

¢ initial models;

s interpretation into fixed models for certain fixed sorts, functions and relations; and

true semantic equality.
These techniques, which are all standard in the theory of abstract data types [17, 22, 14], provide an
attraclive alternative to the more syatactical and cperational approaches generslly favored in logic
programming. Moreover, they provide a powerful approach that supports:

e user-defined abstract data types;

& built-in data types;

» combined logic and functional programming; and

e constraint-based programming, in a way that can utilize standard algorithms for standard

problems, such as linear programming.

In addition, we suggest that the more recent theory of institutiona [10] may provide conceptual insight
and clarification, as well a3 a broadening of the general scope of logic programming, so as to
encompass any logical system satisfying certain simple restrictions.

In a sense, this paper is an attempt to explicate our previous papet on Eglog {I1], by giving a fuller
account of its mathematical semantics, as well as further details, polemics, and comparisons with the

lSupported in part by Office of Naval Researck Contracts NOOO14-85.C-D417 and NOOO1 4-86-C-0450, and a gift from
the System Development Foundation.

BIBLIOTHEQUE DU CERIST

existing literature. One reason that [11] may have been obsenre to many readers, 18 the large number
of new ideas that it tried to introduce all at once; here, we attempt to highlight certain ideas by
ignoring others. Among the features of Eqlog deliberately downplayed here are: modules, both
hierarchical and generic; theories and views; and “attributes’ of operators {e.g., sssociativity and
commutativity). Although these featurea greatly increase the expressive power of Eqlog, they would
also distract from the basic foundational and semantic issues that we wish to emphasize here. For
similar reasons, this paper does not develop most issues concerning the operational semantics of the
various systems that are discussed. Thus, unification, term rewriting, narrowing and resolution are
only toucked upon. They are discussed in somewhat more detail in [11], and will receive full
treatment in [23] and [26].

1.1 Order-Sorted Logic

Ordinary unsorted logic offers the dubious advantage that anything can be applied to anything; for
example,

3 » first-name(age(falss)) < zbirth-pllc-ltupunt.nre(azg))
is a well-formed expression. Although beloved by hackers of Lisp and Prolog, unsorted logic is too
permissive, The trouble is that the usual alternative, many-sorted logic, is too restrictive, since it does
not support overloading of function symbols such as _+ for integer, rational, and complex numbers.
In addition, an expression like

(-4 / -2)!
does not, strictly speaking, parse (assuming that factorial only applies to natural numbers). Here, we
suggest that order-sorted logie, with subsorts and operator loading, plus the additionsl twist of
retracts (although they are not discussed here; see [14]), really does provide sufficient expressiveness,
while still banishing the truly meaningless.

Although the specialization of many-sorted logic to many-sorted algebra has been very successfully
applied to the theory of abstract data types, many-sorted algebra can produce some very awkward
specifications in practice, primarily due to difficulties in handling erroneous expressions, such as
dividing by zero in the rationals, or taking the top of an empty stack. In fact there is no really
satisfactory way to define either the rationals or stacks with MSA. BHowever, order-sorted algebra
overcomes these obstacles through its richer type system, which supports subsorts, overloaded
operators, and total functions that would otherwise have to be partial. Moreover, order-sorted algebra
is the basis of both OBJ [9] and Eqlog [11]. Finally, order-sorted algebra solves the
constructor-selector problem, which, roughly speaking, is to define inverses, called selectors, for
constructors; the solution is to restrict selectors to the largest subsorts where they make sense. For
example, pop and top are only defined for non-empty stacks. [15] shows not only that order-sorted
algebra solves this problem, but also that many-sorted algebra cannot soive it.

The essence of order-sorted logic is to provide a subsort partial ordering among the sorts, and to
interpret it semantically as subset in¢lusion, among the carriers of a model, and to support operator
overloading that i3 interpreted as restricting functions to subsorts. Two happy facts are that order-
sarted logic is only slightly more difficult than many-sorted logic, and that essentially all results
generalize from the many-sorted to the order-sorted case without complication. See [14] for a
comprehensive treatment of order-sorted algebra. This paper broasdens the logical framework to allow

BIBLIOTHEQUE DU CERIST

not only algebras, but also models of arbitrary first-order signatures, with both function and predicate
symbols, including equality, and gives rules of deduction for Horn clauses in such a logic, proving their
completeness and several other basic results that are directly refevant to our model-theoretic zecount
of logic and functional programming, including initiality and Herbrand theorems.

1.2 Models

Perhaps the origins in proof theory explain the obsession of logic programming theorists with syntactic
and proof theoretic constructions. In any case, we believe that more semantic and more abstract tools
provide a basis that is both broader and more powerful. In particular, we feel that the usual Herbrand
Universe construetion is too syntactic and is also unnecessarily restrictive, because:

1. it does not provide for built-in types, snch as numbers and infinite trees;

2. it does not provide for user-defined abstract data types;

3. it ducs not (directly) address the phenomenon of representation independence for terma and for

data types, whether built-in or user-defined; and

4. the proofs are more concrete and computational than neccssaryg.
Of course, these deficiencies can all be patched without great difficulty - for example, [19] shows how
to include built-in numbers — but after a few such patches, you have something enough like the initial
model approach that you might as well, or better, take advantage of the powerful machinery
associated with that tradition.

The reason for being interested in models is just that a standard model can provide the implementer
with a clear standard for correctness, and can also provide the programmer and user with s clear
model for what to expect when programs are actually run.

The reason for being interested in standard interpretations into particular semantic domains on some
sorts, functions and relations {while leaving others [ree) is that then one can use standard algorithms
to solve particular problems over such domains, for example, linear programming algorithms over the
real numbers. This gives a great deal of flexibility, since one can still use initiality (i.e., abstraction)
overl other sorts. We argue below that this provides an elegant foundation for constraint-based
Programming.

1.3 Equality

Equational logic, which is essentially the logic of substitution of equals for equals, provides a
foundation for functional programming languages. For example: [18] gives (what can be seen as) an
equational description of Backus' FP [2]; [24] describes an “equational programming” language®;

and [0] describes OBJ2, a language that combines initial algebra semantics for executable ‘‘objects™
{defined by very general sets of user-supplied conditional order-sorted egquations), with “loose™ algebra
semantics for non-executable “‘theories” {defined by arbitrary sets of equations).

21\‘0! everyone will regard this an a deficiency!

3 This language has some very strong restrictions, including; no repeated variables on lefthand nides, no overlap ameng
equations, only one sort of data, no conditional equations, and a strong sequentiality condition; on the other hand, it is
much easter tao compile efficient code from seta of eqoations that aatisfy such restrictions,

BIBLIOTHEQUE DU CERIST

In the context of first order logic, equality 15 generally treated as a special relation, interpreted as reai
semantic equality in models, rather than merely axiomatized. This is the sense in which one speaks of
“first order logic with equalily’ and of “Horn clause logic with equality.” Complete sets of rules of
deduction are well-known for these logical systetns, and the latter has been used to combine logic and
functional programming [11]. This paper later gives corresponding rules for order-sorted Horn clause
logic with equality.

Equality is also useful in understanding constraint-based programming, because equations can be used
to define the basic data structures, and then various relations of special interest can be defined
recursively over these data structures, and/or provided as built-ins.

1.4 Initiality

Initial models free one from commitment to any particular representation; that is, they support
abstraction. In patticular, initiality handles abstract data types for logical programming languages
with great fluency and convenjence, and similarly it can be used to define functions and relations over
built-in types [E1]. Initial models also provide an account of the conceptual wotld of a program, in the
sense of being “closed worlds™ or “'standard models.” In particular, they provide a standard of
correctness fot the implementer, as well as a model for what results to expect for the programmer.
Finally, initiality is a so-called “‘universal property,” that there exists s unique mapping satisfying
certain conditions, and it is well-known that, in many cases, one gets a much cleaner mathematical
theory, with simpler and more conceptual proofs, from using universal characterizations of objects of
interest, as compared to using concrete constructions for them [21]. In fact, the familiar
characterization of *free’’ by the existence of a unique mapping with certain properties that extends
another, is a special case of inttiality.

One can better understand initiality through the so-called “no junk™ and “no confusion” conditions
(originally from [7]); these can also he seen as “‘completeness” and ‘'sounduness’ conditions,
respectively, Assume that signatures provide symbols for constrieing sentences, ineluding functions
and copstants (in ¥) and relations (in IT), and that models contain “‘data elements.”
LI and a set € of ¥ H-sentences, call a X Tl-model standard if and only if:
1. No junk: Every data item is denoted by a term using the function {(and constant) symbols in L.
(A data item that cannot be so constructed is *‘junk.”)
2. No tonfusion: a predicate holds of some data elements if and only if it can be proved from the
given sentences; in particular, two elements are identified if and only if they can be proved equal
from the given sentences. {Two data items that are equal but cannot be proved so are

“confused,")

Given a signature

For Horn clause logic, ¢ither with or without equality, either order-sarted, many-sorted, or unsorted,
these two conditions define the data items uniguely up to renaming, i.e., they define a madel up to
isomorphism. Morcover, “'no junk’ is equivalent to structural induction over the signature, and the
two conditions together are equivalent to the “unique homomorphism™ condition called initiality
(sce [22] for details).

BIBLIOTHEQUE DU CERIST

1.5 Constraints

In its general sense, a constraint is a logical relation that one wishes to impose on a set of potential
solutiona. In principle, such constraints could be arbitrary first order sentences involving arbitrary
(mmterpreted and uninterpreted) relations; but in practice, constraints are limited to sets of atomie
sentences, such as

asX+beY<enZ+g,

a*sX*sX+berXr+rece=40,

a*sXsYUUbeX+ecC2Z,
where the variables in the first two constraints range over some kind of number (e.g., integers, or
rationals, or complexes), and in the second range over sets of strings from some fixed alphabet (* is
maultiplication in the first two, and is concatenation, extended to sets, in the third). Although Prolog
would, in principle, be ideal for constraint-based programming, it does not suffice in practice, because
of the limited capabilities of the built-in relations. Moreover, the usual semantic basis of Prolog does
not extend to built-ins without some extra fuss and awkwardness (e.g., as in [16]).

We refer to sorts, functions, and relations upon which interpretation into a fixed (standard) mode! are
imposed as built-ins. Two obvious examples of such models are nembers and infinite trees, with their
usual functions and relations. The pioneering work of Jaffar and Lassez [19] and of Jaffar and
Michaylov [20] treat these and a number of other examples, in the context of a constraint logic
programming language called CLP. These authors also treat a number of other topics, some of which
are not considered bere, including negation ss failure and compactness conditions [19).

1.8 Logical Programming

Various aspects of programming languages are captured by various aspects of logic. The functional
aspect of programming is captured by equational logic [0]. Strong typing is captured by many-sorted
logie. Logic programming (which might be less misleadingly called relational or Horn clause
programming) is captured by Horn clause logic. Object-oriented programming is captured by
reflective logic, in which there is an abstract data type of program texts built intc the language [12).
The perspective of logical programming suggests that the right way to combine various programming
paradigms is to discover their underlying logics, combine them, and then base a language upon the
combined logic. This permits one to mix and match various programming language features. For
example, combined functional and logic programming is captured by Horn clause logic with

equality [11]. Combined functional and object-oriented programming is captured by reflective
equational logic {we call this language FOOPS, sce [12]). We currently feel that reflective order-sorted
Horn clause logic with equality is 8 good ¢andidate for unilying the functional, relational and object-
oriented paradigms into a single simple programming language which also has powerful database
capabilities,

The theory of institutions {10] can provide a formal basis for the notion of logical programming.
Informally, an institution is a logical system, with formal notions of sentence, model, and satisfaction.
Then, a logical programming language L has an associated logical system (i.e., institution) J such
that:

s the statements of [are sentences from I

« the operational semantics of L is {a reasonably effictent) deduction in J; and

» the denotational semantics of L[is given by a class of models in 1 {preferably initial modeis}.

