
Patrick Cousot Moreno Falaschi
Gilberto Filè Antoine Rauzy (Eds.)

Static Analysis

Third International Workshop, WSA '93
Padova, Italy, September 22-24, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Senes Editors

Gerhard Goos
Uni versitat Karlsruhe
Postfach 6980
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, Germany

Volume EditOIS

Patrick Cousot
DMI, Ecole Normale Superieur

J uns Hartmanis
Comell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

45 rue d'Ulm, F-75230 Paris Cedex 05, France

Moreno Falaschi
Dipartimento di Elettronica e Informatica, University of Padova
Via Gradenigo 6/A, 1-35131 Padova, Italy

Gilberto Filè
Dipartimento di Matematica Pura e Applicata, University of Padova
Via Balzoni 7, 1-35131 Padova, Italy

Antoine Rauzy
Departement Informatique, l'UT "A", Université Bordeaux l
F-33405 Talence, France

ISBN 3-540-57264-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57264-3Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Al! rights are reserved, whether the whoie or part
of the material is concerned, specifically the rights of translation, reprinting, re,use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of tbis publication or parts thereof is
permitted only under the provisions ofthe German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, HemsbachIBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Foreword

This volume contains the proceedings of the Third Workshop on Static Analysis
(WSA'93), held in Padova (Italy) September 22-24, 1993. The previous work
shops in this series, JTASPEFL and WSA'92, took place in Bordeaux (France).
The aim of WSA'93 is to illustrate the use of static analysis in different program
ming paradigms. WSA'93 is a step towards improving contacts and promoting
cross-fertilization among the numerous researchers in this area. The program
committee has selected 20 papers out of the 68 submitted. These papers con
tribute to the following topics:

generic algorithm for fixpoint computation
program transformation
strictness analysis
static analysis techniques for logic, functional, concurrent and parallel lan
guages and for term rewriting systems.

The workshop also includes system demonstrations and three invited lectures
delivered by Pascal Van Hentenryk, Peter Van Roy and Paul Hudak. The ab
stracts or papers of these lectures are included in this volume.

We thank ail members of the program commit tee and ail the referees for their
care in reviewing the submitted papers.

The organization of WSA'93 was supported by:

Consiglio N azionale delle Ricerche
Department of Pure and Applied Mathematics, University of Padova
Uni versi ty of P adova.

Finally, we express our gratitude to the members of the Organizing Commit
tee for their enthusiastic contribution to the success of WSA'93.

July 1993 Patrick Cousot, Moreno Falaschi, Gilberto Filè, Antoine Rauzy
Co-chairpersons

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Program Committee

Charles Consel (OGI)
Patrick Cousot (ENS; Chair)
Radhia Cousot (Polytechnique)
Olivier Danvy (CMU)
Bart Demoen (KUL)
Gilberto File (Padova; Co-chair)
Pascal Van Hentenryck (Brown)
Manuel Hermenegildo (UPM)

Neil Jones (DIKU)
Pierre Jouvelot (ENSMP)
Baudouin Le Charlier (Namur)
Giorgio Levi (Pisa)
Kim Marriott (Monash)
Alan Mycroft (Cambridge)
Antoine Rauzy (Bordeaux; Co-chair)
Helmut Simonis (Cosy tee)

Organizing Commit tee

Annalisa Bossi (Padova), Michele Bugliesi (Padova), Moreno Faiaschi (Padova;
Chair), Giuseppe Nardiello (Padova), Sabina Rossi (Padova), Kaninda Musumbu
(Bordeaux), Michel Billaud (Bordeaux), Pierre Casteran(Bordeaux), Marc
Michel Corsini (Bordeaux).

J .R. Abrial,
T. Amtoft,
P. H. Andersen,
N. Andersen,
L.O. Andersen,
R. Bagnara,
R. Barbuti,
P. Bazet,
M. Bellia,
L. Birkedal,
À. Bondorf,
A. Bossi,
D. Boulanger,
F. Bourdoncle,
S. Brookes,
M. Bruynooghe,
F. Bueno,
D. Cabeza,
M. Carro,
M. Chiara Meo,
M. Codish,
C. Codognet,
P. Codognet,
L. Colussi,

List of Referees

M. M. Carsini,
A. Cortesi,
R. Cridlig,
P. L. Qurien,
D. De Schreye,
B. Demoen,
M. Denecker,
P. Deransart,
A. Deutsch,
A. Dovier,
J. C. Fernandez,
P. Ferragina,
G. Filé,
A. Filjnski,
M. Garcia de la Banda,
R. Giacobazzi,
R. Glück,
E. Goubault,
P. Granger,
K. Havelund,
T. Hospel,
J. J oergensen,
N. D. Jones,
P. Jouvelat,

P. Lôpez Garcia,
K. Lackner Solberg,
G. Levi,
G. Longo,
P. Mancarella,
A. Marien,
T. Marlowe,
B. Martens,
F. Masdupuy,
B. Monsuez,
J. J. Moreno-Navarro,
A. Mulkers,
A. Mycroft,
F. Nielson,
C. Palamidessi,
J. Palsberg,
A. Pettorossi,
C. Queinnec,
B. Ryder,
B. Salvy,
D. Sands,
il, Sy;ndergaard,
M. Welinder,
P. Zimmermann

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Invited Talk

The impact of granularity in abstract interpretation of Prolog 1
P. Van Hentenryck (Brown University)
O. Degimbe (Namur University)
B. Le Charlier (Namur University)
L. Michel (Namur University)

Fixpoint Computation

Optimization techniques for general purpose fixpoint algorithms:
practical efliciency for the abstract interpretation of Prolog ' 15
B. Le Charlier (Namur University)
O. Degimbe (Namur University)
L. Michel (Namur University)
P. Van Hentenryck (Brown University)

Chaotic fixpoint iteration guided by dynamic dependency 27
N. Jprgensen (Roskilde University Center)

Fast abstract interpretation using sequential algorithms 45
A. Ferguson (Glasgow University)
J. Hughes (Chalmers Tekniska Hogskola, Goteborg)

Concurrency

Abstract interpretation and verification of reactive systems 60
J. C. Fernandez (VER!MAG, Grenoble)

Semantics and analysis of Linda-based languages 72
R. Cridlig (Ecole Normale Supérieure, Paris)
E. Goubault (Ecole Normale Supérieure, Paris)

Parallelism

Compiling FX on the CM-2' 87
J-P. Talpin (CR!, Ecole des Mines de Paris)
P. Jouvelot (CR!, Ecole des Mines de Paris)

Combining dependability with architectural adaptability by means of
the SIGNAL language ' 99
O. Maffeïs (GMD I5-SKS, Sankt Augustin)
P. le Guernic (IRISA/INRIA-Rennes)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Invited Talk

Challenges in developing liseful and practical static analysis for
logic programs .. 111
P. Van Roy (Digital Research Labs, Paris)

Transformation

Occam's razor in metacomputation: the notion of a perfect process tree .. 112
R. Glück (University of Technology, ViennaY
A. Klimov (Russian Academy of Sciences, Moscow)

Tupling functions with multiple recursion parameters 124
W-N. Chin (National University of Singapore)
S-C. Khoo (National University of Singapore)

Àvoiding repeated tests in pattern mat ching 141
P. Thiemann (Wilhelm-Schickard-Institut, Tübingen University)

Logic Programs

Freeness, sharing, linearity and correctness - aIl at once 153
M. Bruynooghe (Katho/Îeke Universiteit Leuven)
M. Codish (Katholieke Universiteit Leuven)

Synthesis of directionality information for functionallogic programs 165
J. Baye (Linkôping University)
J. Paakki (Linkôping University)
J. M aluszynski (Linkoping University)

Term Rewriting Systems

Àbstract rewriting ... 178
Do Bert (IMAG-LGI, Grenoble Cedex)
R.Echahed (IMAG-LGI, Grenoble Cedex)
B. M. 0stvold (Norwegian Instit"te of Technology, Trondheim)

lnvited Talk

Reflections on program optimization 193
P. Hudak (Yale University)

StrÎctness

Finiteness conditions for strictness analysis 194
F. Nielson (Aarhus University)
H. R. Nie/son (Aarhus University)

Strictness properties of lazy algebraic data types 206
P. N. Benton (Cambridge University)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IX

Minimal thunkification .. 218
T. Amtoft (Aarhus University)

Reasoning About Programs

An efficient abductive reasoning system based on program analysis 230
S. Kato (Nagoya Institute of Technology)

. H. Seki (Nagoya Instituie of Technology)
H. Itoh (Nagoya Institute of Technology)

A congruence for Gamma programs 242
L. Errington (Imperial College, London)
C. Hankin (Imperial Co/lege, London)
T. Jensen (Imperial Co/lege, London)

Types

Usage analysis with natural reduction types 254
D. A. Wright (Tasmania University)
C. A. Baker-Finch (Canberra University)

Polymorphic types and widening operators 267
B. Monsuez (LIENS, Paris)

Poster Session

Demonstration: static analysis of AKL .. 282
D. Sahlin (SICS, Kista)
T. Sjëland (SICS, Kista)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

The Impact of Granularity
III Abstract Interpretation of Pro log

Pascal Van Hentenryck1 , Olivier Degimbe2,

Baudouin Le Charlier2 , Laurent Michel2

l Brown University, Box 1910, Providence, Hl 02912 (USA)
2 University of Namur, 21 rue Grandgagnage, B-5000 Namur (Belgium)

Abstract. Abstract interpretation of Prolog has received much attention in
recent years leading to the development of many frameworks and algorithms.
One reason for this proliferation cornes from the fact that program analyses
can be defined at various granularities, achieving a different trade-off between
efficiency and precision. The purpose of this paper is to study this tradeoff
experimentally. We review the most frequently proposed granularities which
can be expressed as a two dimensional space parametrized by the form of
the inputs and outputs. The resulting algorithms are evaluated on three
abstract domains with very different functionalities, Mode, Prop, and Pattern
to assess the impact of granula rit y on efficiency and accuracy. This is, to onr
knowledge, the first study of granularity at the algorithm level and sorne of
the results are particularly surprising.

1 Introduction

Abstract interpretation of Prolog has attracted many researchers in recent years.
This effort is motivated by the need for optimization in logic programming com
pilers to be competitive with procedural languages and the declarative nature of
the languages which makes them more amen able ta static analysis. Considerable
progress has been realised in this area in terms of the frameworks (e.g. [1, 4, 2, 7,
18, 21, 22,25,37]), the algorithms (e.g. [2,5,11, 16, 17, 18,30]), the abstract do
mains (e.g. [3, 14,27]) and the implementation (e.g. [11, 13, 18, 36]). Recent results
indicate that abstract interpretation can be competitive with specialized data flow
algorithms and could be integrated in industrial compilers.

As can be seen from the above references, abstract interpretation of Prolog has led
ta the development of many frameworks and algorithms. One of the reasons for this
proliferation is the fact that program analysis can be defined ar various granularities
achieving specifie tradeoffs between accuracy and efficiency.3 The granularity of an
algorithm is influenced by numerous parameters, including the choice of program
points and the form of the results (e.g. how many output abstract substitutions are
related ta each program point). In fact, combinations of these two parameters cover
most existing algorithms.

The first parameter, program point, concerns the number of abstract abjects
considered per procedure. At least, three possibilities (single, call, dynamic)

3 Note that the tradeoff between efficiency and accuracy can be studied at the abstract
domaill level as weil, as for instance in [10].

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

have been investigated and they differ in the way different cali patterns for il, proce
dure are dea!t with. single associates a unique abstract object with each procedure
as, for instance, in the algorithm of Taylor [31, 32]. As a consequence, different caU
patterns are merged together within this granularity. Mellish [25J also associates a
unique absfract object with each procedure. Contrary to Taylor however, the ab
stract object is a set of abstract substitutions and not a single substitution. caU
a$sociates an abstract object with each procedure cali in the text of tAe program,
as in the framework of Nilsson [28, 29J.4 Different cali patterns for a procedure are
not merged but rather distributed among the procedure calls. Of course,different
caU patterns are merged inside each program point. Dynamic associates an abstract
object with each pair (13, p) in the program, where f3 is an abstract substitution
and p is a predicate symbol. This granularity is adopted in many frameworks (e.g.
[2, 4, 11, 13, 17, 18, 22, 23, 37, 38]) and keeps different cal! patterns separate. It is
interesting to note that, for the first two granularities, it is possible to generate a
priori a finite set of equationswhose variables represent the abstract substitutions
adorning the program points. This is not possible for the third granularity whose se
mantics defines a functional equation. However, this equation can be approximated
by a dynamk set of finite equations. As a consequence, it is more difficult to pro
duce an algorithm for dynamic sinee the static analyzer must combine the fixpoint
computation with the generation of the equations.

The second parameter, abstract resul t, concerns the form of the result stored
at each program point. At least two possibilities (single, multiple) have been
proposed and differ in the way they han die the results of the clauses to produce the
result of a procedure. single stores a single result per program by using, an upper
bound operation on the clause results. This granularity is used in many frameworks
and algorithms (see aIl the ab ove referen-ces). multiple stores a set of results per
program point by collecting the results of all clauses and possibly applying a fil
ter (e.g. a subsumption test). This granularity is used in the frameworks based on
OLOT-resolution (e.g. [5, 10, 12, Hi, 33, 35]).

The two parameters, when combined, produce a two-dimensional design space
depicted in Figure 1. Other granuJarities exist. For instance, the single and call
entries can be doubled by allowing set of abstract objects for the forms of the inputs.
These granularities are related to OLDT-based abstract interpretation but are not
studied here.

The purpose of this paper is to study experimentally this two dimensional space.
The experimental results are given for a variety ofbenchmarks and for three abstract
domains: mode, a domain containing same-value, sharing, and mode components [26],
pattern, a domain containing same-value, sharing, mode, and pattern components
[26, 18], and Prop, a dornain using Boolean formulas to compute groundness infor
mation [8, 20, 24].

The rest of this paper is organized in the following way. Section 2 reviews În
formally the various granularities considered in this paper. Section 3 presents the
experimental results. Section 4 contains the conclusion of this research. Most of the

4: In the presentation of Nilsson, program points are associated with clause entry, clause
erit, and a.ny point between the literais in the dause. As discussed tater in the paper,
this is equivalent to adorning each procedure cali in the text of the program with an
inpnt and an output substitution.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

input single call dynamic
output

single AISISa ~ICISa AIDYSa

multiple AISIMO AICIMO AlDYMO

Table 1. The Design Space of Granularities

results given here are described in detail in two technical reports [34, 33].

2 The Granularities

In this section, we give an informai overview of the various granularities. 'Ve assume
that the frameworks use abstract substitutions to represent sets of con crete substi
tutions and that Abs is an abstract domain of this type (e.g. a pointed cpo with an
upper bound operation). We use Pred and Call to denote the set ofpredicate symbols
and the set of procedure calls in the text of the program. Abstract substitutions are
denoted by f3 (generally subscripted), predicates by the letter p, and procedure calls
by the letter C.

2.1 DynamicfSingle

This granularity is probably the most popular in the logic programming community
and corresponds to what is called a polyvariant analysis in the functional program
ming community. It is used for instance in [4, 2, 13, 17, 18, 11, 22, 23, 38, 37].

The key idea is to associate with each predicate symbol p multiple abstract
tuples of the form (f3in, p, ;Jou,). More precisely, the result of the analysis is a partial
function of signature Pred --> Abs --> Abs which, given a predicate symbol p and an
input abstract substitution ;Jin, returns a result ;Jou' satisfying the following informai
condition:

"the execution of p(Xl,"" xn)O, where 0 is a substitution satisfying the
property expressed by ;Jin, produces substitutions 01"", On, ail of which
satisfy the property expressed by ;Jou""

The main features of this granularity are as follows:

The abstract semantics at this granularity define a functional and cannot be
reduced to a fini te set of equations. As a consequence, the fixpoint algorithm
needs to interleave the generation of the equations and their solving.
Since the semantics preserve multiple input patterns, it can be used to imple
ment advanced program transformations such as multiple specializations [37]
which associates multiple versions to each procedure (possibly one for each in
put patterns).

GAIA [18], which is the basis of the experimental work described later on, is a top
down algorithm working at this granularity. It can be viewed as an instance of a gen
eral fixpoint algorithm [19] or, alternatively, as an implementation of Bruynooghe's

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

framework (2). The algorithm is query-directed, providing an algorithmic counterpart
to the notion of minimal function graph [15J. It also includes many optimizations
such as caching of the operations [U] and a dependency graph to avoid redundant
computations. FiRally, in the case of infinite domains, the algorithm uses a widening
operator to ensure the finiteness of the analysis for domains satisfying the ascending
chain condition. Another closely related algorithm i8 PLAI [13]. The algorithm at
this granularity is referred to as AIDYSO in the following.

2.2 Single/Single

Single/Single is the coarsest granularity stud/ed in this paper and corresponds
to what is calleda univariani analysis in the functional programming community.
Taylor's algorithm [31, 32] is an example of analyzer working at this granularity.

The key idea here is to associate with each predicate in the program a unique
pair ((Jin, f3out), where (Jin (resp. {Joud is an abstract substitution representing the
properties of the concrete input (resp. output) substitutions of p. More precisely,
the result of the analysisis apartial function of signature Pred ~ Abs x Abs. The
result (Pin, (JOUI) of the analysis for a predicate symbol p can be read informally as
follows:

"p is executed in the analyzed program with input substitutions satisfying
(Jin and produces answer substitutions satisfying (JouI" .

The loss of efficiency compared to AIDYSOoccurs because input patterns from differ
ent procedure calls may be merged together resulting in a less precise input pattern
for analyûng the procedure.

The main features of this granularity are as follows:

The granularity collapses ail the input patterns into a single input substitution.
As a consequence, it produces the coarsest granularity studied in thispaper. We
expected this granularity to give rise to the fastest algorithm.
The granularity precludes certain types of program transformations such as mul
tiple specializations.
The abstract semantics defined at this granularity can be expressed as a finite
set of equations and the fixpoint algorithm does not need widening operators
when theabstract domain satisfies the ascending chain property.

The fixpoint algorithm AIS ISO for this granularity can be deduced from AIDYSO
by computing before the execution of a procedure an upper bound on the memoized
input abstract substitution to be refined and a new input abstract substitution
under consideration. The upper bound is used both as the new memoized abstract
substitution and to continue the analysis.

2.3 CalI/Single

The granularîty Call/Single was proposed by Ulf Nilsson [28, 29] and is interme
diary between the previous two granularities.

lts key idea i8 to associate ;vith each procedure cali a pair of abstract substitutions
(Pin, Pout). More precisely, the fixpoint algorithm computes a partialfunction Cali ~
Abs x Abs which, given a procedure cal! C, returns a pair ([3in, {Jou'} whose informal
semantics is described as follows:

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

"during the program execution, the substitutions encountered before the
execution of a procedure cali C satisfy the property expressed by !3in while
the substitutions encountered after the execution of the cali satisfies the
property expressed by!3ou •. "

Although it seems to be fundamentally different from the previous two, this granu
larity can be reexpressed in the same framework by considering sim ply that the
function computed is of signature Pred -. Cali -. Abs X Abs. Viewing it this
way, it becomes clear that the granularity is intermediary between Single/Single
and Dynamic/Single. Instead of collapsing all input patterns into a single input,
CalI/Single distributes them among a finite number of procedure calls. The gain
in precision compared to Single/Single cornes from the fact that different pro
cedure calls do not interfere with each other. The loss of precision compared to
Dynamic/Single cornes from the merging of abstract substitutions for a given pro
cedure cali.

The key featl!res of this granularity are as follows:

- The granularity is coarser than Dynamic/Single and finer than Single/Single.
We expected the algorithm to be faster than AIDYSO and slower than AISISO.

- The granularity allows for multiple specializations although their full potential
may not be realized because of the merging.

- The semantics defined at this level can be reduced to a finite set of equations.

Once again, the algorithm for this granularity AICISO can be obtained from
AIDYSO by computing upper bound operations appropriately. The key insight, men
tioned earIier, is to associate with each predicate symbol p as many pairs as there
are program points corresponding to procedure calls to p.

It is also interesting to note that a finer granularity can be obtained from
Dynamic/ Single and Cali/Single by associating multiple pairs (!3in, !3ou.) to a
procedure calI. This results in an analysis returning a partial function of signa
ture Cali -. Abs -. Abs. This granularity is not explored here for reasons that will
appear clearly in the experimental resul ts.

2.4 Dynamic/Multiple

Dynamic/Multiple is another popular granularity in the logic programming com
munity. It was used for instance in [5, 10, 12, 16, 33, 35]. The main reason is
that the algorithm for this granularity can be obtained automatically by apply
ing OLDT-resolution to an abstract version of the program as shown in [6, 35]. This
is due to the interesting termination properties of OLDT-resolution.

The key idea here is to associate with each predicate symbol p in the program
multiple abstract tuples of the form (!3in, Sou.), where Sou, is a set of abstract sub
stitutions (i.e. Sou. E 2Ab

'). More precisely, the result of the analysis is a partial
function of signature Pred -. Abs -. 2Abs which, given a predicate symbol p and an
input abstract substitution Pin, returns a set Saut whose informai semantics is given
by:

"the execution of P(Xl, ... , xn)e, where e is a substitution satisfying the
property expressed by {3in, will produce substitutions el, ... , en, ail of which
satisfy the property expressed by sorne {3ou. in Sou,"

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

In general, for efficiency reasons, it is important to add sorne more structure on 2Abs

to elîminate redundant elements from the output sets (i.e. the elements ,8' such there
exists another element {J satisfying (J' ::; (3), The relational powerdomain (i.e. Hoare
powerdomain) can be used instead of the powerset for that purpose.

This granularity is the most precise studied in this paper. The gain in accuracy
compared to Dynamic/Single cames from the multiple outputs which give rise to
more precise input patterns, especially when the abstract domain main tains struc
tural information.

The key features of this granularity are as follows:

It is the finest granuJarity defined in this paper and is obviously appropriate for
multiple specializations [37].
The abstract semantics at this granularity define a functional transformation.

The algorithm GAIA can be generalized to work at this granularity but the task is
non-trivial, since each procedure cal! gives rise to multiple clause suffix and special
care should be given to avoid redundant work. In [33], we report how optimizations
such as the suffix optimization, caching, and output subsumption are important
to achieve a reasonable efficiency. With this optimization, the resulting algorithm
AIDYMO spends over 90% of its Ume in the abstract operations.

Another point to stress is that a new widening operator is necessary to make
sure that an output cannot be refined infinitely often in case of infinite abstract
domains. This new widening is used when a new output, say {3, is about to be
inserted in an output set, say S. Instead of inserting {J, the algorithm inserts {J V' S
for a given widening operator V'. There are a variety of possible widening opel'ators,
samcof them being domain-dependent and others being domain-independent. In our
experiments, we use the operators V' à. The operator is domain-dependent, is defined
on the domain Pattern to be discussed later, and relates to the depth-k abstraction
sometimes used in abstract interpretation. Informally speaking, V' d widens the new
substitution by taking its lub with ail the substitutions having the same outermost
functors (depth-l). Since there are finitely many function symbols in a program, the
output set is guaranteed to be finite.

2.5 Single/Multiple
Single/Multiple is an hybrid between Single/Single and Dynrunic/Multiple. It
is close to the early proposai of Me\lish [25], the only difference being that the single
input in Mellish is also a set of abstract substitution. This granularity will thus give
us an idea on how appropriate this early proposal was.

The key idea is to assocÎate with each predicate symbol p in the program a single
abstract tapIe ({Jin, SOU!),

The key features of this granularity are as follows:

- The abstract semantics Can be reduced to a finite set of equations.
- The granularity is coarser th an Dynamic/Mul tiple and finer than Single/Single.

It is difficult to compare ta the other granuJarities proposed eadier. The granu
larity lS not appropriate for multiple specialization.

The algorithm AIDYI'lO can be specialized to produce an algorithm AISIMO for
this granularity, once again by taking appropriate upper bonnd operations.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

3 Experimental Results

We now turn to the experimental results. We start with a brief description of the
abstract domains before considering the experimental results for efficiency and accu
racy. The Prolog programs used in the experiments are described in previous papers
(e.g. [11]) and are available by anonymous ftp from Brown University.

3.1 Abstract Domains

The Domain Mode: The domain Mode of [26J is a reformulation of the domain of [2].
The domain could be viewed as a simplification of the domain Pattern described
below, where the pattern information has been omitted and the sharing has been
simplified to an equivalence relation. Only three modes are considered: ground.
var and any. Equality constraints can only hold between program variables (and
not between subterms of the terms bound to them). The same restriction applies to
sharing constraints. Moreover, algorithms for primitive operations are significantly
different. They are much simpler and the loss of accuracy is significant.

The Domain Prop: In Prop [24, 8, 20], a set of concrete substitutions over D =
{Xl, ... , Xn} is represented by a Boolean function using variables from D, that is an
element of (D -> Bool) -> Bool, where Bool = {Jalse,true}. Prop only considers
Boolean functions that can be represented by propositional formulas using variables
from D, the truth values, and the logical connectives V, /\, {:}. XI/\X2 and Xl {:} X2/\X3

are such formulas. The basic intuition behind the domain Prop is t.hat a substitution
e is abstracted by a Boolean function f over D iff, for all instances (J' of (J, the truth
assignment [defined by [(Xi) = true iff (J' grounds Xi (1 ~ i ~ n) satisfies f.

The Domain Pattern: The abstract domain Pattern contains patterns (i.e. for each
subterm, the main functor and a reference to its arguments are stored), sharing,
same-value, and mode components. It should be related to the depth-k abstraction
of [16], but no bound is imposed a priori to the terms depth. Since the domain is
infinite, widening operations must be used by many of the algorithms. The domain is
fully described in [26, 18] and reference [26] contains also the proofs of monotonicity
and safeness. This is an infinite domain and the experimental results are reported
with a simple widening technique which applies an upper bound operation on each
recursi ve calI.

3.2 Efflciency

This section reports our experimental efficiency results on a variety of domains. For
lack of space, we only report a summary of the results, the full tables being available
in the technical reports associated with this paper.

Table 2 reports the efficiency results for the algorithms on the domain Mode. We
give the ratios between the cpu times of the algorithms wrt AIDYSO and the absolute
time in seconds of AIDYSO on a Sun Sparc 10/30. There are two important results
in this table:

1. The first and more surprising result is that AICISO is in fact 13% slower than
AIDYSO, indicating that a coarser granularity does not imply necessarily a better

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

Ratio on AIDYSO Time 1

AISISO HerSO AIDYMO AIDYSO

i ~:1
0.89 1.03 1.01 1.44
0.85 1.01 1.03 1.181

1 disj 0.99 1.14 1.00 0.74

1 disjl 0.93 1.05 1.01 0.81
Isabriel 0.71 0.89 1.03 0.35
I,kalah 0.74 0.83 1.02 1.21
!peep 0.90 1.14 1.71 1.11
ipg 0.76 0.82 1.07 0.17
1 plan 1.00 l.09 1045 0.11

1 pressl 0,63 1.14 1.07 1.53
press2 0.65 1.14 1.07 1.55

1 qsort 1.00 1.00 2.00 0.01
! queens 1.00 1.00 1.50 0.01

iread 0,71 2.51 1.31 lAD

ilMean 0.84 1.13 1.15

Table 2, Ratios on the Efficiency Results on Domain Mode

efficiency. This negative result can he attributed to the fact that sorne redun
dant computations occur because the Same results are stored twice in different
program points. This forces AICISO to perform many more iterations and, al
though most of the redundaney is removed by the eaehing optimization, the loss
in efficiency is still important. -

2, The second result i8 that the algorithms are reaUy close. AISISO gains about
16% over AIDYSO on this domain, while AIDYSO is 1.15 times faster than AIDYMO.

Table 3 depicts the efficiency results for the domain Pattern. The table also
con tains some intere5ting results.

1, The most surprising result is the significant loss of efficiency incurred by AIDYMO
whieh is more than 17 times slower than AIDYSO in the average. For some large
programs (e.g. program disj 1), AIDYMO i8 about 54 times slower than AIDYSO.
The analysis time i8in the worst case (i.e. program pressl) about 2 minutes. The
main reason for this poor result is the fact that domain Pattern is both more
precise and richer than domain Mode. In partieular, the pattern component forces
AIDYMO to maintain outputs whose modes are similar but which have different
functors as is typical in analyzing recursive programs. This ean lead to additional
precision as we will see but it also entails some duplicated effort as indicated by
the effieiency results.

2, The second surprising result isthat AISIMO is significantly slower than AIDYMO
indicating once again that a coarser granularity does not necessarily mean a
better efficiency.

3. The remaining resuÎts confirm ~ome of the previous results on the domain Mode.
They indicate that AIS ISO brings an improvement of 29% over AIDYSO in the
average while ArCISO i5 about twice as slow as AIDYSO, confirming the relativeiy
poor results of nCISO. lt is important to stress the impact of the widening

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

Ratio on AIDYSO Time
AISISO AICISO AIDYMO jAISIMO AIDYSO

cs 0.87 0.98 7.17 8.30 2.13
cs! 0.87 0.96 6.94 7.96 2.18
disj 0.88 1.68 45.21 55.05 1.19
disj! 0.89 1.62 54.64 56.56 1.22
gabriel 0.39 0.81 3.95 3.86 0.90
kalah 0.59 0.75 4.72 5.46 2.97
peep 0.66 1.02 28.98 19.38 2.36
pg 0.34 0.51 2.10 2.31 0.71
plan 0.73 1.23 2.00 2.33 0.22
press! 0.32 1.01 13.41 31.69 8.70
press2 1.08 3.45 10.38 101.81 2.60
qsort 1.00 11.00 56.00 48.00 0.01
queens 1.00 2.00 12.00 12.00 0.01
read 0.29 1.27 6.86 10.42 5.53

Mean 0.71 2.02 17.52 22.14

Table 3. Ratios on the Efficiency Results on Domain Pattern

techniques on AIDYSO. The fact that widening is implemented through a general
upper bound operation explains why AISISO and AIDYSO are rather close. The
main difference between the two algorithms on recursive caUs is that AIDYSO
keeps distinct tupI es when it takes the upper bound on two recursive calls while
AISISO merges them. The need to update the various tuples should explain
the small difference in efficiency and iterations between the two algorithms. On
the other hand, keeping distinct versions can le ad to important differences in
accuracy for non-recursive calls with very different input patterns (i.e. multi
direction al procedures).

Table 4 depicts the efficiency results for the domain Prop. The results indicate
that AISISO brings an improvement of 5% over AIDYSO in the average while AICISO is
about 1.57 as slow as AIDYSO. The gain of AISISO over AIDYSO is rather sm ail in this
case. The best improvement occurs for program Press1 (29%) but most programs
show little or no improvement. AICISO is the slowest program and is about 5 times
slower on Read.

3.3 Accuracy

To evaluate the accuracy of the various algorithms, we use the number of uni
fication specializations made possible by the modes inferred by the algorithms. We
consider that Xi = Xi (i.e. ALVAR) can be specialized when one of its arguments is
either ground or variable and that Xi, = f(xi" ... , Xi.) (i.e. ALFUNC) can be spe
cialized when its first argument is either ground or a variable. Once again, we report
the results for ail domains. In measuring unification specializations, we assume that
there is only one version of each procedure (i.e. no multiple specialization), sin ce
AIS ISO and AICISO do not support several versions. The measure is of course unfair
to AIDYSO but helps understanding the tradeoff between efficiency and accuracy.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

10

Il Ratio on AIDYSO Time
li AIS ISO) AIelSa AIDYSO i
, cs

1.
01

1
1.14 1.58

1 csl
1

1.00 1.12 1.60
1 disj 1.01 1.10 1.27
, disjl 1.08 1.15 1.21
ligabriel 0.95 1.53 0.58
1ikalah 1.00 1.23 1.(10

1 peep 1.08 1.66 1.43

IPS 0.95 1.20 0.20
plan 0.93 1.07 0.14
pressl 0.71 1.69 6.76

1 press2 0.75 l.74 6.69
qsort 1.00 1.00 0.01

1 queens 1.00 1.00 0.01

1 read 1 0.77 5.31 2.12

JMean 0.95 1.57

Tab!e 4. Ratios on the Efficiency Results on Domain Prop

1 1 AIDYSa AISISO AICISO AIDYMO _ L AISIIIO 1

1 P E)'1cl!;/iJ l!; i'1ûEJP l!;1'1ol!; / P 1> l'1oEIP bl'1oEIP i

peep r43 5271 97.05 527 97.055271 97.05 538 99.070526! 96.871
press1434 2591 59.68 258 59.45'2581 59.45 259 59.68 258 i 59.451

IIpreSS2 435 421\ 96.781259 59.54 2591 59.54421 96.78259 58.571

,.read ros 299 73.8:)274 67.65 274

1

67.65 299 73.83274 67.6511
11

87.071 !IMea.'1 90.18 87.07 90.96 87.ü711
Table 5. Accuracy Results on Domain Pattern

For the domain Mode, al! specialization results are the sarne îor al! algorithms.
Table 5 depicts the specialization results for which there ie a difference between

the programs and the average over al! programs. '''le report the number of possible
specializations CP), the number of effective specializations deduced from the anal
ysis CE), and the ratio (El P) in percentage for the three program. The resuits for
Pattern indicate that AISISO, AICISO, AISINO lose precision on three prograills
compared to AIDYSO: pressl, press2, and read. These are also the programs for
which AIS ISO produces more significant efficiency improvements. AIDYMO pro duces
a small improvernent oyer UDYSO on peep but this is rather marginal in the oyer
aH accuracy results. The good accuracy of AISISO on the ab ove two domains can
be explained by two important featmes of our algorithms and dorr.ains: operation
EXTG and the same-value component of dornains Mode and Pattern. Operation EXTG
performs a fcrm of narrowing [9] at the return of the procedure cali. Renee much
of the accuraey lost in the upper bound operation of the procedure cali is recovered
through operation EXTG. The same-value component contributes to the precision re
covered by providing EXTG with strong relations on the variables. For instance, it is
possible that a cali pattern (ground,any) returns Cany, any) in AXSISO. However, jf

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

11

the result also concludes that the two arguments are equal thanks to the same-value
component, operation EX TG will concludes that both arguments are ground achieving
a form of narrowing operation.

For the domain Prop, no difference in accuracy is exhibited by the algorithms.
This interesting result can be explained by the fact that the upper bound operation
(implemented by applying the LUB operation of the domain) does not lose accuracy
in Prop. It is thus equivalent to consider several input patterns or a single one which
is the LUB of the encountered patterns. Any domain with this property is probably
worth investigating and AISISO is clearly the most appropriate algorithm in this
case. Note also that Prop is not particularly appropriate for specialization, since
only groundness and not freeness is computed.

In summary, AIDYSO improves the accuracy of AISISO and AICISO on a certain
number of programs for the domain Pattern and the domain Mode with reexecution.
The improvement occurs for the larger programs in general and correlates weil with
the programs where AIOYSO spends more time than AISISO. AIDYMO improves slightly
over AIOYSO on a single program.

4 Conclusion

Abstract interpretation of Prolog has received much attention in recent years lead
ing to the development of many frameworks and algorithms. One reason for this
proliferation comes from the fact that program analyses can be defined at various
granularities, achieving a different trade-off between efficiency and precision. The
purpose of this paper is to study this tradeoff by considering various granularities
for the program points. Three algorithms have been considered and extended with
reexecution. The first three algorithms have been evaluated on three abstract do
mains, Mode, Prop, and Pattern with respect to accuracy and efficiency, while the
reexecution algorithms have been studied on the domain Mode.

The experimental results lead to several conclusions.

- AISISO is in general the fastest analyzer but it may lose some precision for
programs using the multidirectionality of logic programming. AISISO seems best
on domains which eujoy an exact LUB operation, sinee it seems faster and as
aceurate as AIOYSO.

- AICISO seems not to be very interesting in practice. It is slower than AIOYSO in
the average although it works at a coarser granularity. The difference in efficiency
is not dramatic but there is no reason to ehoose AICISO over AIDYSO.
The algorithms AIDYMO and AISIMO seems to work at a too fine granularity. They
ineur a substantialloss without really improving the aeeuraey.

- The differences in accuracy between these algorithms on our benchmarks were
rather small.

It is tempting for us to argue that AIDYSO can be considered as a "best-buy"
sinee

1. its loss in efficieney eompared to AISISO is rather small on our domains;
2. it is more accurate than AISISO on arbitrary domains and this difference would

show up more clearly on benchmarks exploiting the multi-direetionality of logic
programs whieh was not really the case of our benchmark programs;

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

