
Alfonso Miola (Ed.)

Design and Implementation
of Symbolic Computation
Systems

International Symposium, DISCO '93
Gmunden, Austria, September 15-17, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Bareelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitat Karlsmhe
Postfach 69 80
Vincenz-Priessni tz-StraBe 1
D-76131 Karlsruhe, Germany

Volume Editor

Alfonso Miola

Juris Hartmanis
Comell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Dipartimento di Informatica e Sistemistica, Università di Roma "La Sapienza"
Via Salaria, 113,1-00198 Roma, Italia

CR Subject Classification (1991): D.1, D.2, 1, D.2.JO, D.3, Ll, 1.2.2-3, I.2.5,
1.3.5-6

ISBN 3-540-57235-X Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57235-XSpringer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ail rights are reserved, whether the whole or part
of the material is concemed, specifically the rights of translation, reprinting, re-use
ofillustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and slorage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of tbe German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Prlnting and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Foreword

This volume contains the proceedings of the Third International
Symposium on Design and Implementation of Symbolic Computation
Systems, DISCO '93.

The growing importance of systems for symbolic computation has
essentially influenced the decision to organize the DISCO conference
series. DISCO '93 takes place in Gmunden, Austria, September 15 - 17,
1993, as an international event in the field, organizèd and sponsored by the
Research Institute for Symbolic Computation (University J. Kepler, Linz,
Austria) and by the Dipartimento di Informatica e Sistemistica (University
"La Sapienza", Roma, Italy).

DISCO '93 focuses mainly on the most innovative methodological
and technological aspects of hardware and software system design and
imp1ementation for symbolic and algebraic computation, automated
reasoning, geometric modeling and computation, and automatic
programming.

The international research communities have recognized the
relevance of the proposed objectives and topics which are generally not
weIl covered in other conferences in the areas of symbolic and algebraic
computation.

DISCO '93 includes papers on theory, languages, software
.environments, architectures and in particular, papers on the design and the·
deve10pment of significant running systems.

The general objective of DISCO '93 is to present an up-to-date view
of the field, while encouraging the scientific exchange among academic,
industrial and user communities on the development of systems for
symbolic computation. Therefore it is devoted to researchers, developers
and users from academia, scientific institutions, and industry who are
interested in the most recent advances and trends in the field of symbolic
computation.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

The Prognh"11 Chairman received 56 submissions for DISCO '93 and
organized the reviewing process in cooperation with the Pro gram
Cornmittee. Each paper was sent totwo Program Committee members and
then carefullyreviewed by at least three independent referees, inc1uding
Program Committee members. Tne Pro gram Committee met on April 13
to 14, 1993 at the Dipartimento InformatÎCa e Sistemistica. Università di
Roma "La Sapienza" (Italy), to reach the .final decision on acceptance of the
submitted papers. The resulting DISCO '93 Scientific Pro gram
corresponds weIl ta the initial objectives.

Among the submissions, 22 papers were selected as full contributions
for presentation at the conference, as weIl as in this. volume, under
classified sections. Six further papers were selected as contributions for a
presentation at the conference, conceming work in progress or running
systems relevant to the themesof the symposium. These papers are
inc1uded in a separate section of the present volume.

AIl my personal appreciation go es, in particular to Franz
Lichtenberger, the Symposium Chairman, and to both the Pro gram
Committee and the OrganizingCommitteemembers for their indefatigable
and valuable cooperation.

On behalf of the Pro gram Committee, l would like to L.1.ank the
authors of the submitted papers for their significant response to our Call
for Papers, the invited speakers for having agreed to make their
outstanding contributions to DISCO '93, and the referees for their
cooperation in timely and precisely reviewing the papers.

Roma, July 1993 Alfonso Miola

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Symposium Officers

General Chair man

F. Lichtenberger (Austria)

Program Committee

J. Fitch (UK), C. M. Hoffmann (USA), H. Hong (Austria), C. Kirchner
(France), A. Kreczmar (Poland), A. Miola (Chairrnan, Italy), M. Monagan
(Switzerland), E. G. Omodeo (Italy), F. Pfenning (USA), M. Wirsing
(Germany)

Organizing Committee

- Research Insitute for Symbolic Computation, Johannes Kepler
University, Austria
- Dipartimento di Informatica e Sistemistica, Università di Roma "La
Sapienza", Roma, Italy

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

L. C. Aiello
M. P. Bonacina
A. Bossi
A. Bouhoula
M. Bronstein
R. Bündgen
H. J. Bürckert
D. Cantone
O. Caprotti
M. Casini Schaerf
P. Ciancarini
B. Ciciani
G. Cioni
F. D'Amore
R. De Nicola
J. Derzinger
J. Despeyroux
P. Di BIasio
F. Donini
D. Dranidis
S. Gastinger
W. Gehrke
E. Giovannetti
M. Grabowsky
D. Gruntz
R. Hennicker
C. Hintermeyer
T. Jebelean
B. Kacewicz
F. Kluznïak
F. Kroeger
M. Lenzerini
C. Limongelli
V.Manca

List of Referees

L. Mandel

A. Marchetti Spaccamela
V. Marian
M. Mehlich
T. Mora
A.Muech
A. Neubacher
F. Nick!
C. Palamidessi
F. Parisi Presicce
A. Pettorossi
A. Pierantonio
F. Pirri
A. PoIicriti
M. Proietti
B. Reus
G. Rossi
M. Rusinovitch
P. Santas
M. Schaerf
W. Schreiner
K. Siegl
A. Skowron
R.5tabl
T. Streicher
K. Sutner
M. Temperini
M. Turski
L. Unycryn
S. Valentini
1. Walukiewicz
W. Windsteiger
J. Winkowski
P. Zimmermann

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Mathematica: A System for Doing Mathematics by Computer? •• 1
B. Buchberger (Invited) .

Theoretical Aspects

Proving the Correctness of Aigebraic Implementations by
the ISAR System .. 2
B. Bauer, R. Hennicker

Sketching Concepts and Computational Model of TROLL light 17
M. Gogolla, S. Conrad, R.Herzig

Analogical Type Theory .
B. Yi, J.xu

Algorithm Implementation

Improving the MuItiprecision Euclidean Aigorithm .
T. Jebelean

. 33

4S

Storage Allocation for the Karatsuba Integer Multipliation Aigorithm ... S 9
R. Maeder

Process Scheduling in DSC and the Large
Sparse Linear Systems Challenge •. 66
A. Diaz, M. Hitz, E. Kaltofen, A. Lobo, T. Valente

Programming with Types

Gauss: A Parameterized Domain of Computation System
with Support for Signature Functions•..
M. B. Monagan (Invited)

. .81

On Coherence in Computer Aigebra 9 S
A. Weber

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

Subtyping Inheritance in Languages for Symbolic
Computation Systems•
P. Di Blasio, M. Temperini

A Unîfied-Algebra-Based Specification Language
for Symboliç Computing ...••....•.•.•..
J. Ca1'11et, I. A. Tjandra

An Order-Sorted Approach to Aigebraic Computation .
A. C. Heam, E. Schrüfer

Variant Handling, Inheritance and Composition in the

• 1/)7

. .. 122

. • 134

ObjectMath Computer AlgelJraEnvironment 145
P. Fritzson, V. Engelson, L. Viklund

Matching and Unification for the Object-Oriented
Symbolic Computation System AlgBendl .•............. 164
G. Grivas, R. E . .l'.1:aeder

A Type System for Computer Algebra
P. S. Santas

Automated Reasoning

1.77

Decision Procedures for SetiHyperset Contex!s•........ 1.92
E. G. Omodeo (Invited), A. Policriti

Reasolling with CQlltexts•...........
W. M. F=er, J. D. Guttman, F. J. Thayer

GLEFATINF : A Graphie Framework for Combining Theorem
Provers and Editing Proofs for Different Logics
R. Caferra, M. Hennent

.216

229

Extending RISC·CLP (Real) to Handle SymboHc Functions 241
O. Caprotti

Dynamic Term Rewriting Calculus and Its
to Inductive Equational Reaso!ling
S. Feng, T. Sakabe, Y. Inagaki

Applicatioll
.256

Distributed Deduction by Clause-Diffusion: The Aquarius Proyer 272
M. P. Bonacina, J. Hsiang

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

Software Systems

The Design of the SACLIB/PACLIB Kernels .
H.Hong (Invited), A. Neubacher, W. Schreiner

288

The Weyl Computer Algebra Substrate • 303
R. Zippel

On the Uniform RepresentatÏlon of Mathematical Data Structures. . . .• 319
C. Limongelli, M. Temperini

Compact DeIivery Support for REDUCE•..•.
A. C. Norman

IZIC :. A Portable Language-Driven Tool for Mathematical

331

Surfaces VisuaIization•..... , 341
R. Fournier, N. Kajler, B. Mourrain

System Description

The Algebraic Constructor CAC: Computing in
Construction-Defined Domains•..
S. D. Meshveliani

Extending AlgBench with a Type System . ,
S. A. Missura

ModeIing Finite Fields with Mathematica - Applications to the
Computation of Exponential Sums and to the Solution of Equations

354

359

over Finite Fields , . • .. 364
A. Vantaggiato

An Enhanced Sequent Calculus for Reasoning in a Given Domain. .. 369
S. Bonamico, G. Cioni, A. Colagrossi

Problem-Oriented Means of Program Specification and
Verification in Project SPECTRUM
V. A. Nepomniaschy, A. A. Sulimov

General Purpose Proof Plans .
T. Walsh

374

379

Index of Authors•............... 384

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Mathematica: A System for Doing
Mathematics by Computer?

Bruno Buchberger

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University

A-4040 Linz, Austria
Tel. ++43 (7236) 3231-41
FAX ++43 (7236) 3231-30

buchberg@risc.uni-linz.ac.at

Abstract

The title of my talk coincides with the titie of Stephen Wolfram's book on his

Mathematica system except that in the titie of my talk there is a question mark. The
content of my talk is my personal answer to this question.

We start from analyzing what itmeans to do mathematics and introduce what we cali
the "creativity spirale in mathematics": "Doing mathematics", in my view, is iterating

the cycle "observation - proof - programming - application" .

Our main point is that Mathematica supports weil three passes of this spirale, namely
"observation - programming - application" and it helps a little in sorne simple forms

of proof. However, Mathematica does not yet seem to he the right setting for proving

in the broad sense of the word as understood by the mathematics community. We
give sorne arguments for mis and develop sorne ideas how a future system for doing

mathematics might look like.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Proving the Correctness of Aigebraic Implementations
by the ISAR System

Bernhard Bauer *, Rolf Hennicker**

• Institut fur Inforrnatik, Technische Universitiit München,
Arcisstr. 16, D-8000 München 2,

E-mail: bauer@informatik.tu-muenchen.de
'" In3titut fUr Informatik, Ludwig-Maximilians-Universitiit München,

Leopoldstr. Il b, D-8000 München 40,
E-mail: hennicke@informatik.uni-muenchen.de

Abstract. Wc present an interactive system, ca1!ed lSAR, which provides an environment for
correctness proofs of algebraic implementation steps. The correctness notion of implementation
is based on behavioural semantics and the underlying proofprocedure of the system is based on
the principle of context induction (which is a particular instance of structural induction). The
input of the ISAR system is an implementation step consisting ofan abstract specification to be
irnplemented, a concrete specification used as a basis for the implementation and an
implementation construction. If all steps of the (interactive) proof procedure are pClfonned the
system has proved the correctness of the implementation step.

1 Introduction

Much work ha. been done in the field of algebraic specifications to provide furmal
concepts for the development of correct programs from given specifications.
However, in order to be useful in practice, a formaI theory of correct program
development is not sufficient: FormaI implementation notions should be supplied by
appropriate proof methods and, even more important, by tools providing mechanical
support for proving the correctness of implementation steps.
ln this paper 3n interactive system for algebraic implementation proofs, called ISAR,

i5 presented which sets out from the observational view of software development: The
basic assumpti.on is that a software product is a correct implementation if it satisfies
the desired inpu1Joutput behaviour, independently from the interna! properties of a

program which may not satisfy a given specification. This covers well known practical
examples like the implementation of sets by lists (since lists do not satisPj the
characteristic set equations but lists have the same behaviour as sets if only
membership tests x E S are observable) or the familiar implementation of stacks by
arrays with pointer (since arrays with pointer do not satisrj the usual stack equation
pop(push(x, s)) = s but they have the same behaviour as stacks if only the top elernents
of stacks are observed).
A formalization of this intuitive idea is presented in [Hennicker 90, 92] where an
irnplementation relation for specifications is defined based on behavioural semantics

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

in the sense of [Nivela, Ore jas 88], [Reichel 85]. In particular, in [Hennicker 90, 92] a
proof theoretic characterization and a proof method, called context induction, is
presented for proving behaviomal implementation relations. The characterization of
implementations says that a specification SPI is a behavioural implementation of a
specification SP if and only if for ail observable contexts c (over the signatme of SP)
and for ail axioms t = r of SP the "observable" equations c[t] = c[r] are deducible from
the axioms of the implementation SPI (for all ground instantiations over the signatme
ofSP).
It is the basic idea of the ISAR system to prove this condition by context induction,
i.e. by structmal induction on the set of observable contexts, in order to show that SPI
is an implementation of SP. The underlying algorithm of the ISAR system providing a
procedûre for context induction proofs was developed in [Hennicker 92].
Usually implementations of an abstract specification are constructed on top of existing
(concrete) specifications of standard data structmes like lists, arrays, trees etc. In order
to document the construction of the implementation, the input of the ISAR system is
an implementation step which consists ofthree parts: an abstract specification SP-A to
be implemented, a concrete specification SP-C used as a basis for the implementation
and a construction of the implementation. Such constructions are represented by
appropriate enrichments and/or renamings performed on top of SP-C. An
implementation step is called correct if the application of the implementation
construction to SP-C yields a behavioural implementation of SP-A.
In order to prove the correctness of an implementation step the ISAR system first
normalizes ail specification expressions. Then the context induction proYer, the kemel
of the system, is called for proving the implementation relation for the normalized
specifications. Thereby al! contexts and all proof obligations to be considered for the
implementation proof are automatically generated. For the proof of equations the
system is connected to the TIP system which is a narrowing-based inductive theorem
proyer (cf. [Fraus, HuBmann 91 D. Ali steps of an implementation proof can be guided
by appropriate interaction with the user. In particular, as usual when dealing with
induction proofs, it is often necessary to find an appropriate generalization of the
actual induction assertion if a nesting of context induction (implemented by a
recursive cali of the context induction proyer) is performed. For that purpose the ISAR
system generates automatically a set of particular contexts each context representing a
generalization of the actual induction assertion. Then the user may select an
appropriate context representing an assertion which is general enough for achieving
successful termination of the proof algorithm.
As we will show by an exarnple for the construction of generalized induction
assertions it may be necessary to define additional function symbols which generalize
(sorne) functions of the abstract specification. (For instance for the proof of the array
pointer implementation of stacks a generalization· of the pop operation by an operation
iterated"'pop: nat. stack ---7 stack is used where iterated"'pop(n. s) performs n pop

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

operations on a stack s.) Such function generalizations can be added as "hints" 10 an
implementation step. Hints cannot be generated automatically. In this case the
intuition of the system user is needed.

2 Basic Concepts

In tbis section we summarize the theoretical foundations of the ISAR system. In
particular the notions of behavioural specifications and behavioural implementations
are defmed. Most definitions and results of fuis section can be found in [Hennicker 90]
or (slightly revised) in [Hennicker 92].

2.1 Algebraic Preliminlllries

First, we briefly review the basic notions of algebraic specifications which will he
used in the following (for more details see e.g. [Ehrig, Mahr 85]). A (many sorted)
signature L is a pair (S, F) where S is a set of sorts and F is a set of function syrrJJols
(also calledfimctions for short). To every function symbol fe Fa functionality 81, ... ,
sn -è> s with 81,. o., sn e S is associated. If n = 0 then f is called constant of sort
s. A signature morphism p: L -è> L' between two signatures 'E = (S, F) and 'E' = (S',

F') is a pair (Psorts, Pfuncts) of mappings Psorts:S -t S', Pfuncts: F -è> F' such that for
a11 f E F with functionality SI, ... , Sn -è> s, Pfuncts(f) has functionality Psorts(s}), ... ,
Psorts(su) -è> Psorts(s). A signature 'E' = (S', F') is calledsubsignature of 'E (written 'E'
ç;; L) ifS' ç;; S and F' ç;; F.
The term algebra W'E(X) ofal! Irterms with variables of X (where X = (Xs)seS is an
S-sorted family ofsets of variables) is defined as usual. In particular, for any sort se
S, Wl:(X)s denotes the set oftmlls ofsort s. If X = 0 then WL(0) is abbreviated by
Wl: and WL is called gmund term algebra. We assume that any signature L = (S, F) is
inhabited, i.e. for each sort seS there exists a ground tenu t e (WLk A
substitution 0': X -è> WL(X) is a family of mappings (as: Xs -è> WZ;(X)She S.
For any tenu te WL(X), the instantiation cr(t) =def t[a(x l)!X\, ... , cr(xn)/xnl is
defined by replacing aU variables xl, ... , xn occurring in t by the terms <T(xI)' ... ,
cr(xn). A substitution cr: X -è> Wr. is called ground substitution.

2.2 Behavioural. Specifications

The syntax of behavioural specifications is defined similarly to [Nivela, Ore jas 88]
and [Reichel 85J where a distinguished set of sorts of a specification is declared as
observable:
A behavioural specification SP = (E, Obs, E) consists of a signature 'E = (S, F), a
subset Obs ç;; S of observable sorts and a set E ofaxioms . Any behavioural
specification is assumed to contain the observable sort bool, two constants true, false:
-è> bovl (denoting the truth values) and the axiom true '" false. The axioms of E\
{true '" faIse} are equations t = r with terms t, r E W'E(X).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

