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FOREWORD 

The papers included in this volume are a subset of the papers 

presented at the Second International Symposium on Optimal 

Algorithms he Id in Varna, Bulgaria, May 29-June 2, 1989. The 

symposium was organized and funded by the Center of 

Informatics and Computer Technology of the Bulgarian Academy 

of Sciences. There were two major sections: Algorithms and 

Optimal Recovery. This volume includes only papers presented 

in the section Algori thms . 

Several people were invited ta give special lectures at this 

symposium and aIl of them were invited ta contribute papers 

for the proceedings. These papers are identified as invited 

papers in the table of contents. For the remaining papers t 51 

were submitted for consideration, and of these, 37 were 

selected for formaI presentation at the symposium. From these 

37 contributed papers, after their presentation at the 

symposium, 13 were selected for inclusion in these 

proceedings. The papers in this volume have not beeu fully 

refereed, and those which contain original research results 

should be expected to appear later in a more complete form in 

regular refereed journals. 

l Hould 1ike to thank to the 

committee for their 

fo1lowing 

help in 

members 

making the 

of the 

final advisory 

selection: 

P. Spirakis, 

cooperation. 

F. Dehne, 1. Ipsen, V. Ramachandran, J.-R. Sack, 

P. Young, as weIl to J. Reif for his 

Finally l would like to thank to the members of 

the local organization committee, especially to V. Tzelkova, 

B. Stoyanova, and L. Aleksandrov for their efforts during the 

organization of the symposium and the preparation of these 

proceedings. 

Sofia, June 1989 

Hristo N. Djidjev 
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RANDOMIZATION IN PARALLEL ALGORITHMS AND 
ITS IMPACT ON COMPUTATIONAL GEOMETRYt 

John H. Reif and Sandeep Sen 
Computer Science Department 

Duke University, 
Durham, N.e. 27706, 

U.S.A. 

Abstract 

Randomization offers elegant solutions ta some problems in parallel computing . ln ad
dition to improved efficiency it often leads to simpler and practical algorithms. ln this 
paper we discuss some of the characteristics of randomized algorithms and also give 
applications in computational geometry where use of randomization gives us significant 
advantage over the best known deterministic parallel algorithms. 

Motivation 

Designing parallel algorithms for various fundamental problems in computational 
geometry has received much attention in the last few years. After sorne early work by 
Anita Chow in her thesis, Aggarwal et a!.[13] developed sorne general techniques for 
designing efficient parallel algorithms for a number of fundamental problems. These 
included convex hulls in two and three dimensions, voronoi diagram for planar point 
sites, triangulation and planar point-location among others. Although most of these 
problems have a sequential time-complexity of 8(nlogn), the authors presented paralleJ 
algorithms which uses a linear number of processors and runs in O(logk n) time (k being 
typically 2,3 or 4) in a PRAM mode!. Consequently, the problem of designing optimal 
(in the processor-time product sense) algorithms were left open. Since then a number of 
the open problems in the original list have been settled due to the work by Atallah, 
Cole and Goodrich[14] who were able to apply Cole's elegant techniques for parallel 
mergesort to a number of these problems. 

We present techniques for obtaining optimal parallel algorithms for problems in 
computational geometry using randomization. As applications of our methods, we 
derive efficient parallel algorithms for planar-point location, convex-hull and trapezoidal 
decomposition. These algorithms run in time T = O(logn) using O(n) processors for 
problem size n and terminate in the claimed time bound with probability 1 - n -c for 
any integer c. These bounds are worst-case and do not depend on any input 

t Supported in part by Air Force Contract AFSOR-87-0386, ONR contract NOO014-87-K-031O, NSF grant CCR-

8696134, DARPA/ARO contraet DAAL03-88-K-0l85. DARPA/ISTO commet NOO014-88-K-0458. 
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distribution. The main contribution of our work is a new random sarnpling technique 
called Polling wmch can be used for doing divide-and-conquer efficiently on va..rious 
problems in computational geometry. Our techniques !ead to algorithms tha! are con
siderably simpler than their methods and appear to have wider applications. For exam
pie we have derived an optimal O(logn) time n processors algorithm for constructing 
the convex hull of points in three dimensions (Reif and SenlIS]). Presently the bes! 
known deterministicalgorithm for this problem takes O(log2n log' n) rime using n pro
cessors (Dadoun and Kirkpatrickf17]). 

Basics 

Randorrlzation W.2.S fonnally introouced by Rabin[6] and independemly by Solo
vay & Strassen[8] as a taol for improving the efficiency of certain algorithms. In a nut
shel!, a randomized algorithm uses coin-ftips to make decisions al differem steps of the 
algorithm. Therefore a randowized algorithm is actually a family of algorithms where 
each member of this family corresponds to a fixed sequence of outcomes of the coin
fiip. Two of the most commonly used forms of randomlzation in literature are the Las 
Vegas algorithms and ,Honte Carlo algorithms. The fonner kind ensures that the output 
of the aigorithm is always correct - however only a fraction (usually greater than !i2) of 
the family of algorithms hait within a certain time bound (as weil as with respect te 
sorne other reSGurces like space). In contrast, the Monte Carlo procedures always halt 
in a pre-detennined time period; however the final output is correct with a certain pro
bability (typically > 1/2). This lends itself very naturally to decision algorithms 
(Rabin's primality testing being a good example). For the purpose of this discussion we 
shall limit ourselves te the Las Vegas algorithms which have been mote popular with 
the algorithm designers. For a general algorithm which preduces more (han just 'yes
no' output, the precise meaning of an incorrect output becomes subjective; for example 
we may need to know how close are we to the correct output in order to decide if the 
output is acceptable. Although, this is one of the œasons for bias towards Las Vegas 
algorithms, the use of either kind of algorithms depends on the particular application. 

Complexity measures of randornized algorithms 

Before we discuss the applications of these algorithms in parallel computing, it is 
important 10 review sorne of the perfonnance measures used by these algorithms. This 
will eriable us to compare the relative merits of differem nL,domized algorithms. To 
begin~ we- must emphasize the distinctions between a randornized algorithm and pro ba
"îlistic algorithrn. By probabilistic algorithrns, we imply those algorithms whose perfor
mance depend on the input distribution. FOT such algorithms, we are often interested in 
the average resources used over all inputs (assuming a fixed probabi~ity distribution of 
the input). A randomized algorithm does not necessarily depend on the input distribu
tion. -A randomized algorithm uses a certain amount of resources for the worst-case 
input withprebability 1- E (0 < e < 1), i,e. the bound holds for any input (which is a 
stronger bound than the average bounds). This can be very well illustrated with the 
example of Hoare's Quicksorr algorithm. ln its original form,it is a probabilistic algo
rithm which perfonns very weIl on certain inputs and deteriorates sharply on sorne 
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other inputs. By assuming that all inputs are equally likely (known as random-input 
assumption), the algorithm performs very weil on the average. By introducing randomi
zation in the algorithm itself, it has been shown to perform very weil on ail inputs with 
high probability. This is certainly a more desirable property since a malicious oracle 
who could control the performance of the original algorithm by giving it worst case 
inputs, can no longer affect il. Of course, the onus of a suceessful run of the algorithm 
is now shifted ta the outcome of the coin-flips. This depends on certain randomness 
properties of the random-number generatar, whieh is a topie in itself. Aiso note that this 
discussion does not preclude designing randomized algorithms which are dependent on 
the input distribution but these algorithms are no different from their detenninistic 
counterparts. 

Until now we have characterized the randomized algorithms with a success proba
bility of 1 - E without specifying the possible forms of E. It can be a fixed constant or a 
function (which takes values between (0,1)). It must be clear that E should be minim
ized (compare this with deterministic algorithms where E is 0). Intuitively we can 
expect a trade-off between E and the amount of resource used. In other words, the 
failure probability E must decrease with increasing amount of resources. Let us consider 
a concrete example. Suppose TA (n) is the expected running time of the randomized 
algorithm A for input size n. What can we say about E? If we don't have any bounds 
other than the expectation we can only use Markov's inequality. From Markov's ine
quality, the probability that running lime exceeds kT A (n) is less than l/k. For example, 
if k;2, E ; 1/2. Compare this with an algorithm B for the same problem whose running 
time exceeds ko.TB (n) with probability less than lin a and suppose that for any given 
o., k is a constant independent of n. This implies that the probability of failure dimin
ishes rapidly as n increases and vanishes asymptotically. We have characterized the 
failure probability E as a decreasing function of the problem size, n and resources used 
by the algorithm. The reader will recognize that the faster E decreases with these param
eters the better is the algorithm. This makes algorithm B superior to algorithm A if 
TA (n) and TB (n) represent the same function. The basic idea is that depending on the 
application, the user chooses a certain value of E and aceordingly chooses k (given the 
value of n) with the objective of minimizing k. There is no reason to be pedantic about 
the kind of function E should be exeept that a failure probability of the second form 
(that of algorithm B) has been very widely used in literature and such algorithms have 
been termed as having high probability of success. This kind of failure probability func
tion is quite robust with respect to a polynomial number of procedures i.e. the union of 
a polynomial number of events, each with high probability of suceess, succeeds with 
high probability. lt may be a non-trivial task to transform an algorithm like A to an 
algorithm like B (which succeeds with high probability). The reader must also appreci
ate that randomized algorithms like B whieh have such high probability of suceess 
should be competitive with deterministic algorithms for the same problem. According 
ta Adleman & Manders[l], a randomized algorithm with success probability more than 
1 - 2-k (for sorne large fixed k) has a lower probability of failure than the hardware 
itself. 
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Parallel computation and ramlornizalÏon 

Randomization has proven to be an extrernely effective in parallel algorithm 
design. One of the earliest treatment of this !Opie ean be found in Reif[12]. For a more 
reeent and extensive survey the reader is encouraged ta read the firsl two chapters of 
Rajasekaran[7]. A common!y accepted measure of efficiency of parallel algorithms is 
the processor-time product (in short P ·T). Although the primary objective of paraUel 
algorithms is to minimize time complexity (the number of parallel time steps), in prae
lice one also has ta be careful about the number of processors needed to achieve this 
speed-up. The efficiency of a parallel algorithm is a measure of how expensive is the 
speed-up compared to the sequential algorithm. Clearly P'T product cannot be better 
than the sequential time complexity of the algorithm. Ideally one would iike the speed
up to be !inear with the number of processors used; however this is far from true in 
mûst cases. This also gives an abstract measure of how 'hard' it is to parallelize a par
,kular problem. We say that a parallel a1gorithm is efficient if 
P·T :::; o (Seq(n)'logk n ) for sorne constant k where fi is the input size. The dass NC 
is defined to be the class of problems which admit poly-logarithmic rime parallel algo
rithm using a polynomial number of processors. Note that while these algorithms admit 
fast parallel algorithms they may not be necessarily efficient. 

Use of Random Sampling 

Randornized sampling techniques have been used extensively in cases of divide
and-conquer algorithms (mûst parallel algorithms would fail under this category). The 
idea is to divide up the problern 'almûs! evenly' inro smaller sub-problems using a ran
domly chosen subset of the input. This random subset i5 called splitters and because of 
the process .of random selection, various probabilistie arguments can be tIsed to bound 
the size of the sub-problems. For exam1ili', in pa.raîlel sorting, we can choose f;; keys 
randomly and partition the input into -.In subsets using the partitions induced by the 
random keys. Using simple probabilisticarguments, il is not difficult to bound the size 
of the subproblems to approximately OCinlogn) with high probabi!ity. The main algo
rithm is then used recursively on each of the partitions. 

Random sampling in computational geometry was first introduced by Clarkson and 
sinee then he has published a series of results leading to improvements and 
simplification of a number of sequential algorithms in computation al geometry. How
ever his time bounds are expected in contrast to our hig h-likelihood bounds (these have 
suceess probabilities 1 - n-G for any integer e) which aside from heing weaker are of 
little use for obtaining parallel alorithms. The reason being that for sequential algo
rithms, he was able to use the linearity property of expectation (Le. the expectation of 
the sum is the sum of expectations) and $0 it was enough to bound the expected run
oing time of each individual step. For a parallel algorithm, one is looking for the max
imum of theexpectation from the expectation of a farnilyof random variables and there 
exists no known method of obtaining this value. Among other techniques, we introduce 
a new random-sampling technique caUed 'Polling' which enables us to obtain high pro
bability bounds for our algorithms and complements Clarkson' s work to a large extenl. 
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5 

More specifically, it a1so allows us to use random samp!ing recursively without blow
ing up the problem size. 

Resampling and Polling 

The informai idea behind 'Polling' is the following: For a given problem of size n, 
we choose randomly a small (typically nE for E < 1/2) subset of the given input and 
use il to divide the original problem. It is not difficult to show that the size of each 
sub-problem is no larger than n 1-E/ogn but the total size of the subproblems may be 
considerably larger than n. For example, if the input is !ine segments on the plane, a 
large number of the !ine segments may be broken up into smaller pieces during the 
divide step. This phenomenon is not witnessed in a problem like sorting where the total 
size of the subproblems is always exactly equal to the input size. Increase in the prob
lem size at every recursive cali would result in grossly inefficient a1gorithms. Clark
son[15] had shown that the total sum of the subproblems has expected value O(n). This 
implies that with probabi!ity almost 1/2, this value would exceed k/o/al n for sorne con
stant kra/a!. Consequently, if we choose independently O(logn) random subsets, at least 
one of them will be 'good' (i.e. sum of subproblems does not exceed klO/aln) with high 
probability. If we resample O(logn) times, we may end up doing non-optimal number 

of operations. Instead we test the 'goodness' of a sample on only ~ of the input. It 
lOg' n 

can be proved that this gives estimates wilhin a constant factor with very high probabil
ity (Reif and Sen[18]). Thus we are able to choose a random sample such that the size 
of the subproblems does not exceed more than a constant times the input size. We cali 
this technique 'Polling' (as if we are polling a fraction of the input to test the 'good
ness' of a sample). 

Notice that even with Polling the sum of sub-problems may grow by a constant 
factor which could lead to a polylogarithmic factor increase over O(loglogn) levels of 
recursion. With sorne additional filtering methods (which can be efficiently applied 
since the size is still O(n)), we are able to bound the problem size by kmaxn at any level 
where kmax is a constant. For a parallel a1gorithm, we are able to get a recursion which 
is roughly of the form 
T (n) = T (n 1-E) + 0 (logn). This has a solution T(n) = O(logn) and the processor 
bound is simultaneously O(n). 

The overall algorithm can be summarized as following: 

(i) Choose independently O(logn) random subsets each of size O(n E). 

(ii) Use 'Polling' to identify a 'good' sample. 

(iii) Partition the problem by the random sample. 

(iv) Use 'Filtering' to control the sum of the sub-problems. (The implementation 
of this step is problem dependent. For example il is different in the case of 
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6 

trapezoidal decomposition and convex hulls). 

(v) If the larges! sub-problem size is larger than a certain ,Ize apply algorithm 
recursively. 

Randomization as a resource 
Sorne recent efforts directed towards 'derandomization'· of randomized algorithms 

have received attention. While such research has a lot of theoretical ramifications (in 
understanding relationship between the classes NC and Random NC), these methods, 
almos! without exception lead to loss in efficiency of the algorithtns. This may not be 
be very fruitful from a practical viewpoint. There are forma! methods for proving 
lower bounds for randomized algorithms which gives a strong basis for 'optimality' in 
randomized algorithms. Moreover, it has been observed quite of:en that for a given 
problem, the lower-bounds for deterministic algorithms tum out to be identical to the 
lower bounds for randomized algorithms (within constant multiplicative factor). 

Perhaps a more fruitful area of investigation could be directed towards reduction 
of ~he number of mndom bits used in an algorithm (without affecting the asymptotic 
bounds) since perfect 'randomness' has been recognized as an expensive resource. This 
has been demonstrated by sorne recent work due to Raghavan & KarloffIlO] and the 
authors feel that funher research in this direction could be very rewarding from a 
theoretical perspective as well as from a practical viewpoint. For ail our algorithms we 
are able to bound the number of purely random bits to 0 (log2n). 

Geometry on Interconnection networks 

Note that the underlying model for all these algonthms is the paralld analogue of 
the sequential RAM (Random Access Memory) model, PRAM. This model has become 
the standard model (within minor variations) for theoretical work on design and 
analysis of p~'"allel algorithms. The state of art of paraUel geometric algorithms for 
feasible mode!s suchas butterfty or hypercubes is lagging far behind the PRAM 
modeJs; the only known optimal O(logn) time n pTocessor algorithm ex;s!s for 2-D con
vex hulls. 

One of our primary motivation for research in randonUzed pa!1111el a!gorithms is 
the absence of optimal deterrninistic sorting algorithm on the comll1only used intercon
nection networks. The only known optimal sorüng network is the AKSnetwork which 
sorts in O(logn) depth but has horrendous constants. Moreover, the algorithm is not 
suited for the widely used architectures like butterfty or hypercube, which are more 
suitab!e for general-purpose computations. In contrast, FlashsortIll], an O(logn) depth 
randomized sorting algorithm hasmuch lower constants and mns on the standard archi
tectures. The other optimal parallel mergesort aJgorithm of Cole, which has low con
stants and is very elegant is of little use in practice sinee it is tailor-made for PRAM 
modeL This mode! is very popular among algorithm designers from a theoretical per
spective because of ils simplicity. However, for sueh algorithms to be of any use, there 
must be a general mechanism for mapping algorithms from PRAM on to 
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7 

interconnection networks. These involve routing on interconnection networks and the 
best known routing algorithms (O(logn) time) involve use of randomization in sorne 
form. Moreover, such emulation usually lead to loss of efficiency by O(logn) multipli
cative factor. Consequently, Cole's algorithm deteriorates to an O(log2n) algorithm on 
the interconnection networks. Unlike the cascading divide-and-conquer paradigm used 
in [14], we have reasons to believe that sorne of our methods can be extended to the 
fixed connection networks without loss of efficiency. 

Conclusion 

In summary, we note that randomized algorithms olfer a very pragmatic alternative 
(to deterministic algorithms) in the area of parallel algorithms. Apart from being 
simpler than their deterministic counter-parts they usually have smaller constants. In 
addition, they provide a bridge between the algorithm-designer who designs algorithms 
for abstract models like PRAM and ils realistic implementation on feasible architec
tures. 

BibIiography 

[1] L. Adleman and K. Manders, 'Reducibility, Randomness and Untractability,' Proc. 
9th ACM STOC, 1977, pp. 151-163. 

[2] A. Aggarwal and R. Anderson,'A Random NC Algorithm for Depth First Search,' 
Proc of the 19th ACM STOC, 1987, pp. 325-334. 

[3] Aggarwal et al., 'Parallel Computational Geometry,' Proc. of the 26th Annual Symp 
on P.O.C.S., 1985, pp. 468-477. Also appears in ALGORITHMICA, VoL 3, No. 3, 
1988, pp. 293-327: 

[4] Atallah, Cole and Goodrich, 'Cascading Divide-and-conquer: A technique for 
designing parallel algorithms, Proc. of the 28th Annual Symp. on P.O.C.S., 1987, pp. 
151-160. 

[5] Clarkson, 'Applications of random sampling in Computational Geometry II,' Proc. 
of the 4th Annual Symp. on Computational Geometry, June 1988, pp. 1-11. 

[6] N. Dadoun and D. Kirkpatrick, 'Parallel processing for efficient subdivision search,' 
Proc. of the 3rd Annual Symp. on Computational Geometry, pp. 205-214, 1987. 

[7] H. Gazit, 'An optimal randomized parallel algorithm for finding connected com
ponents in a graph,' Proc of the IEEE FOCS, 1986, pp. 492-501. 

[S[ C.A.R. Hoare, 'Quickson,' Computer Journal, 5(1), 1962, pp. 10-15. 

B
IB

LI
O

TH
E

Q
U

E
   

 D
U

   
 C

E
R

IS
T




