
Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

401

H. Djidjev (Ed.)

Optimal Algorithms
International Symposium
Varna, Bulgaria, May 29-June 2, 1989
Proceedings

,_. --------------------------------------

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo Hong Kong

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Editoriaj Board

D. Barstow \p.J. Bra:;er P. 3rinch Hanse;, D. Gries ~. L.ucK;'am

C. Moler A. Pnueli G. Seegmül!er j. Stoer N. Wirth

Editer

Hristo Djidjev

Center of Informatics and Computer Technology
Bulgarian Academy of Sciences

Acad. G. Sonchev str" bi. 25-A, Sofia 1113, Bulgaria

CR Subject Classification (1987): F.1.2-3, F.2.2, G,2.2, E.l

ISBN 3~540~51859-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-51859-2 Springer-Verlag New York Berlin Heidelberg

Tn;s work is $L:oject to copyright. Aii rights are reserved, whether the whole or part of the ma1eriai
is concerned, specificah'y the rights of translatton, reprinting, re-use of illustrations, recitation,
broadcas1Îng, reproduct~on on microfilms cr in otherways, and storage in databanks. Dup-lication
of1his publication or parts thereof is orrly ger!1:itte~ under the provisions of ire German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
::::aid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 19S9
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbacb/8ergstr.
2145/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

FOREWORD

The papers included in this volume are a subset of the papers

presented at the Second International Symposium on Optimal

Algorithms he Id in Varna, Bulgaria, May 29-June 2, 1989. The

symposium was organized and funded by the Center of

Informatics and Computer Technology of the Bulgarian Academy

of Sciences. There were two major sections: Algorithms and

Optimal Recovery. This volume includes only papers presented

in the section Algori thms .

Several people were invited ta give special lectures at this

symposium and aIl of them were invited ta contribute papers

for the proceedings. These papers are identified as invited

papers in the table of contents. For the remaining papers t 51

were submitted for consideration, and of these, 37 were

selected for formaI presentation at the symposium. From these

37 contributed papers, after their presentation at the

symposium, 13 were selected for inclusion in these

proceedings. The papers in this volume have not beeu fully

refereed, and those which contain original research results

should be expected to appear later in a more complete form in

regular refereed journals.

l Hould 1ike to thank to the

committee for their

fo1lowing

help in

members

making the

of the

final advisory

selection:

P. Spirakis,

cooperation.

F. Dehne, 1. Ipsen, V. Ramachandran, J.-R. Sack,

P. Young, as weIl to J. Reif for his

Finally l would like to thank to the members of

the local organization committee, especially to V. Tzelkova,

B. Stoyanova, and L. Aleksandrov for their efforts during the

organization of the symposium and the preparation of these

proceedings.

Sofia, June 1989

Hristo N. Djidjev

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

TABLE OF CONTENTS

Randomization in Parallel Algorithms and it5 Impact

on Computational Geometry (Invited)

J. H. Reif and S. Sen 1

There Are Planar Graphs Almost as Good as the Complete Graphs

and as Short as Minimum Spanning Trees (Invited)

C. LeFcopoulos and .4. Lingas .. _ 9

Computing Digitized Voronaf Diagrams on aSystolie Screen

and Applications to Clustering (Invited)

F. Dehne 14

PRAM Algorithms for Identifying Polygon Similarity

C. S. Iliopoulos and li. F. Smyth 25

A Framework for Parallel Graph Algorithm Design (Invited)

V. Ramachandran _ .. 33

Fast Soliton Automata (Invited)

T. S. Papatheodorou and N. Tsanianis _ 41

An Upper Bound on the Order of Locally Testable

Deterministic Finite Automata

S. Kim, R. HcNaughton, and R. HcCloskey 48

A Fast Algorithm to Decide on Simple Grammars Equivalence

D. Caucal ... 66

Complexity of the ParaI leI Givens Factorization on

Shared Memory Architectures (Invited)

H. Cosnard, E. M. Daoudi~ and Y. Robert _ 86

Optimal Bounds on the Dictionary Problem

.4. • .4.ndersson _ 106

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VI

Optimal Constant Space Move-to-Rear List Organization

B. J. Oommen and D. T. H. Ng 115

Improved Bounds on the Size of Separators of Toroidal Graphs

L. G. Aleksandrov and H. N. Djidjev......... 126

On Some Proper-ties of La, bl -Trees

R. Sprugnoli, E. Barcucci, .4. Chiuderi, and R.Pinzani.o .. 139

Disassembling Two-Dimensional Composite Parts via

Translations (Invited)

D. Nussbaum and J.~R. Sack 153

Which Triangulations Approximate the Complete Graph?

G. Das a-nd D. Joseph 168

The Approximability of Problems Complete for P (Invited)

11. Serna 8.7d P. G. Spi rakis 193

A S_tructural Overview of NP Optimization Problems (Invi ted)

D. BruschJ. D. Joseph, and P. young 205

Sorting within Distance Bound on a Mesh-Connected

Processor Array

B. Chlebus ... 232

Local Insertion Sort Revisited

J. Katajainen 1 C. Levcopoulos, and O. Petersson 239

Packet Routing on Grids of Processors

11. Kunde .. 254

Optimal Parallel Computations for Halin Graphs

K. Diks and J{. Rytter 266

Optimal Parallel Algorith::ns for b-Matchings in Trees

c. N. K. Osiakwan and S. G. AkI. 274

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

RANDOMIZATION IN PARALLEL ALGORITHMS AND
ITS IMPACT ON COMPUTATIONAL GEOMETRYt

John H. Reif and Sandeep Sen
Computer Science Department

Duke University,
Durham, N.e. 27706,

U.S.A.

Abstract

Randomization offers elegant solutions ta some problems in parallel computing . ln ad
dition to improved efficiency it often leads to simpler and practical algorithms. ln this
paper we discuss some of the characteristics of randomized algorithms and also give
applications in computational geometry where use of randomization gives us significant
advantage over the best known deterministic parallel algorithms.

Motivation

Designing parallel algorithms for various fundamental problems in computational
geometry has received much attention in the last few years. After sorne early work by
Anita Chow in her thesis, Aggarwal et a!.[13] developed sorne general techniques for
designing efficient parallel algorithms for a number of fundamental problems. These
included convex hulls in two and three dimensions, voronoi diagram for planar point
sites, triangulation and planar point-location among others. Although most of these
problems have a sequential time-complexity of 8(nlogn), the authors presented paralleJ
algorithms which uses a linear number of processors and runs in O(logk n) time (k being
typically 2,3 or 4) in a PRAM mode!. Consequently, the problem of designing optimal
(in the processor-time product sense) algorithms were left open. Since then a number of
the open problems in the original list have been settled due to the work by Atallah,
Cole and Goodrich[14] who were able to apply Cole's elegant techniques for parallel
mergesort to a number of these problems.

We present techniques for obtaining optimal parallel algorithms for problems in
computational geometry using randomization. As applications of our methods, we
derive efficient parallel algorithms for planar-point location, convex-hull and trapezoidal
decomposition. These algorithms run in time T = O(logn) using O(n) processors for
problem size n and terminate in the claimed time bound with probability 1 - n -c for
any integer c. These bounds are worst-case and do not depend on any input

t Supported in part by Air Force Contract AFSOR-87-0386, ONR contract NOO014-87-K-031O, NSF grant CCR-

8696134, DARPA/ARO contraet DAAL03-88-K-0l85. DARPA/ISTO commet NOO014-88-K-0458.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

distribution. The main contribution of our work is a new random sarnpling technique
called Polling wmch can be used for doing divide-and-conquer efficiently on va..rious
problems in computational geometry. Our techniques !ead to algorithms tha! are con
siderably simpler than their methods and appear to have wider applications. For exam
pie we have derived an optimal O(logn) time n processors algorithm for constructing
the convex hull of points in three dimensions (Reif and SenlIS]). Presently the bes!
known deterministicalgorithm for this problem takes O(log2n log' n) rime using n pro
cessors (Dadoun and Kirkpatrickf17]).

Basics

Randorrlzation W.2.S fonnally introouced by Rabin[6] and independemly by Solo
vay & Strassen[8] as a taol for improving the efficiency of certain algorithms. In a nut
shel!, a randomized algorithm uses coin-ftips to make decisions al differem steps of the
algorithm. Therefore a randowized algorithm is actually a family of algorithms where
each member of this family corresponds to a fixed sequence of outcomes of the coin
fiip. Two of the most commonly used forms of randomlzation in literature are the Las
Vegas algorithms and ,Honte Carlo algorithms. The fonner kind ensures that the output
of the aigorithm is always correct - however only a fraction (usually greater than !i2) of
the family of algorithms hait within a certain time bound (as weil as with respect te
sorne other reSGurces like space). In contrast, the Monte Carlo procedures always halt
in a pre-detennined time period; however the final output is correct with a certain pro
bability (typically > 1/2). This lends itself very naturally to decision algorithms
(Rabin's primality testing being a good example). For the purpose of this discussion we
shall limit ourselves te the Las Vegas algorithms which have been mote popular with
the algorithm designers. For a general algorithm which preduces more (han just 'yes
no' output, the precise meaning of an incorrect output becomes subjective; for example
we may need to know how close are we to the correct output in order to decide if the
output is acceptable. Although, this is one of the œasons for bias towards Las Vegas
algorithms, the use of either kind of algorithms depends on the particular application.

Complexity measures of randornized algorithms

Before we discuss the applications of these algorithms in parallel computing, it is
important 10 review sorne of the perfonnance measures used by these algorithms. This
will eriable us to compare the relative merits of differem nL,domized algorithms. To
begin~ we- must emphasize the distinctions between a randornized algorithm and pro ba
"îlistic algorithrn. By probabilistic algorithrns, we imply those algorithms whose perfor
mance depend on the input distribution. FOT such algorithms, we are often interested in
the average resources used over all inputs (assuming a fixed probabi~ity distribution of
the input). A randomized algorithm does not necessarily depend on the input distribu
tion. -A randomized algorithm uses a certain amount of resources for the worst-case
input withprebability 1- E (0 < e < 1), i,e. the bound holds for any input (which is a
stronger bound than the average bounds). This can be very well illustrated with the
example of Hoare's Quicksorr algorithm. ln its original form,it is a probabilistic algo
rithm which perfonns very weIl on certain inputs and deteriorates sharply on sorne

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

3

other inputs. By assuming that all inputs are equally likely (known as random-input
assumption), the algorithm performs very weil on the average. By introducing randomi
zation in the algorithm itself, it has been shown to perform very weil on ail inputs with
high probability. This is certainly a more desirable property since a malicious oracle
who could control the performance of the original algorithm by giving it worst case
inputs, can no longer affect il. Of course, the onus of a suceessful run of the algorithm
is now shifted ta the outcome of the coin-flips. This depends on certain randomness
properties of the random-number generatar, whieh is a topie in itself. Aiso note that this
discussion does not preclude designing randomized algorithms which are dependent on
the input distribution but these algorithms are no different from their detenninistic
counterparts.

Until now we have characterized the randomized algorithms with a success proba
bility of 1 - E without specifying the possible forms of E. It can be a fixed constant or a
function (which takes values between (0,1)). It must be clear that E should be minim
ized (compare this with deterministic algorithms where E is 0). Intuitively we can
expect a trade-off between E and the amount of resource used. In other words, the
failure probability E must decrease with increasing amount of resources. Let us consider
a concrete example. Suppose TA (n) is the expected running time of the randomized
algorithm A for input size n. What can we say about E? If we don't have any bounds
other than the expectation we can only use Markov's inequality. From Markov's ine
quality, the probability that running lime exceeds kT A (n) is less than l/k. For example,
if k;2, E ; 1/2. Compare this with an algorithm B for the same problem whose running
time exceeds ko.TB (n) with probability less than lin a and suppose that for any given
o., k is a constant independent of n. This implies that the probability of failure dimin
ishes rapidly as n increases and vanishes asymptotically. We have characterized the
failure probability E as a decreasing function of the problem size, n and resources used
by the algorithm. The reader will recognize that the faster E decreases with these param
eters the better is the algorithm. This makes algorithm B superior to algorithm A if
TA (n) and TB (n) represent the same function. The basic idea is that depending on the
application, the user chooses a certain value of E and aceordingly chooses k (given the
value of n) with the objective of minimizing k. There is no reason to be pedantic about
the kind of function E should be exeept that a failure probability of the second form
(that of algorithm B) has been very widely used in literature and such algorithms have
been termed as having high probability of success. This kind of failure probability func
tion is quite robust with respect to a polynomial number of procedures i.e. the union of
a polynomial number of events, each with high probability of suceess, succeeds with
high probability. lt may be a non-trivial task to transform an algorithm like A to an
algorithm like B (which succeeds with high probability). The reader must also appreci
ate that randomized algorithms like B whieh have such high probability of suceess
should be competitive with deterministic algorithms for the same problem. According
ta Adleman & Manders[l], a randomized algorithm with success probability more than
1 - 2-k (for sorne large fixed k) has a lower probability of failure than the hardware
itself.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

4

Parallel computation and ramlornizalÏon

Randomization has proven to be an extrernely effective in parallel algorithm
design. One of the earliest treatment of this !Opie ean be found in Reif[12]. For a more
reeent and extensive survey the reader is encouraged ta read the firsl two chapters of
Rajasekaran[7]. A common!y accepted measure of efficiency of parallel algorithms is
the processor-time product (in short P ·T). Although the primary objective of paraUel
algorithms is to minimize time complexity (the number of parallel time steps), in prae
lice one also has ta be careful about the number of processors needed to achieve this
speed-up. The efficiency of a parallel algorithm is a measure of how expensive is the
speed-up compared to the sequential algorithm. Clearly P'T product cannot be better
than the sequential time complexity of the algorithm. Ideally one would iike the speed
up to be !inear with the number of processors used; however this is far from true in
mûst cases. This also gives an abstract measure of how 'hard' it is to parallelize a par
,kular problem. We say that a parallel a1gorithm is efficient if
P·T :::; o (Seq(n)'logk n) for sorne constant k where fi is the input size. The dass NC
is defined to be the class of problems which admit poly-logarithmic rime parallel algo
rithm using a polynomial number of processors. Note that while these algorithms admit
fast parallel algorithms they may not be necessarily efficient.

Use of Random Sampling

Randornized sampling techniques have been used extensively in cases of divide
and-conquer algorithms (mûst parallel algorithms would fail under this category). The
idea is to divide up the problern 'almûs! evenly' inro smaller sub-problems using a ran
domly chosen subset of the input. This random subset i5 called splitters and because of
the process .of random selection, various probabilistie arguments can be tIsed to bound
the size of the sub-problems. For exam1ili', in pa.raîlel sorting, we can choose f;; keys
randomly and partition the input into -.In subsets using the partitions induced by the
random keys. Using simple probabilisticarguments, il is not difficult to bound the size
of the subproblems to approximately OCinlogn) with high probabi!ity. The main algo
rithm is then used recursively on each of the partitions.

Random sampling in computational geometry was first introduced by Clarkson and
sinee then he has published a series of results leading to improvements and
simplification of a number of sequential algorithms in computation al geometry. How
ever his time bounds are expected in contrast to our hig h-likelihood bounds (these have
suceess probabilities 1 - n-G for any integer e) which aside from heing weaker are of
little use for obtaining parallel alorithms. The reason being that for sequential algo
rithms, he was able to use the linearity property of expectation (Le. the expectation of
the sum is the sum of expectations) and $0 it was enough to bound the expected run
oing time of each individual step. For a parallel algorithm, one is looking for the max
imum of theexpectation from the expectation of a farnilyof random variables and there
exists no known method of obtaining this value. Among other techniques, we introduce
a new random-sampling technique caUed 'Polling' which enables us to obtain high pro
bability bounds for our algorithms and complements Clarkson' s work to a large extenl.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

5

More specifically, it a1so allows us to use random samp!ing recursively without blow
ing up the problem size.

Resampling and Polling

The informai idea behind 'Polling' is the following: For a given problem of size n,
we choose randomly a small (typically nE for E < 1/2) subset of the given input and
use il to divide the original problem. It is not difficult to show that the size of each
sub-problem is no larger than n 1-E/ogn but the total size of the subproblems may be
considerably larger than n. For example, if the input is !ine segments on the plane, a
large number of the !ine segments may be broken up into smaller pieces during the
divide step. This phenomenon is not witnessed in a problem like sorting where the total
size of the subproblems is always exactly equal to the input size. Increase in the prob
lem size at every recursive cali would result in grossly inefficient a1gorithms. Clark
son[15] had shown that the total sum of the subproblems has expected value O(n). This
implies that with probabi!ity almost 1/2, this value would exceed k/o/al n for sorne con
stant kra/a!. Consequently, if we choose independently O(logn) random subsets, at least
one of them will be 'good' (i.e. sum of subproblems does not exceed klO/aln) with high
probability. If we resample O(logn) times, we may end up doing non-optimal number

of operations. Instead we test the 'goodness' of a sample on only ~ of the input. It
lOg' n

can be proved that this gives estimates wilhin a constant factor with very high probabil
ity (Reif and Sen[18]). Thus we are able to choose a random sample such that the size
of the subproblems does not exceed more than a constant times the input size. We cali
this technique 'Polling' (as if we are polling a fraction of the input to test the 'good
ness' of a sample).

Notice that even with Polling the sum of sub-problems may grow by a constant
factor which could lead to a polylogarithmic factor increase over O(loglogn) levels of
recursion. With sorne additional filtering methods (which can be efficiently applied
since the size is still O(n)), we are able to bound the problem size by kmaxn at any level
where kmax is a constant. For a parallel a1gorithm, we are able to get a recursion which
is roughly of the form
T (n) = T (n 1-E) + 0 (logn). This has a solution T(n) = O(logn) and the processor
bound is simultaneously O(n).

The overall algorithm can be summarized as following:

(i) Choose independently O(logn) random subsets each of size O(n E).

(ii) Use 'Polling' to identify a 'good' sample.

(iii) Partition the problem by the random sample.

(iv) Use 'Filtering' to control the sum of the sub-problems. (The implementation
of this step is problem dependent. For example il is different in the case of

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

6

trapezoidal decomposition and convex hulls).

(v) If the larges! sub-problem size is larger than a certain ,Ize apply algorithm
recursively.

Randomization as a resource
Sorne recent efforts directed towards 'derandomization'· of randomized algorithms

have received attention. While such research has a lot of theoretical ramifications (in
understanding relationship between the classes NC and Random NC), these methods,
almos! without exception lead to loss in efficiency of the algorithtns. This may not be
be very fruitful from a practical viewpoint. There are forma! methods for proving
lower bounds for randomized algorithms which gives a strong basis for 'optimality' in
randomized algorithms. Moreover, it has been observed quite of:en that for a given
problem, the lower-bounds for deterministic algorithms tum out to be identical to the
lower bounds for randomized algorithms (within constant multiplicative factor).

Perhaps a more fruitful area of investigation could be directed towards reduction
of ~he number of mndom bits used in an algorithm (without affecting the asymptotic
bounds) since perfect 'randomness' has been recognized as an expensive resource. This
has been demonstrated by sorne recent work due to Raghavan & KarloffIlO] and the
authors feel that funher research in this direction could be very rewarding from a
theoretical perspective as well as from a practical viewpoint. For ail our algorithms we
are able to bound the number of purely random bits to 0 (log2n).

Geometry on Interconnection networks

Note that the underlying model for all these algonthms is the paralld analogue of
the sequential RAM (Random Access Memory) model, PRAM. This model has become
the standard model (within minor variations) for theoretical work on design and
analysis of p~'"allel algorithms. The state of art of paraUel geometric algorithms for
feasible mode!s suchas butterfty or hypercubes is lagging far behind the PRAM
modeJs; the only known optimal O(logn) time n pTocessor algorithm ex;s!s for 2-D con
vex hulls.

One of our primary motivation for research in randonUzed pa!1111el a!gorithms is
the absence of optimal deterrninistic sorting algorithm on the comll1only used intercon
nection networks. The only known optimal sorüng network is the AKSnetwork which
sorts in O(logn) depth but has horrendous constants. Moreover, the algorithm is not
suited for the widely used architectures like butterfty or hypercube, which are more
suitab!e for general-purpose computations. In contrast, FlashsortIll], an O(logn) depth
randomized sorting algorithm hasmuch lower constants and mns on the standard archi
tectures. The other optimal parallel mergesort aJgorithm of Cole, which has low con
stants and is very elegant is of little use in practice sinee it is tailor-made for PRAM
modeL This mode! is very popular among algorithm designers from a theoretical per
spective because of ils simplicity. However, for sueh algorithms to be of any use, there
must be a general mechanism for mapping algorithms from PRAM on to

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

7

interconnection networks. These involve routing on interconnection networks and the
best known routing algorithms (O(logn) time) involve use of randomization in sorne
form. Moreover, such emulation usually lead to loss of efficiency by O(logn) multipli
cative factor. Consequently, Cole's algorithm deteriorates to an O(log2n) algorithm on
the interconnection networks. Unlike the cascading divide-and-conquer paradigm used
in [14], we have reasons to believe that sorne of our methods can be extended to the
fixed connection networks without loss of efficiency.

Conclusion

In summary, we note that randomized algorithms olfer a very pragmatic alternative
(to deterministic algorithms) in the area of parallel algorithms. Apart from being
simpler than their deterministic counter-parts they usually have smaller constants. In
addition, they provide a bridge between the algorithm-designer who designs algorithms
for abstract models like PRAM and ils realistic implementation on feasible architec
tures.

BibIiography

[1] L. Adleman and K. Manders, 'Reducibility, Randomness and Untractability,' Proc.
9th ACM STOC, 1977, pp. 151-163.

[2] A. Aggarwal and R. Anderson,'A Random NC Algorithm for Depth First Search,'
Proc of the 19th ACM STOC, 1987, pp. 325-334.

[3] Aggarwal et al., 'Parallel Computational Geometry,' Proc. of the 26th Annual Symp
on P.O.C.S., 1985, pp. 468-477. Also appears in ALGORITHMICA, VoL 3, No. 3,
1988, pp. 293-327:

[4] Atallah, Cole and Goodrich, 'Cascading Divide-and-conquer: A technique for
designing parallel algorithms, Proc. of the 28th Annual Symp. on P.O.C.S., 1987, pp.
151-160.

[5] Clarkson, 'Applications of random sampling in Computational Geometry II,' Proc.
of the 4th Annual Symp. on Computational Geometry, June 1988, pp. 1-11.

[6] N. Dadoun and D. Kirkpatrick, 'Parallel processing for efficient subdivision search,'
Proc. of the 3rd Annual Symp. on Computational Geometry, pp. 205-214, 1987.

[7] H. Gazit, 'An optimal randomized parallel algorithm for finding connected com
ponents in a graph,' Proc of the IEEE FOCS, 1986, pp. 492-501.

[S[C.A.R. Hoare, 'Quickson,' Computer Journal, 5(1), 1962, pp. 10-15.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

