BIBLIOTHEQUE DU CERIST

Patrick Cousot Moreno Falaschi
Gilberto File Antoine Rauzy (Eds.)

Static Analysis O

. .
T o

Third International Workshop, WSA 93
Padova, Italy, September 22-24, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Editors

Gerhard Goos Furis Harimanis

Universitdt Karlsrulhie Comeli Universily

Postfach 69 80 Bepartment of Computer Science
Vincenz-Priessnitz-Strallc ! 4130 Upson Hall

D-76131 Karlsrube, Germany ithaca, NY 14853, USA

Yolume Editors

Pairick Cousot

DMI, Ecole Normale Superieur

45 rae &' Ulm, F-75230 Paris Cedex 05, France

Moreno Falaschi
Dipartimentc di Eletironica ¢ Informatica, Univessity of Padova
Via Gradenigo 6/A, 1-35131 Padova, Italy

Gilberto Fiig
Dipartimento di Matematica Pura ¢ Applicata, University of Padova
Via Balzoni 7, I-35131 Padova, Italy

Antoine Rauzy

Departement Informatique, IUT A", Université Bordeaux §
F-33405 Talence, France

CR Subjeci Classification {1991): D.1,D.2.3, D3.2-3, F3.1-2, Fd4.2 |

{SBN 3-340-57264-3 Springer-Veriag Berlin Heidelberg New Yorx
ISBN (0-387-57264-38pringer-Verlag Mew York Berlin Heidelberg

This work is subject to copyright. Al rights are reserved, whether the whofe or part
of the matcrial is concerned, specifically the rights of translation, reprinting, re-use
of iNlustrations, tecitation, broadeasting, reproduction on microfilms or in amy other
way, and storage in data banks. Duplication of this publication or parts thercof is
permilled only undar the provisions of the German Copyright Law of Septembier 9,
1965, in its carrent version, and permission for use must always be obtained from
Springer-Verlag, Viclations are Lable for prosecution under the German Copyright

Law,

© Springer-Verag Berlin Heidelberg 1993
Printed in Germsny

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz. Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Foreword

This volume contains the proceedings of the Third Workshop on Static Analysis
(WSA’93), held in Padova (Ilaly) September 22-24, 1993. ‘The previous work-
shops in this series, JTASPEFL and WSA'92, took place in Bordeaux {Frauce).
The aim of WSA’33 is to illustrate the usc of static analysis in different program-
ming paradigms., WSA’93 is a step towards improving contacts and promoting
cross-fertilization among the numerous researchers in this area. The program
committee has selected 20 papers out of the 68 submitted. These papers con-
tribute to the following topics:

— gencric algorithm for fixpoint computation

- program transformation
strictness analysis

— static analysis techniques for logic, functional, concurrent and parallel lan-
guages and for term rewriting systems.

The workshop alse includes systern demonstrations and three invited lectures
delivered by Pascal Van Hentenryk, Peter Van Roy and Paul IMudak. The ab-
stracts or papers of these lectures arc included in this voluine,

We thank all members of the program commmittee and all the referees for their
care 11 reviewing the submitted papers.

The organization of WSA’93 was supported by:

— Consiglio Nazionale delle Ricerche
— Department of Pure and Applied Mathematics, University of Padova
- University of Padova.

Finally, we express our gratitude to the members of the Organizing Commit-
tee for their enthusiastic contribution to the success of WSA’93.

July 1993 Patrick Cousot, Moreno Falaschi, Gilberlo Filé, Antoine Rauzy
Co-chairpersons

Program Committee

Charles Consel {OGI)

Patrick Cousot (ENS; Chair)
Radhia Cousot {Polytechnique}
Olivier Danvy (CMU)

Bart Demoen (KUL)

Gilberto File (Padova; Co-chair)
Pascal Van Hentenryck (Brown)
Manuel Hermenegildo (UPRM)

Neil Jones {DIKU)

Pierre Jouvelot (ENSMP)

Baudouin Le Charlier (Namur)
Giorgio Levi (Pisa)

Kim Marriott (Monash)

Alan Mycroft (Cambridge)

Antoine Rauzy (Bordeanx; Co-chair)
Helmut Simionis (Cosylec)

Organizing Committee

Annalisa Bossi {Padova), Michele Bugliesi {Padova}, Moreno Falaseni {Padova;

BIBLIOTHEQUE DU CERIST

Chair), Giuseppe Nardiello {Padova), Sabina Rossi (Padova), Kaninda Musumbu
{Bordeaux), Michel Billaud {Bordeaux}, Pierre Casteran (Bordeaax), Mare-
Michel Cozsini (Bordeaux).

4. K. Abnial,

T. Amtoll,

P. H. Andersen,
N. Andecrsen,
L.0. Andersen;
R. Bagnara,

R. Barbuti,

P. Bazel,

M. Bellia,

L. Birkedal,

4. Bondarf,

A. Bossi,

D. Boulanger,
¥, Bourdoncle,
5. Brookes,

M. Bruynooghe,
F, Bueno,

D. Cabeza,

8. Carro,

M. Chiara Men,
M. Codish,

C. Codognet,
P. Codognet,
L. Colussi,

List of Referees

M. M. Corsini,
A Cortesi,

R. Cridlig,

B L. Curien,
D. De Schreye,
B. Demoen,
M. Denecker,
P Deransa.rt;
A. Deutsch,

A. Dovier,

C. Fernandez,
Ferragina,

. Filé,

. Filinski,

1. Garcia de 1a Banda,
. Giacohbazzi,
. Gliick,

E. Goubault,
P, Granger,

K. Havelund,
T. Hospel,

4. Joergensen,
N. D. Jones,
2. Jouvelot,

B (g

<

Lopez (Garcia,

. Lackner Sclberg,
. Levi,

. Longo,
Mancarella,

. Marien,

T. Marlowe,
B. Marlens,
5
B
3

GO R T

.

. Masdupuy,

. Monsuez,

. J. Moreno-Navarro,
A Mulkers,
A. Mycroft,
F, Nielson,
. Palamidessi,
J. Palsberg,
AL Pettorossi,
. Queinnec,
B. Ryder,
B. Salvy,
1. Sands,
H. Sendergeard,
M. Welinder,
P. Zimmermann

BIBLIOTHEQUE DU CERIST

Contents

Invited Talk

The impact of granularity in abstract interpretation of Prolog

P. Van Hentenryck (Brown University)
O. Degimbe (Namur University)

B. Le Charlier (Namur University)

L. Michel {Namur Universily)

Fixpoint Computation

Optiization techniques for general purpose fixpoint algorithms:

practical efficiency for the abstract interpretation of Prolog,

B. Le Charlier {Namur Universiiyj

Q. Degimbe (Namur University)

L. Michel {Namur Universily)

P. Van Hentenryck (Brown University)

Chaotic fixpoint iteration gnided by dynamic dependency

N. Jorgensen (Roskilde University Center)

Fast abstract interpretation using sequential algorithms

A. Ferquson {Glasgow Universily)
J. Hughes (Chalmers Tekniska Hégskola, Géteborg)

Concurrency

Abstract interpretation and verification of reactive systems

J. C. Fernandez (VERIMAG, Grenoble)

Semantics and analysis of Linda-based languages

R. Cridlig (Feole Normale Supérieure, Paris)
E. Goubaull {Ecole Normale Supérieure, Paris)

Parallelista

Compiling FX on the CM-2" . o . . .

J-P. Talpin (CRI, Ecole des Mines de Paris)
P. Jouvelot (CRI, Ecole des Mines de Paris)

Combining dependability with architectural adaptability by means of

the SIGNAL language i it

Q. Maffeis {GMD I5-SKS, Sankt Augustin]
P. le Guernic (IRISA/INRIA-Rennes)

N)

.- 99

BIBLIOTHEQUE DU CERIST

Wil

Invited Talk

Challenges in developing useful and practical static analysis for

LT ATV RN o8 - o 11

P. Van Roy (Digilel Research Labs, Paris)

Transformation

Oecam’s razor in metacomputation: the notion of a perfect process tree ..

R. Glick {University of Technolagy, Vienna)
A. Klimov (Russian Academy of Scicnces, Moscow)

Tupling functions with multiple recuzrsion parameiers

W-N. Chin (Naitonal Universily of Singapore}
3-C. Khoo (National University of Singapore)

Avoiding repeated tests in pattern matchingol

P. Thiemann (Wilhelm-Schickard-Institut, Tibingen Universiiy)

Logic Programs

Yreeness, sharing, lineariiy and correctness — allatonce00,

M. Bruynooghe (Katholicke Universiteil Leuven)
M. Codish {(Katholieke Unzversiteit Leuven)

Synthesis of directionality information for functional logic programs

J. Boye (Linképing Uintwersity)
J. Paakki {Linkoping University)
. Maluszyniski (Linkdping Universily)

Term Rewriting Systems

ABSEIAch TEWTIEIME\ttt e e e

D. Bert (IMAG-LGI, Grenoble Cedex)
R. Echahed (IMAG-LGI, Grenoble Ceder)
B. M. Gstvold {(Nerwegian Insiitute of Technology, Trondheim)

Invited Talk

Reflections on program optimization oo

P. Hudak (Yule University)

Strictness

Finiteness conditions for strictness analysis o oL

F. Nielsan {Aarhus University}
H. R. Nielson (Aarhus University)

Strictness properties of lazy algebraic datatypes L

P. N. Benton (Cambridge University)

. 199

165

e o L T

BIBLIOTHEQUE DU CERIST

Minimal thunkification e 218
T. Amieft (Aarhus Unversity)

Reasoning About Propgrams

An efficient abductive reasoning systemn based on program analysis 230
5. Kato (Nagoya Instituie of Technology)

- H. Seki (Nagoya Institute of Technology)

H. Itoh (Nagoya Instiiute of Technology)

A congruence for Gamma PIOgIamscoiivine e, e 242
L. Errington {Imperial College, London)

C. Hankin (ITmperial College, London}

T. Jensen (fmperial College, London)

Types

Usage analysis with natural reduction types 204
D. A Wright (‘Tasmania University)
C. A. Baker-Finch (Canberra Universily)

Polymorphic types and widening operators oo 267
B. Monsuez (LIENS, Paris)

Poster Scssion

Demonstration: static analysisof AKL 282
D. Sahlin {SICS, Kista}
T. 5joland (SICS, Kista)

1S1430 NA INO3IHLOITdId

BIBLIOTHEQUE DU CERIST

The Impact of Granularity
in Abstract Interpretation of Prolog

Pascal Van Hentenryck?, Olivier Degimbe?,
Baudouin Le Charlier?, Laurent Michel®

! Brown University, Box 1910, Providence, RI 02912 (USA)
? University of Namur, 21 vue Grandgagnage, B-5000 Nemur (Belgium)

Abstract. Abstract interpretation of Prolog has received much attention in
recent years leading to the development of many frameworks and algorithms.
One reason for this proliferation comes from the fact that program analyses
can be defined at various granularities, achieving a different trade-off between
efficiency and precision. The purpose of this paper is to study this tradeoff
experimentally. We review the most {requently proposed granularitics which
can be expressed as a lwo dimensional space parametrized by the form of
the inputs and ocutputs. The resulting algorithms are evaluated on three
ahstract domains with very different functionalities, Mode, Prop, and Pattern
to assess the impact of granularity on efficdency and accuracy. This is, to our
knowledge, the first study of granufarity at the algorithm level and some of
the results are particularly surprising.

1 Introduction

Abstract interpretation of Prolog has attracted many researchers in recend years.
This effort is motivated by the need for optimization in logic programming com-
pilers to be competitive with procedural languages and the declarative nature of
ihe Janguages which makes them more amenable to static analysis. Considerable
progress has been realised in this area in terms of the frameworks (e.g. [1, 4, 2, 7,
18, 21, 22, 25, 37]), the algorithms (e.g. {2, 3, 11, 16, 17, 18, 30]), the abstract do-
mains (e.g. (3, 14, 27} and the implementation {e.g. [11, 13, 18, 36)). Recent results
indicate that abstract interpretation can be competitive with specialized data flow
algorithms and could be integrated in industrial compiiers.

As can be seen from the above references, abstract interpretation of Prolog has led
to the development of many frameworks and algorithms. One of the reasons for this
proliferation is the fact that program analysis can be defined ar various granularities
achieving specific tradeofls between accuracy and efficiency.® The granularity of an
algorithm is influenced by numerous parameters, including the choice of program
points and the form of the results {e.g. how many output abstract substitutions are
related to each program point). In fact, combinations of these two parameters cover
most existing algorithms.

The first parameter, program point, concernis the number of abstract objects
considered per procedure. At least, three possibilities (single, call, dynamic)

? Nate that the tradeoff between efficiency and accuracy can be studied at the absiract
domain level as well, as for instance in [10].

BIBLIOTHEQUE DU CERIST

[C]

have been investigated and they differ in the way different call patierns for 2 proce-
dure are deali with. single associates a unigue absiract object with each procedure
as, for instance, in the algorithm of Taylor {31, 32]. As a consequence, different call
patterns are merged together within this granularity. Mellish [23] also associates a
anique abstract object with each procedure. Contrary to Taylor however, the ab-
stract object is a set of abstract substifutions and not a single substitution. call
asscciates an abstract object with each procedure call in the text of the program,
a5 in the framework of Nilsson (28, 29).* Different call paiteins for a procedure are
not merged but rather distributed among the procedure calls. Of course, different
zzll paiterns are merged inside each program point. Dynamic associates an abstract
object with each pair {5, p) in the program, where 2 is an absiract substitution
and p is a predicate symbol. This granularity is adopted in mary frameworks (e.g.
2,4, 11, 13, 17, 18, 22, 23, 37, 38]) angd keeps different call patterns separate. It is
interesting to note that, for the first two granularities, it is possible to generate a
priori a finite set of equations whose variables represent the abstract substitutions
adotning the program poinss. This is not possible for the third granularity whose se-
manties defines a functional equation. However, this equation can be approximated
by a dynamic set of finite equations. As a consequence, it is more difficult to pro-
duce an algorithm for dynamic since the static analyzer must combine the fixpoint
computation with the generation of the equations.

The second parameter, abstract result, concerns the form of the resuit stored
as sach program point. At least two possibilities (single, multiple) have been
proposed and differ in the way they bandle the results of the clauses to produce the
result of a procedure. single stores a single resul{ per program by using, an upper
hound operation on the clause results. This granularity is used in many frameworks
and algorithms (see all the above references). multiple stores a set of results per
orogram point by collecting the resulis of all clauses and possibly applying a fil-
ter {e.g. a subsumption iest). This granularity is vsed in the frameworks based on
SLDT-resclution (e.g. {5, 10, 12, 16, 33, 35)).

The two parameters, when combined, produce a two-dimensional design space
depicted in Figure 1. Other granularities exist. For instance, the single and call
entries can be doubled by allowing set of abstract objects for the forms of the inputs.
These granularities are related to DLDT-based abstract interpretation but are not
studied here.

‘The purpose of this paper is to study experimentally this two dimensional space,
The experimental results are given for & variety of benchmarks and for three abstract
domains: mode, a domain contzining same-value, sharing, and mede compenents [26],
pattern, a domain containing same-value, sharing, mode, and pattern components
{26, 18], and Prop, & domain vsing Boolean formulas to compute groundness infor-
mation (8, 20, 24].

The rest of this paper is orgamized in the following way. Section Z reviews in-
formally the varicus granularities considered in this paper. Section 2 presents the
experimental results. Section 4 contains the conclusion of this research. Most of the

* In the presentation of Nilssor, program points are associated with clause eniry, clause
exit, and any point between the literals in the clause. Ac discussed later in the paper,
this is eguivalent to adorning each procedure czll in the text of the pregram with an
input and an outpué substitution.

BIBLIOTHEQUE DU CERIST

input];‘mgle call|dynamic
output :

single |AISISDIAICISO| AIDYSO

multiple [AISIMDJAICIMO| AIDYMQ

Table 1. The Desigh Space of Granularities

results given here are described in detail in two technical reports [34, 33].

2 The Granularities

In this section, we give an informal overview of the various granularities. We assume
that the frameworks use abstract substitutions to represent sets of concrete substi-
tutions and that Absis an abstract domain of this type (e.g. a pointed cpo with an
upper bound operation). We use Pred and Cail to denote the set of predicate symbols
and the set of procedure calls in the text of the program. Abstract substitutions are
dencted by 8 (generally subscripted), predicates by the lstier p, and procedure calls
by the letter C.

2.1 Dynamic/Single

This granularity is probably the most popular in the logic programming community
and corresponds to what is called a pelyvarian{ analysis in the functional program-
ming community. It is used for instance in [4, 2, 13, 17, 18, 11, 22, 23, 38, 37].

The key idea is to associate with each predicate symbol p multiple abstract
tuples of the formn (Bin, B, four). More precisely, the tesult of the analysis is a partial
function of signature Pred — Abs — Abs which, given a predicate symbol p and an
input abstract substitution g, , returns a result 8,,; satisfying the following informal
condition:

“the execution of p{z:,...,z,)8, where # is a substitution satisfying the
property expressed by fin, produces substitutions #;,...,8,, all of which
satisly the property expressed by Fpu:.”

The main features of this granularity are as follows:

— The abstract semanlics at this granularity define a functional and cannot be
reduced to a finite set of equations. As a consequence, the fixpoint algorithm
needs to interleave the generation of the equations and their solving.

— Since the semantics preserve multiple input patterns, it can be used to imple-
ment advanced program transformations such as multiple specializations [37]
which associates rnultiple versions to each procedure (possibly one for each in-
put patterns).

GAIA [18], which is the basis of the experimental work described later on, is a top-
down algorithm working at this granularity. It can be viewed as an instance of a gen-
eral fixpoint algorithm [19] or, alternatively, as an implementation of Bruynooghe’s

BIBLIOTHEQUE DU CERIST

iramework [2). The algorithim is query-directed, providing an algorithmic counterpart
io the notion of minimal funciicn graph {i5]. It also includes many optimizations
such as caching of the gperations [11] and a dependency graph to avoid redundant
computations. Finally, in the case of infinite domains, the algorithm uses a widening
operator to ensure the finiteness of the analysis for domains satisfying the ascending
chain condition. Another closely related algorithm is PLAT [13]. The algorithm at
this granularity is referred to as AIDYSQO in the following.

2.2 Single/Single
Single/Single is the coarsest granularity studied in this paper and corresponds
to what is called a univarienf analysis in the functional programming community.
Taylor’s algorithm {31, 32] is an example of analyzer working at this granularity.
The key idea here is to associate with each predicate in the program a unique
pair {Bin, Fout}, Where f;, {resp. fou:) is an abstract substitution representing the
properties of the concrete input (resp. cutput) substitutions of p. More precisely,
the resuli of the analysis is a partial Tunction of signature FPred — Abs x Abs. The
result {Hin, Foue) of Lhe analysis for a predicate symbol p can be read informally as
follows:

“p Is executed in the analyzed program with input substitutions satisfying
3w and produces answer substitutions satisfying Sou”.

The loss of efficiency compared to AIDYSG occurs because input patterns from differ-
ent procedure calls may be merged together resulting in a less precise input pattern
for analyzing the procedure.

The main features of this granularity are as follows:

— The granularity collapses all the input patterns into a single input substitution.
As a consequence, it produces the coarsest granularity studied in this paper. We
expected this granularity to give rise to the fastest algorithm.

— The granularity precludes certain types of program transformations such as mul-
tiple specializations.

— The abstraci semiantics defined at this granularily can be expressed as a finite
set of equations and the fixpoint algorithm does not need widening operators
when the abstract domain satisfies the ascending chain property.

The fixpoint algorithm 4ISISQ for this granularity can be deduced from AIDYSO
by computing before the execution of a procedure an npper bound on ihe memoized
input ahstract substitution to be refined and a new input abstract substitution
under consideration. The upper bound is used both as the new memoized abstract
substitution and to continue the analysis.

2.3 Call/Single

The granularily Call/Single was proposed by Ulf Nilssor [28, 2§] and is interme-
diary between the previous two granularitics.

Its key ides is to sssociate with each procedure calla pair of abstract substitutions
{Bin, Bour). More precisely, the fixpoint algorithm computes a partial function Call —
Abs x Abs which, given a procedure call &, returns a pair {fin, fou:) Whose informal
sernantics is deseribed as follows:

BIBLIOTHEQUE DU CERIST

“during the program execution, the sunbstitutions encountered before the
execution of a procedure call C satisfy the property expressed by &, while
the substitutions encountered after the execution of the call satisfles the
property expressed by Bous.”

Although it seerns to be fundamentally different from the previous two, this granu-
larity can be reexpressed in the same framework by constdering simply that the
function computed is of signature Pred — Call — Abs x Abs. Viewing it this
way, it becomes clear that the granularity is intermediaty between Single/Single
and Dynamic/Single. Instead of collapsing all input patterns into a single input,
€all/Single distributes them among a finite number of procedure calls, The gain
in precision compared to Single/Single comes from the fact that different pro-
cedure calls do not interfere with each other. The loss of precision compared to
Dynamic/Single comes from the merging of abstract substitutions for a given pro-
cedure call.
The key features of this granularity are as follows:

— The granularity is coarser than Dynamic/Single and finer than Single/Single.
We expected the algorithm to be faster than ATDYSO and slower than AISISO.

-~ The granularity allows for multiple specializations although their full potential
may not be realized because of the merging.

— The semantics defined at this level can be reduced to a finite set of equations.

Once again, the algorithm for this granularity AICISO can be obtained from
AIDYSO by computing upper bound operations appropriately. The key insight, men-
tioned earlier, is to associate with each predicate symbol p as many pairs as there
are program points correspending to procedure calls to p.

It is also interesting to note that a finer granularity can he obtained from
Dynamic/Single and Call/Single by associating multiple pairs {Gin, Four} to a
procedure call. This results in an analysis returning a partial function of signa-
ture Call — Abs — Abs. This granularity is not explored here for reasons that will
appear clearly in the experimental results,

2.4 Dynamic/Multiple

Dynamic/Multiple is another popular granularity in the logic programming com-
munity. It was used for instance in [5, 10, 12, 16, 33, 35). The main reason is
that the algorithm for this granularity can be obtained automatically by apply-
ing OLDT-resolution to an abstract version of the program as shown in [, 35}. This
is due to the interesting termination properties of OLDT-resolution.

The key idea here is to associate with each predicate symbol p in the program
multiple abstract tuples of the form {Big, Sous), where Soyy is a set of abstract sub-
stitutions (i.e. Soue € 24%*). More precisely, the result of the analysis is a partial
function of signature Pred — Abs — 24 which, given a predicate symbel p and apn
input abstract substitution ;,, returns a set S,,; whose informal semantics is given

by:

“the execution of p(xi,...,z,)8, where & is a substitution satisfying the
property expressed by Fin, will produce substitutions ¢,, ..., 8,, all of which
satisfy the property expressed by same o0 in Sout”

BIBLIOTHEQUE DU CERIST

In general, for efficiency reasons, it is imporiant to add some more structure on 24%
to eliminate redundant elements from the output sels {i.e. the elements & such there
existe another element § satisfving 3 < 4). The relational powerdomain (i.e. Hoare
powerdomain) can be used instead of the powersei for that purpose,

This granularity is the mosé-precise studied in this paper. The gain in accuracy
compared to Dynamic/Single comes from the multiple outputs which give rise to
more precise mnpui patterns, especially when the absiract domain maintains struc-
tural information.

The key features of this granularity are as follows:

— It is the finest granularity defined in this paper and is obvicusly appropriate for
multiple specializations [37).
— The abstract semantics at this grannlarity define 2 functional transformaiion.

The algorithm GAIA can be generalized to work at this granularity but the task is
non-trivial, since each procedure call gives rise to multiple clause suffix and special
care should be given to avoid redundant work. In [33], we report how optimizations
such as the suffix optimization, caching, and output subsumption are important
to achieve a reasonable efficiency. With this optimization, the resulting algorithm
4IDYMO spends over 90% of its time in the abstract operations.

Another point to siress is that a new widening operater is necessary to make
sure that an output cannot be refined infinitely often in case of infinite abstract
domains. This new widening is used when a new ocutput, say §, is about te be
inserted in an output set, say S. Instead of inserting 3, the algorithm inserts 8V §
for a given widening operator V. There are a variety of possible widening operators,
some of them being domain-dependent and others being domain-independent. In our
experiments, we use the operators V4. The operator is domain-dependent, is defined
on the domain Pattern to be discussed later, and relates 1o the depth-k abstraction
sometimes used in abstract jnterpretation. Informally speaking, V; widens the new
substitution by taking its lub with all the substitutions having the same outermost
functors {depth-1}. Since thete are finitely many function symbols ir a program, the
output set is guaranteed to be finite.

2.5 Single/Multiple
Single/Multiple is an hybrid between Single/Single and Dynamic/Multiple. It
is close to the early proposal of Mellish [25], the only difference being that the single
mput in Mellish is also a set of abstract substitntion. This granularity will thus give
us an idea on how appropriate this early proposal was.

The key idea is te associate with each predicate symbol p in the program a single
abstract tuple {Bin, Soue).

The key features of this granvlarity are as follows:

— 'The abstract semantics can be redquced to a finite st of equations.

- The granularity is coarser than Bynamic/¥ultiple and finer than Single/Single.
It is difficult to compare to the other granularities proposed earlier. The granu-
larity is not appropriate for multiple specialization.

‘Fhe algorithm AIDYHMO can be specialized to produce an algorithm AISIMD for
this granularity, once sgain by taking appropriate upper bound cperations.

BIBLIOTHEQUE DU CERIST

3 Experimental Results

We now turn to the experimental results. We start with a brief description of the
abstract domains before constdering the experimental results for efficiency and accu-
racy. The Prolog programs used in the experiments are described in previous papers
(e.g- [11]) and are available by anonymous ftp from Brown University.

3.1 Abstract Domains

The Domasn Mode: The dornain ¥ede of [26] is a reformulation of the domain of [2).
The domain could be viewed as a simplification of the domain Pattexn described
below, where the pattern information has been omitted and the sharing has been
simplified to an equivalence relation. Only three modes are considered: ground,
var and any. Equalily constrainis can only hold between progtam variables (and
not between subterms of the terms bound to them). The same restriction applies to
sharing constraints. Moreover, algorithms for primitive operations are significantly
different, They are much simpler and the loss of accuracy is significant.

The Domain Prop: In Prop {24, 8, 20], a set of concrete substitutions over D =
{21,..., x4} is represented by a Boolean {unction using vartables frem D, that is an
element of (D) — Bool) — Bool, where Bool = {false,true}. Prop only considers
Boolean functions that can be represented by propositional formulas using variables
from I, the truth values, and the logical connectives v, A, 4, g1 Ao and x; < x2Ai3
are such formulas. The basic intuition behind the domain Prop is that a substitution
@ is abstracted by a Boolean function f over D iff, for all instances ' of 8, the truth
assignment [defined by I(z;) = tree iff # grounds 2; (1 < { < n} satisfies f.

The Domain Pattern: The abstract domain Pattern contains patterns (i.e. for each
sublerm, the main functor and a reference to its arguments are stored}, sharing,
same-value, and mode components. It should be related to the depth-k abstraction
of [16], but no bound is imposed a priori to the terms depth. Since the domain is
infinite, widening operations must be used by many of the algorithins. The domain is
fully described in [26, 18] and refercnce [26] contains also the proofs of monotonicity
and safeness. This is an infinite domain and the experimental results are reported
with a simple widening technique which applies an upper bound operation on each
recursive call.

3.2 Efficiency

This section reports our experimental efficiency results on a variety of domains. For
lack of space, we only report a summary of the results, the full tables being available
in the technical reports associated with this paper.

Table 2 reports the efficiency results for the algorithms on the domain Mode, We
give the ratios between the cpu times of the algorithms wrt ATIDYS0 and the absolute
tie in seconds of AIDYSO on a Sun Sparc 10/30. There are two important results
in this table:

1. The first and more surprising result is that AICISO is in fact 13% slower than
AIDY30, indicating that a coarser granularity does not imply necessarily a better

BIBLIOTHEQUE DU CERIST

l [Ratioc on ATIDYSC | Time

ATSISOAICISO[ALDYMOAIDYSO
Tes 0.8g] 1.03] 1o 1.4
les1 " 6.85] 1.01] 1.03] 1.8
disj 0.831 1.14] 1.0} 0.74

l

!‘disji 0.93] 1.05] 101 0.81
\ gebriel] 0.7 0.89] 1.03] 0.35
lxaiah 0.74] o0.83) 102] 1.21
’peep a.80; 1.4 1.7 1.1
1
|

P 0.76] 0.82(1.07] 0.17
plan | 1.06] 1.08) 145 o1
lpress1 | o063l 114 107 1.53
pressz 0.65] 1.14/ 107l 155
gsort 1.06| 1.00| 2.00; 0.0
lliqueans 1.00] .00 1.5 0.01
l’read 0.717 2.51 1.31 1.40
|

({Mean g.84 113 115

Table 2. Ratios on the Efficiency Results on Domain Mode

efficiency. This negative result can be attributed to the fact ihat some redun-
dant. computations oecur because the same results are stored twice tn different
program points., This forces AICISO to perforrmn many more iterations and, al-
thongh most of the redundancy is removed by the caching optimization, the loss
in efficiency is stil} important.

2. The second result is that the algorithms are really close. ATSISC gains about
16% over AIDYSO on this domain, while ATDYSO is 1.15 times faster than AIDYHEO.

Table 3 depicis the efficiency results for the domain Pattern. The table also
contains some interesting resulfs,

1. The most surprising result is the significant loss of efficiency incurred by AIDYMO
which is more than 17 times slower than AIDYSG in the average. For some large
programs (e.g. program disj1), AIDYMO is about 54 times slower than £IDYS0.
The analysis time is in the worst case (i.e. program press1) about 2 minutes. The
main reason for this poor result is the fact that domain Pattern is both more
precise and richer than domain Mode. In particular, the pattern component forces
AIDYKO to maintain outputs whose modes are similar but which have different
functors &s is typical in analyzing recursive programs. This can lead to additional
precision as we will see but if. also entails some duplicated effort as indicated by
the efficiency results.

2. The second surprising result is-that AISIKOU is significantly slower than AIDYHO
indicating once again that a coarser granularity does net necessarily mean a
better efficiency.

3. The remaining resuits confirm some of the previous results on the domain Koda.
They indicate that AISIS0 brings an improvement of 20% over AIDYSG in the
average while AICISO is about twice as slow as AIDYSO, confirming the relatively
poor results of AICISN. It is importani to stress ihe impact of the widening

BIBLIOTHEQUE DU CERIST

HRatio on ATDYSD Timef
AISISDAICISO|AIDYMO|AISIMCIAIDYSO

s 0.87] T 0.98] 7.17F &30] 2.13
csl 0.87] 0.96] 694 7.96] =218
disj 0.88] 1.68] 45.21] 55.05 1.19
disj1 0.89] 1.62| 54.64| 56.56| 1.22

gabriel| 0.39 0.8} 3951 3.86| 0.90
kalah 0.59| 075 472! 5.46] 297

peep 0.66] 1.02| 2898 15.33] 2.36
PE 0.34] 0.51} 2.10(231 0.71
plan 0.73] 1.23 200 233 G.22

pressl 0.32] 1.01} 13.41] 31.69) 870
prass2 1.08 3.45) 10.38/101.81| 2.60

gsort 1.00| 11.00; 56.00| 48.00(D0.01
queens Loof 2,600 12.00| 12.000 Q.01
read 0.29] 1.27] 6.86] 10.42] 5.53
Hean 0.7l 2.02| 17.532] 22.14

Table 3. Ratios on the Efficiency Results on Doinain Pattern

technigues on AIDYSO. The fact that widening is implemented through a general
upper bound operation explains why AISISD and AIDYSO are rather close. The
main difference between the two algorithms on recursive calls is that 4IDYS0
keeps distinct tuples when it takes the upper bound on two recursive calls while
AISISO merges thern. The need to update the various tuples should explain
the small difference in efficiency and iterations between the two algerithms. On
the other hand, keeping distinct versions can lead to important differences in
accuracy for non-recursive calls with very different input patterns (i.e. multi-
directional procedures).

Table 4 depicts the efficiency results for the domain Prop. The results indicate
that AISISO0 brings an improvement of 5% over AIDYSO in the average while AICISO is
about 1.37 as slow as AIDYSO. The gain of AISIS0 over AIDYSO is rather small in this
case. The best improvement occurs for program Press1 {29%) but most programs
show little or no improvement. AICISO is the slowest program and is about 5 times
slower on Read.

3.3 Accuracy

To evaluate the accuracy of the various algorithms, we use the number of uni-
fication specializations made possible by the modes inferred by the algorithms. We
consider that #; = &; (i.c. AL.VAR) can be specialized when one of ils arguments is
either ground or variable and that =;, = f(xi,,...,#i,} (i.e. AI.FUNC) can be spe-
cialized when its first argument is either ground or a variable. Once again, we report
the results for all domains. In measuring unification speciahizations, we assume that
there is only one version of each pracedure (i.e. no multiple specialization), since
AISISOD and AICISO do not support several versions. The measure is of course unfair
to AIDYSO but helps understanding the tradeoff between cfficiency and accuracy.

BIBLIOTHEQUE DU CERIST

10

' Ralic on AIDYSOD] Time]
ATSTS0! AICISO[AIDYSO]

cs 1.9) 1.147 1.58
esl 1.00 1.12 1.60¢
disj 1.01 1.1¢G 1.27
di=iji 1.08 1.15 1.21

gabriel] 0.95 1.53] 0.58
Xalah 1.0o] 123 .00

peep 1.68 1.66] 1.43
PE 0.95 1.20 0.20
plan 0.93 1.07] 0.14

presal 0.71 169 46.76
Tress? 0.75 1.74| 6.69

asort 100l 1.00] 0.01

gueens 1.00 1.6 G601
|read 0.77 5.31 2.12
IMean 0.95, 157 ‘

Tabie 4. Ratios on ihe Efficiency Results on Domain Prop

Tr———

KIDYSC | E1S150 | AICISO | AIDYMG | AISIWG |

Pl ERE]P| Ef%RE[F| EREJP| ETRE[P| EI%RE]P]

peep 1543]527] 97.05]527] 97.05]527] 97.05(538] 99.071525] §6.871]

press1ld434/255) 59.681258| 59.45:258] 59.45{259{ 59.68/238] 59.45[

press2{435{421F 96.78{259] 59.54{259 59,54[421| 96.78!258] sm.ETH

read 1405{200] 73.831274; 67.65\274! 67.65(299] 73.83 274~ 67'65“
i

lesa | [o018/ | sr.07] | 87071 | s0.06] | s7.07l

— L i

Table 5. Accuracy RQesults on Domain Pattern

For the domair Mede, =il speciaiization results are the same for all aigorithins,

Table 5 depicts the specialization results for which there is 2 difference between
the programs and the average over all programs. We report the number of possible
specializations {P), the number of effective specializations deduced from the anal-
ysis (E), and the ratio (E/P) in percentage for the three program. The results for
Pattern indicate tha{ AISISO, ATCISO, AISING lose precision on three programs
compared to AIDYSQ: pressi, press?, and read. These are also the programs for
which AISISO produces more signiftcant efficiency improvements. ATOYEQ produces
a small improvement over AIDYSD on paep but this is rather marginal in the over-
all accuracy results. The good accuracy of ATSISD on the above two domains can
be expleined by two important features of our algorithms and domains: operation
EXTG and the same-value conipenent of domains %ode and Pattezrn. Operztion EXTG
perforins a form of narrowing [8] at the return of the procedure call. Herce much
of the accuracy lost in the upper bound operation of the procedure call is recovered
thiough operation EXTG. The same-value component contributes to the precision re-
covered by providing EXTG with strong relations on the variables. For instance, it is
possible that a call pattern (ground,any) returns (any,any) in AXSISO. However, if

BIBLIOTHEQUE DU CERIST

11

the result also concludes that the two arguments are equal thanks to the same-value
component, aperation EXTG will concludes that both arguments are ground achieving
a form of narrowing operation.

For the domain Prop, no difference in accuracy is exhibited by the algorithms.
This interesting result can be explained by the fact that the upper bound operation
{implemented by applyirg the LUB operation of the domain) does not lose accuracy
in Prop. It is thus equivalent to consider several input patterns or a single one which
is the LUB of the encountered patterns. Any domain with this property is probably
worth investigating and AISISO is clearly the most appropriate algorithm in this
case, Note also that Prop is not particularly appropriate for specialization, since
only groundness and not freeness is computed.

In summary, AIDYSG improves the accuracy of AISISO and AYCISO on a certain
number of programs for the domain Pattern and the domain Mode with reexecution.
The improvement occurs for the larger programs in general and correlates well with
the programs where AIDYSO spends more time than AISISQ. AIDYMO improves slightly
over AIDYSU on a single program.

4 Conclusion

Abstract interpretation of Prolog has received much attention in recent years lead-
ing to the development of many frameworks and algorithms. One reason for this
proliferation comes from the fact that program analyses can be defined at various
granularities, achieving a different trade-off between efficiency and precision. The
purpose of this papet Is to study this tradeoff by considering various granularities
for the program points. Three algorithins have been considered and extended with
reexecution. The first three algorithms have been evaluated on three abstract do-
mains, Mode, Prop, and Pattern with respect to accuracy and efficiency, while the
reexecution algorithms have been studied on the domain Hode.
The experimental results lead to several conclusions,

— AISISO is in general the fasiest analyzer but it may lose some precision for
programs using the multidirectionality of logic programming. ATSIS0 seems best
on domains which enjoy an exact LUE operation, since it seems faster and as
accurate as AIDY30.

~ AICISO seems not to be very interesting in practice. It is slower than AIDYSOQ in
the average although it works at a coarser granulariiy. The difference in efficiency
is not dramatic but there is no reason to choose AICISO over AIDYSO.

— The algorithms AIBYMO and AISIMO seems to work at a too fine granularity. They
incur a substantial loss without really improving the accuracy,

— The differences in accuracy between these algorithms on our benchmarks were
rather small.

It is tempting for us to argue that AIDYSO can be considered as a “best-buy”
since

1. its loss in efficiency compared ta AISISO is rather small on our domains;

2, it is more accurate than AISISC on arbitrary domains and this difference would
show up more clearly on benchmarks exploiting the multi-directionality of logic
programs which was not really the case of our benchmark programs;

