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FOREWORD

The papers included in this volume are a subset of the papers
presented at Che Second International Sywmposium on Optimal
Algcerithms held in Varna, Bulgaria, May 29-June 2, 1889, The
symposium was organized and funded by the Center of
Informatics and Computer Technology of the Bulgarian Academy
of Sciences, There were two major sections: Algorithms and
Optimal Recovery. This volume includes only papers presented

in the section Algorithms .

Several people were invited to give special lectures at this
symposium and all of thew were invited to contribute papers
for the proceedings. These papers are identified as invited
papers  in the table of contents. For the remaining papers, 51
were submittéd for consideration, and of these, 37 were
selected for formal presentation at the symposium. From these
37 contributed papers, after their presentation at the
sympoesium, 13 were selected for inclusion in these
proceedings. The papers in this volume have not been fully
refereed, and those which contain original research results
zshould be expected to appear later in a more complete form in

regular referced journals.

I would like Lo thank to the following members of +the

advisory committee for their help in making the final
selection: F. Dehne, I. Ipsen, V. Ramachandran, J.-R. Sack,
P. Spirakis, P. Young, as well tao J. Reif for his

cooperation. Finally I would like to thank to the wembers of
the local organization committee, especially to V. Tzelkova,
B. Stoyanova, and L. Aleksandrov for their efforts during the
organization of the symposium and the preparation aof these

proceedings.

Safia, June 1989

Hriste N, Djidjev
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RANDOMIZATION IN PARALLEL ALGORITHMS AND
ITS IMPACT ON COMPUTATIONAL GEOMETRY?

John H. Reif and Sandeep Sen
Computer Science Department
Duke University,
Durham, N.C. 27706,
US.A.

Abstract

Rundomization offers elegant soluriony to some problems in parallel computing. In ud-
dition to improved efficiency it often leads ro simpler and practical algorithms. In rhis
paper we discuss some of the characteristics of randomized algorithms and also give
applications in computational geometry where use of randomization gives us significant
advantage over the best known deterministic parallel algorithms.

Motivation

Designing paraliel algorithms for various fundamental problems in computational
geometry has reccived much artention in the last few years. Afier some early work by
Anita Chow in her thesis, Aggarwal et al.[13] developed some general techniques for
designing efficient parallel algorithms for a number of fundamental problems. These
included convex hulls in two and three dimensions, voronoi diagram for planar point
sites, triangulation and planar peint-location among others. Although most of these
problems have a seguential time-complexity of &{nlogn ), the anthors presented parallel
algorithms which uses a linear number of processors and runs in Oflog#n) dme (k being
typically 2,3 or 4) in a PRAM model. Consequently, the problem of designing optimal
(in the processor-time product sense} algonthms were teft open. Since then a number of
the open problems in the original list have been settled due to the work by Azallah,
Cole and Goodrich[14] who were able to apply Cole’s elegant techniques for parallel
mergesort to a number of these problems.

We present techniques for obraining oprimal parallel algorithms for problems in
computational geometry using randomization. As applications of our methods, we
derive efficient parallel algorithms for planar-point location, convex-hull and trapezoidal
decomposition. These algorithins run in tme T = O(logn) using O{n} processors for
problem size n and terminate in the claimed time bound with probability 1 - r—< for
any integer c. These bounds are worst-case and do not depend on any inpat

t Supporied in pant by Air Force Conmract AFSOR-37-0386, ONR contract NOOOI14-87-K-G310, NSF grant CCR-
Ba06134, TMARPAJARG contract DAALDI -88-K-0185, DARPASASTO coniraol NOOD]4-88-K-3438.
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distribution. The main contribution o©f our work s a cow random sampling techrigus
called Polling which can be used for deing divide-and-conguer efficiently on various
problems in computational geometry, Our techniques lead to algorithms that are con-
siderably simpler than their methods and appear to have wider applications. For exarn-
ple we have derived an optimal O(logn) time n processors algorithm for constucting
the convex hull of points in three dimensions (Reif and Senl[187). Presently the best
known determinisiic algorithm for this problem takes O(logZa log® ) time unsing n pro-
cessors (Dadoun and Kirkpatrick{17]).

Basics

Randomization was formally inwoduced by Rabin{6] and independenily by Solo-
vay & Strassen{8] as a too} for improving the efficiency of ceriain algerithms. Tn a nur-
shell, a randomized algorithm uses coin-flips 10 make decisions at different steps of the
algorithm. Therefore a randomized algorithm is acinally a family of algorithms where
zach member of this family corresponds 1o a fixed sequence of outcomes of the coin-
Aip. Two of the most commonly used forms of randomization in Hicreture are the Las
Vegas algorithms and Monte Carlo algorithins. The former kind ensures that the outpat
of the aigorithm is always correct - however only a fraction {usually greater than 1/2) of
the family of glgerithms halt within 2 certain time bound {as well 23 with respect o
some other rescurces like space). In conmast, the Monte Carlo procedures always hah
in a pre-determined time period: however the final output is correct with 2 certain pro-
bability " (typically > 1/2). This lends itself very naturally to decision algorithms
{Rabin’s primality testing being a good example). For the purpose of this discussion we
shall limit curselves 1o the Las Vegas aigorithms which have beer morc popular with
the algorithm designers. For 2 general algorithm which produces more than just “yes-
20" output, the precise meaning of an incorrect Gutput bocomes subjective; for example
wa may need to know how closc are we to the correct output in order to decide i the
autpat is acceptable. Although, this is one of the reasons for bias towards Las Vegas
algeorithms, the use of either kind of algorithms depends on the particular application.

Complexity measures of randomized algorithms

Before we discuss the applications of these algorithms in paraliel computing, it is
important to review some of the performance measurcs used by these algorithms. This
will enable us to compare the relative merits of differsni randomized algorithms. To
begin, we must emphasize the distinctions between a randomized algorithm and proba-
Silistic algorithim. By probabilistic algorithms, we imply those algorithins whose perfor-
mance depend on the impu distribution. T'or such algorithms, we are often interested in
tiie average resources used over all inputs {assuming a fixed probability dismibution of
the input). A randomized algorithm does not necessarily depend on the input distribu-
ton. A randomized algorithm uscs a cenain amount of resources for the worst-case
input with probability 1- € 0 < £ < 1, re. the bound holds for any inpui {which is a
stronger bound thah_thc average bounds). This can be very iwell illustrated with the
example of Hoare’s Quicksorr algorithm. In its original form, it is a probabikistic algo- .
rithm which performs very well on certain inputs and detericrates Sharply on some
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other inputs. By assuming that all inputs are equally likely (known as random-input
assumption), the algorithm performs very well on the average. By introducing randomi-
zation in the algorithm itself, it has been shown to perform very well on all inputs with
high probability. This is certainly a more desirable property since a malicious oracle
who could coniol the performance of the original algorithm by giving it worst case
inputs, can no longer affect it. Of course, the onus of a successful run of the algorithm
is now shifted 1o the cutcome of the coin-flips. This depends on certain randomness
propertics of the random-number generator, which is a lopic in itself. Also note that this
discussion does not preclude designing randomized algorithms which are dependent on
the input dismibution but these algorithms are no different from their deterministic
counterparts.

Until now we have characterized the randomized algorithms with a success proba-
bility of 1 - € without specifying the possible forms of €. It can be a fixed constant or a
function (which takes values between (0,1)). It must be clear that £ should be minim-
ized (compare this with deterministic algorithms where £ is (). Intuitively we can
expect a trade-off between £ and the amount of resource used. In other words, the
failure probability &€ must decrease with increasing amount of resources, Let us consider
a concrete example, Suppose Th(n) is the expecred running time of 1he randomized
algorithm A for input size n. What can we say about €7 If we don’t have any bounds
other than the expectation we can only use Markov’s inequality. From Markov’s ine-
quality, the probability that running time exceeds kT4 (n) is less than 1/k. For example,
if k=2, £ = 1/2. Compare this with an algorithm B for the same problem whose running
time exceeds & oFp (n) with probability less than 1/2% and suppose that for any given
o, k is a constant indcpendent of n, This implies that the probability of failure dimin-
ishes rapidly as n increases and vanishes asymptotically. We have characilerized the
failure probability € as a decreasing function of the problem size, n and resources used
by the algorithm. The reader will recognize that the faster € decreases with these param-
eters the better is the algorithm. This makes algorithm B superior to algorithm A if
Ta(n) and Ty (n) represent the same function. The basic idea is that depending on the
application, the user chooses a certain value of € and accordingly chooses k (given the
value of n} with the objective of minimizing k. There is no reason to be pedantic about
the kind of function € should be except that a failure probability of the second form
(that of algorithm B) has been very widely used in literature and such algorithms have
been termed as having high probability of success. This kind of failurc probability func-
tion is quite robust with respect to a polynomial number of procedures i.e. the union of
a polynomial number of events, each with high probability of success, succeeds with
high probability. It may bec a non-trivial task to transform an algorithm like A to an
algorithm like B (which succeeds with high probability). The reader must also appreci-
ate that randomized algorithms hke B which have such high probability of success
should be competitive with deterministic algorithms for the same problem. Acceording
10 Adleman & Manders[1], a randomized algorithm with success probability more than
1 - 2% (for some large fixed k) has a lower probability of failure than the hardware
itself,
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Paralle! computation and randomization

Randomization has preven to be an extremely cffective in paradel algoniam
design. One of the earliest treatment of this topic can be found in Reif]12). For a more
recent and saitensive survey the reader is encouraged to read the first two chapters of
Rajasekaran{7]. A commonly accepted measure of cfficiency of parallel algorithms is
the processor-time produci (in short P-T). Although the primary objective of paralicl
algorithims is to minimize time complexity (the number of parallel te steps), in prac-
tice one also has to be careful aboul the number of processors needed o achieve this
speed-up. The efficiency of a parallel algorithm ic a measure of how expensive is the
speed-up comparad to the seguential algorithm. Clearly P -7 product cannot be better
than the scquential time complexity of the algoriihm. Ideally one would like the speed-
up to be linear with the mumber of processors used; however this is far from wue in
most casas. This also gives an absirsct measure of how ‘hard” it is o parallelize a par-
ticular  problern,  We  say  that  a  parallel algorithm i efficiens if
2T £ G(Seq(n)loghn) for soms constant k where a is the input size. The class NC
is defined o be the class of problems which admit poly-logarithmic time parallei algo-
rithm using a polynormal number of processers. Note that while these algorithms admit
fast parallel algorithms they may not be necessarily efficiens.

Use of Random Sampling

Fandomized sampling fechnigunes have been used extensively in cases of divide-
and-conquer algorithms (most parallel algorithrs would fall under this category). The
idea is to divide up the problem ‘almost evenly® into smaller sub-problems using a ran-
domly chosen subset of the input. This random subset is called splitters and because of
the process of random selection, various probabilistic arguments can be used to_bound
the size of the sub-problems. For example, n parallel sorting, we can choose Vi keys
randemly and pariition the Input inte Yo subsets using the partitions induced by the
random keys. Using simple probabilistic arguments, it is not difficult to beund the size
of the subproblems o approximately O(Vilpgn) with high probability. The main algo-
rithm is then wsed recursively on gach of the partiti(ms

Rardom sampling in computational geometry was first inwoduced by Clarkson and
since then he has published a series of results leading to improvements and
simplification of a number of sequential algorithms in computational geometry, How-
ever his time bounds are expec'ed in contrast to our aigh-iktelihood bounds (these have
success protvabilities 1 - »— for any iateger ¢) which aside from belug weaker are of
little use for obrzining parallel alorithms. The reason being that for sequential algo-
nthms he was able to use the lineanty property of expectation {i £. the expectation of
the sum is the sum of expectations) and o it was enocugh to bound the expected Tun-
ning time of each individual step. For a paralle! algorithm, one is locking for the max-
imum of the.expectation from the expectation of a family of randora variables and there
exists no krown method of obtaining this velue. Among other techniques, we introduce
a new random-sampling technique called ‘Polling” which enables us to obtain Aigh pro-
bability bounds for our algorithms and complements Clarkson’s work to a large extent.
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More specifically, it also allows us to usc random sampling recursively without blow-
ing up the problem size.

Resampling and Polling

The informal idea behind ‘Polling’ is the following: For a given problem of size n,
we choose randomly a small (typically n¢ for € < 1/2) subset of the given input and
use it to divide the original problem. It is not difficult 10 show that the size of each
sub-problem is no larger than n1-tlogn baut the total size of the subproblems may be
considerably larger than n. For example, if the input is line segments on the plane, a
large number of the line segments may be broken up into smaller pieces during the
divide step. This phenomenon is not witnessed in a problem like sorting where the total
size of the subproblems is always exactly equal 1o the input size. Increase in the prob-
lem size at every recursive call would result in grossly inefficient algorithms, Clark-
son[13] had shown that the total sum of the subproblems has expected value O(n). This
implies that with probability aumost 1/2, this value would exceed kjpipn for some con-
stant Koot - Consequently, if we choose independently Q(logn) random subsets, at least
one of them will be ‘good’ (i.e. sum of subproblems does not exceed ko) with high
probability. If we resample ((logn} times, we may end up doing non-optimal number

f operations. Instcad we test the © 1ess’ of a sample on onl %_ of the input. T
of operations. Instcad we test the “goodness’ of mp ronym the input. Tt

can be proved that this gives estimates within a constant factor with very high probabil-
ity (Reif and Sen[18]). Thus we are able o choose a random sample such that the size
of the subproblems does not exceed more than a constant tmes the input size, We ¢all
this technique ‘Pelling’ (as if we are polling a fraction of the input to test the ‘good-
ness’ of a sample).

Notice that even with Polling the sum of sub-problems may grow by a constant
factor which could lead to a polylogarithmic factor increase over O(loglogn) levels of
reccursion. With some additional filtering methods (which can be efficiently applied
since the size is still (3}{n)), we are able to bound the problem size by k.. at any level
where kmay 18 @ constant. For a parallel algorithm, we are able to get a recursion which
is roughly of the form
T(n) = T'(n1"%)+ O(logn). This has a solution T(n) = O(logn) and the processor
bound is simultaneously O(n).

The overall algorithm can be symmarized as following:
(1) Choose independently O(logn) random subsets each of size Q{nEt).
(i) Use ‘Polling’ to identify a ‘good” sample.
(iii) Partition the problern by the random sample.

(iv} Use ‘Filiering” to control the sum of the sub-problems. (The implementation
of this step is problem dependent. For example it is different in the casec of
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wrapezoidal decomposition and convex hulls).

{v) If the largest sub-problem size is larger than a cerfain size apply algorithm
recursively.

Eandomizatich as a resource

Some recent efforts directed towards ‘derandemizaiion’ of randomized algorithms
have received attention. While such research has a Jot of theoretical rumifications (in
understanding relaticnship between the classes NC and Random NC), these metbods,
almost without exception lead to loss in efficiency of the algorithms. This may not be
be very fruitful from a practical viewpoint. There are formal methods for proving
lower bounds for randomized algorithms which gives a strong basis for ‘optimality” in
randomized algorithms. Moreover, it has been observed quite often that for a given
problem, the lower-boands for deterministic algorithms turo out ¢ be identical o the
ower bounds for randomized algorithms (within constant multiplicative factor).

Perhaps a more fruiiful area of investigation could be directed towards reduction
of the number of random bits nsed in ap algorthm (withour aifecting the asvmiptotic
bounds) since perfect ‘randomness’ has been recognized as an expensive resource. This
4tas been demonstraied by some recent work duc to Raghavan & Karloff{10] and the
authors. feel that further research in this direction could be very rewarding from a
theoretical perspective as well as from a practical viewpoint. For all our aigorithms we
are able to bound the number of purely random bits to O (log?n ).

Geometry on Interconnection nefworks

Notz that the underlying model for all these algorithms 1s the aara}‘al analogue of
the sequential RAM (Random Access Memory) model, PRAM. This model has become
the standard model {within minor variations) for theoretical work on design and
analysis of paralle! algorithms. The state of art of parallel geometnic algorithms for
feasible modcls such as butterfly or hypercubes is lagging far behind the PRAM
madels; the only known optimal Ofloga) time n processor algorithm exists for 2-D con-
vex hulls.

One of our primary motivatien for research in randomized parallel algorithms is
the absence of optimal deterministic soriing algorithm on the commonly used intercon-
nection networks. The only known optirial sorting network is the AKS network which
sorts in Oflogn) depth but has horrendous constants. Moreover, the algorithm 1s not
suited for the widely used architectures like butterfly or hypercube, which are more
suitable for general-purpose computations. In conirast, Flashsortf111, an Odlogn) depth
randomized sorting algorithm has much lower constants and rans on the standard archi-
teciures. The other optimal parallel mergesort algerithm of Cole, which has low con-
stants and is very elegant is of little use in practice since it is tailor-made for PRAM
model. This mode! is very popular among algorithm designers from a theoretical per-
spective because of its simplicity, However, for such algorithms to be of any usc, there
must be 2 general mechanism for mapping algorithms from PRAM on o



BIBLIOTHEQUE DU CERIST

interconnection networks. These involve routing on interconnection networks and the
hest known routing algorithms (O(logn) time) involve use of randomization in some
form. Moreover, such emulation usually lead to loss of efficiency by O(logn) multipli-
cative factor. Consequently, Cole's algorithm deteriorates 1o an O(log2n ) algorithm on
the interconnection networks. Unlike the cascading divide-and-conquer paradigm used
in [14], we have reasons to believe that some of our methods can be extended to the
fixed connection networks without loss of efficiency.

Conclusion

In summary, we note that randomized algorithms offer a very pragmatic alternative
(to deterministic algorithms) in the area of parallel algorithms. Apart from being
simpler than their deterministic counter-parts they usually have smaller constants. In
addition, they provide a hridge between the algorithm-designer whe designs algorithms
for abstract models like PRAM and its realistic immplementation on feasible architec-
tures.
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