
André Schiper (Ed.)

Distributed Algorithms

7th International Workshop, WDAG '93
Lausanne, Switzerland, September 27-29, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitlit Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, Germany

Volume Editor

André Schlper
Ecole Polytechnique Fédérale de Lausanne
Département d'Informatique
Laboratoire de Systèmes d'Exploitation
CH-LOIS La\lsanne, Switzerland

Juns Hat-tmanis
ComeU University
Department of Computer Science
4130 Upson Hall
Ithaca,NY 14853, USA

CR Subject Classification (1991): F.I, D.1.3, E2.2, C.2.2, C.2A, D.4.4-5

ISBN 3-540-57271-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57271-6 Springer-Verlag New York Berlin Heidelberg

This work 18 subject to copyright. An rights are reserved, whether the whole:>r part
of the material is concemed, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfiL'TIs or in any olher
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in ils current version, and permission for use must always be obtained from
Springer-Verlag. Violations are Hable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, HemsbachlBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

The SEVENTH INTERNATIONAL WORKSHOP ON DISTRIBUTED ALGORITHMS
(WDAG 93) was held September 27-29 in Lausanne, Switzerland (more pre­
cisely in Les Diablerets, a village located near Lausanne). The workshop followed
six successive workshops held in Ottawa (1985, proceedings published by Car­
leton University Press), Amsterdam (1987, proceedings published by Springer
Verlag, LNCS 312), Nice (1989, LNCS 392), Bari (1990, LNCS 484), Delphi
(1991, LN CS 579) and Haifa (1992, LNCS 647). The WDAG provides an inter­
national forum for the presentation of new research results and the identification
of future research directions in the area of distributed algorithms.

Submissions were solicited in ail areas of distributed algorithms and their
applications, including distributed algorithms for control and communication,
fault-tolerant distributed algorithms, network protocols, algorithms for manag­
ing replicated data, proto cols for real-time distributed systems, issues of asyn­
chrony, synchrony and real-time, mechanisms for security in distributed systems,
techniques for the design and analysis of distributed algorithms, distributed
database techniques, distributed combinatorial and optimization algorithms, and
distributed graph algorithms.

A total of 72 papers were received within the submission deadline (33 submis­
sions from Europe, 29 from North America, 6 from the Middle East, 3 from the
Far East, and 1 from Australia). The Program Committee wishes to thank ail
the authors who submitted papers for consideration. Out of the 72 submissions
the Program Committee was able to select the 22 papers appearing in these pro­
ceedings (6 from Europe, 13 from North America, and 3 from the Middle East).
The selection was based on originality and quality. Relevance of the papers to
the field of distributed computing was also considered carefully.

The Program Committee was composed of:

D. Dolev (Hebrew U. and IBM Almaden) M. Herlihy (DEC CRL)
G. Le Lann (INRIA, Paris) K. Marzullo (Cornel! U. and
F. Mattern (U. of Saarland) UC San Diego)
M. Merritt (AT&T) M. Raynal (IRISA, Rennes)
A. Schiper (chair, EPF Lausanne P. Spirakis (CTI and Patras U.)

and Cornell U.) J. van Leeuwen (U. of Utrecht)
J. Welch (Texas A&M U.) S. Zaks (Technion, Haifa)

1 wish to thank ail the members of the Program Committee and ail the refer­
ees who assisted them for their careful reviewing carried out within a very short
period of time. My thanks go also to Alain Sandoz for his excellent organization
of the Workshop, and for his smooth handling of the submitted and accepted
papers.

For the first time this year, a tutorial was organized during the Workshop.
The title of the tutorial was Specifications and Algorithms for Fault- Tolerant

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Broadcasts - A Modula,.. Approaeh. It ;vas presented by Sam Toueg from Cornell
University. The idea in combining a tutorial with research papers was to attract
young researchers to the Workshop, and hopefully to the field of distributed
algorithms. Financial support for the tutorial was provided by the Sème Cycle
Romand d'Informatique, for which we are gratefuI.

Lausanne, September 1993 André Schiper

List lOf Referees

Anceaume, E.
Attiya, H.
Bakker, KM.
Breitbach, T.
Buehler, P.
Charron-Bost, B.
Cidon, L
Clegg, M.
Dolev, D.
Dolev, S.
Fix, L.
Fuenfrocken, S.
Guerraoui, R
Haldar, S.
Helary, J.-M.
Herlihy, M.
Herman, T.
Israeli, A.
I.e Lann, G.
Lueling, R.
Malki, D.
Marzullo, K.
Matsliach, G.

Mattern, F.
Merritt, M.
Minet,P.
Moran, S.
Papatriantafillou, M.
Plouzeau, N.
Priebe, V.
Rachman, O.
Raynal, M.
Ricciardi, A.
Richter, J.
Sandoz, A.
Schiper, A.
Schwarz, R.
Spirakis, P.
Tampakas, 13.
Tan, R.B.
Tel, G.
Tsigas, Ph.
van Leeuwen, J.
Welch,J.
Zaks, S.
Zamsky, A.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

Wait-free synchronization

Efficient wait-free implementation of a concurrent priority queue
A. Israeli, L. Rappoport : ... 1

Binary snapshots
J.-H. Hoepman, J. Tromp ... 18

Linear-time snapshot protocols for unbalanced systems
A. Israeli, A. Shaham, A. Shirazi .. 26

Towards a necessary and sufficient condition for wait-free synchronization
J.H. Anderson, M. Moir .. 39

Shared memory model

Efficient algorithms for checking the atomicity of a run of read and write
operations
L.M. Kirousis, A. G. Veneris .. 54

Benign failure models for shared memory
y. Afek, M. Merritt, G. Taubenfeld .. 69

Generalized agreement between concurrent fail-stop pro cesses
J.E. Burns, R.I. Cruz, M.C. Loui ... 84

Controlling memory access concurrency in efficient fault-tolerant parallel
algorithms
P. C. Kanellakis, D. Michailidis, A.A. Shvartsman 99

Miscellaneous

Asynchronous epoch management in replicated databases
M. Rabinovich, E.D. Lazowska ... 115

Crash resilient communication in dynamic networks
S. Dolev, J.L. Welch ... 129

Distributed job scheduling using snapshots
M. Chay, A.K. Singh .. 145

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VlII

Fault toleranze

Optimal tirne self stabilization in clynamic systems
S. Do/ev ... " .. 160

Tolerating transient and permanent failures
E. Anagnostou, V. Hadzilacos ,.,.,.", .. ", ,.,.,.174

Quick atomic broadcast
P. Berman, kA. Bharali " , " .. , ... , , .. ,."" .. 189

Time bounds for decision problems in the presence of timing
uncertainty and failures
H. Attiya, T. Djerassi-Shintel "" .. "."".,,,.,.,,.,, ,,.,,,,,,,,,,., 204

Networks and rings

Boolean routing
M. Flammini, G. Gambosi, S. Sa/omone """""." ... "" ... " ... "" .. 219

Notes on sorting and counting networks
N. Hardavellas, D. Karakos, M. Mavronico/as , , .. , .. , ... ".234

A simple, efficient algorithm for maximum finding on rings
1. Higham, T. Przytycka , , , ' .. ' 249

Wang tilings and distributed orientation on a.nonymous torus networks
V,R.Syrotiuk, C] Colboum, J. Pachl ."."""".""" .. , , ... ",,, 264

Miscellaneous

Faimess of N-party synchronization and its implementation in a
distributed environment
C, Wu, G. v. Bochmann, M. Yao , .. ' . , . '. ' , . , , .. , , , , . , .. , , , , , . , ' .. , , ,279

Programming distributed reactive systems: a strong and weak
synchronous coupling
F, Boniol, M. Adelantado , .. ", .. " .. ,."",., .. , ,' .. , ... 294

Using message semantics to reduce rollback in the time warp mechanism
H. V, Leang, D. Agrawal, J.R. Agre , ... ""." " ,., .. ,." .. 309

List of Authors "",."",." , , , .. "" .. "." ",., .. ,. 325

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Efficient Wait-Free Implementation of a
Concurrent Priority Queue

Amos Israeli1 and Lihu Rappoport2

1 Faculty of Electrical Engineering, Technion, Israel
2 Faculty of Computer Science, Technion, Israel

Abstract. We present an efficient wait-free implementation of a concur­
rent priority-queue in the asynchronous shared memory computational
mode!. In this model each process runs at different speed and might be
subject to arbitrarily long delays. The new implementation is based on
the heap data structure in which the Insert and DeleteMin operations
are long - they take more than one atomic instruction to complete and
they leave the heap inconsistent until completed. The previous impie­
mentation requires copying the entire data-structure by each processes
every time it tries to perform an operation. Consequently its space and
time complexity are linear in the number of processes - p and in the
size of the data-structure - n. In the new implementation al! processes
operate directly on the shared copy of the data structure. Its time com­
plexity is O(plog n) and its space complexity is O(n). Moreovèr, the new
implementation is effectively paraI/el, meaning that al! processes can op­
erate effectively on the object, such that the throughput increases as the
number of pro cesses increases.

1 Introduction

In this paper we present a wait-free implementation for a concurrent priority
queue in the asynchronous shared memory mode!. We show that the new imple­
mentation is more efficient then the previously known implementations in spa ce,
time and processor utilization. Vve use the asynchronous shared memory com­
putational mode!. In this model a group of pro cesses communicate via shared
memory. Each process runs at a different speed, and might be subject to arbi­
trarily long delays. A concurrent object is a data structure residing in the shared
rnemory and accessible by sorne of the system pro cesses.

The traditional technique for irnplementing concurrent objects is by the use
of critical sections: ensuring that only one pro cess operates on the object at a
given time. The use of critical sections in asynchronous systems is problematic
in at least two ways:

1. If a process is delayed inside the cri tic al section, aIl the other processes
cannot make any progress.

2. At any given moment only one process can access the object. Thus a more
appropriate name for an object implemented using critical sections is a shared
object, rather than a concurrent object.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

A concurrent object implementation is nGnnblocking if it always guarantees that
some pro cess completes an operation in a bounded number of a steps. A con­
current object implementation is waii-free if it guarantees that each process
completes an operation within a bounded number of steps.

1.1 Related Work

The work on concurrent wait-free objects starts with the work of Peterson in
[15] and Lamport in [13, 14] on atomic registers, and continued with the work
on consensus objects [12, 6, 3, 4J. The work on data structures was initiated
by Herlihy in [7J where he defines a hîerarchy of concurrent objects snch that
there is no wait-free implementation of an object using only abjects lower in
the hierarchy. Herlihy shows that there exist universal objects whieh a!low for a
wait-free Implementation ofany concurrent object. This result however does not
relate to the efficiency of the Implementation. Anderson and 1'11011. in [5] show a
wait-free implementation for the Union-Find problem.

Herlihy in [8J introducesa general method for converting a sequential data
structure to a wait-free shared object. He uses the Load Linked and the Store
Condition al universal atomi<: primitives. As an example he impiements a priority­
queue using the heap data structure. The basic idea of Herlihy's method is as
follows: The shared object is pointedat by a shared pointer. To apply an oper­
ation to the shared object, process Pi reads the pointer using Load Linkedand
copies the object to a local copy in the shared memory. Then Pi applies the
operation sequentially to its local copy, and iinally it tries to swing the shared
pointer to point to its local copy, using Store Conditional. This Store Condi­
iional instruction succeeds only if the pointer was not changed by some other
process since it was last read by Pi by the Load Linked instruction. This method
yields a non-blocking implementation, and by using a technique called operation
combining, it is converted to be wait-free.
The method of [8J has three significant drawbacks:

1. A large amount of memory is needed (for the local copies), thus the space
complexity of an Implementation obtained using this method is at least p
times the space complexity of the sequential Implementation it is using,
where p is the number of thesystem's processes.

2. A. great dealof copying must be performed, thus the time complexityof an
implementation obtained uSlng this method is at Jeast linear in n, the size
of the data structure.

3. At any given moment, only one process can execute effective instructions.
Bach pro cess executes operations sequentially on its local copy, whieh IS
"locked" from other processes. Of ail overlapping trials, only one process
succeeds in making its local copy the new version of the concurrent object,
while the work done by allother processes IS wasted.

Thus any Implementation obtained by this method is inherently sequential:
If execution of sorne operation on the data structure by a single processor takes

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

time t, then execution of r operations takes time at least r . t, regardless of
how many pro cesses participate in executing the r operations. At any given
moment, at most one process can execute effective instructions. We define an
implementation to be effectively paraI/el if it has at least one execution in which
execution of r operations take less then r . t time.

Alemany and Felten in [2] reduce the excessive copying and wasteful work
in Herlihy's implementation by using information extracted by the operating
system to identify faulty or slow processes. By using the operating system' as an
oracle, the primary problem of the asynchronous model, that one process cannot
tell whether another process is halted, is avoided. However, the implementation
in [2] is still inherently sequential.

1.2 The Current Work

In this paper we present a wait-free implementation of a concurrent priority­
queue using a heap. A priority-queue supports two operations: Insert - adds an
item to the priority-queue, and DeieteMin - deletes the item with the highest
priority from the priority~queue and returns it. In the sequential implementation
the Insert and DeieteMin operations in a heap are long - they require more than
a single atomic instruction to complete and they leave the concurrent object
in an in consistent state until completed. For example, in an Insert operation,
the inserted item traverses the data structure, in a sort-like procedure, until
it reaches its proper location; as long as the item does not get to its proper
location, the heap is inconsistent. Long operations pose a problem in wait-free
implementations: a new operation may be started before a previous operation
is completed, so the data structure may be inconsistent while more than one
operation is in progress.

The new implementation improves upon the implementation of [8] in ail three
aspects mentioned above:

1. Its space complexity is linear in n, the number of items in the priority queue.
2. Its time complexity is loga1'ithmic in n, (though in the worst case it is still

linear in p).
3. It is effectively parallel.

The worst case bound for executing a set of l' Insert and DeleteMin operations
is at most O(prlog n) instructions (by ail processes together), compared with
O(p1'n) instructions using the implementation in [8] (n is the maximum number
of items in the priority-queue during execution of the l'operations). The space
complexity of the current implementation is O(n) memory locations, compared
with O(pn) in [8]. In the new implementation an operation may be started before
previous operations are completed while the object is inconsistent. Although the
object is not always consistent, the correctness holds.

An important complexity measure is the maximal number of memory words
accessed by a single atomic instruction in the implementation. It is easy to see
that if a process is allowed to execute read-modify-write instructions that access

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

unlimited number of memory words, there exists a simple and efficient trans­
formation for any sequential abject to a wait-free concurrentobject. Thus the
quality of an implementation should be evaluated also by the maximum number
of memory words accessed by a single atomic instruction in that implementa­
tiun. The new implementation uses atomic primitives that access at most two
memory words simultaneously.

The rest of the paper is organized as follows: In section 2 we describe the
computational model used. The wait~free implementation of the priority-queue is
constructed in two stages. In section 3 we present a non-blocking implementation
of 11 priority-queue. In section 4 we introduce a technique by which the non­
blocking implementation of the priority-queue can be made wait-free.

2 The Model

We use the asynchronous shared memory computational mode!. In: this model a
group of sequential pro cesses (or processors) communicate via shared memory.
The processes are asynchronous - there is no globalclock timing themj each
process runs at a different speed, and might be subject to arbitrarily long delays.
A process cannot tell whether another pro cess is halted or is running very slowly.
Ail of the instructions executed by the processes are atomic, meaning that they
seem to be executed in a certain point of time, such that no two instructions
are executed at the same moment, and that the instructions can be ordered. An
execution is an interleaving of the atomic instructions executed by the processes
in the system.

A concurrent. object is a data structure shared by concurrent processes. Each
object has a type, which defines a set of possible primitive operations and a set
of possible values for each operation. The primitive operations provide the only
means to manipulate the object. Each object has a sequential specification that
defines how the object behaves when its operations are invoked one at a time
(the sequence of responses ta each sequence of allowed operations). The execution
interval of an operation is the time interval between the operation invocation
and the corresponding response. In the sequel, the term instruction refers to an
instruction in the instruction set of the machine, and the term operation refers
to an operation defined on an object.

Intuitively, an implementation of a concurrent object A, is another concurrent
object J, sueh that the processes in the system cannot distinguish between A
and J. A concurrent implementation is said to be correct if for any sequence of
legal operations, for any Execution, it i8 possible to define an occurrence lime for
each operation, such that the following two conditions hoId:

1. The occurrence time of each operation is within itsexecution interval.
2. When the operations are ordered according to their occurrence times, the

- sequence of corresponding respoTIses agrees with the sequential specification
of the object.

This correctness condition, called linearizabiliiy, is denned in [IOJ.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

A concurrent object implementation is non-blocking if it always guarantees
that some process completes an operation within a bounded number of a steps.
A concurrent object implementation is wait-free if there exists a positive integer
k such that it is guaranteed that a proeess executes at most k instructions in
order to complete any operation defined on the object, regardless of the speed
of other pro cesses.

We use the following atomic primitives to access shared variables: Read, Write,
Load Linked (LL), Validate (VL) , Store Conditional (SC), Store Conditional
2 (SC2) and Store Conditional f3 Validate (SCf3V). Let x and y be shared
variables, and let a and b be local variables or values. We then define:

Read(x): Read the value of x.
- Write(x,a): Write the value a to x.
- LL(x): Read the value of x such that it may be subsequently used in combi-

nation with each of VL, SC, SCf3V and SC2.
VL(x): If x is not written since the last LL(x) instruction executed, return
SUCCESS, otherwise return FAILURE.
SC(x, a): If x is not written sinee the last LL(x) instruction executed, write
the value a to x and return SUCCESS, otherwise return FAILURE.

- SCf3V(x,a,y): If x and y are not written sinee the last LL(x) and LL(y)
instructions executed respectively, write the value a to x and return SUC­
CESS, otherwise return FAILURE.

- SC2(x,a,y,b): If x and y are not written sinee the last LL(x) and LL(y)
instructions executed respectively, write the value a to x, write the value b
to y and return SUCCESS, otherwise return FAILURE.

These primitives can be implemented using the transaction al memory scheme,
introdueed by Herlihy and Moss in [9]. Transactional memory allows to define
customized read-modify-write operations that access multiple, independently­
chosen words of memory. Primitives LL and SC are used in [8], VL is suggested
in [9], SC2 and SCf3V are the natural generalization of SC and VL for the case
of accessing two memory words simultaneously.

3 The Non-Blocking Implementation

A priority-queue supports two operations:

Inserl - If the priority-queue is not full, adds an item to the priority-queue and
returns SUCCESS, otherwise returns FAILURE.

DeieteMin - If the queue is not empty, deletes the item with the highest priority
from the priority-queue and returns that item. If the priority-queue is empty
returns FAILURE.

We use a heap to implement the priority-queue. A detailed description of
the heap data structure can be found in [1]. A heap is a complete binary tree,
in which each node has a value less than or equal to the values of its sons.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

This implies that for every node v, the values of al! nodes on the path from
v to the foot have values that are lees than or equal to v's value and that a
mot of a anysub-tree in the heap is the least of ail nodes in that sub-tree. A
heap implements a priorrty-queue sequentially with Insert and DeieieMin both
executedin O(logn), where n is the number of items in the priority-queue. Lower
values correspond to nodes \Vith higher priorities.

The heep is usuaUy implemented as an array Heap[LN] of locations, where
N is the maximum size of the priority-queue. Each location can hold anode.
Heap[l] is the root of the heap. The right 80n of the node in Heap[tl is in the
node in Heap[2i + IJ and the left SOli is the node in Heap[2i). The parent of the
node in Heap[i] ie the node in Heap[li/2JJ. A pointer Tail points at the first free
location in the heap (the leftmost vacant location in the last level of the heap).
Tail is initialized to 1.

Insert adds a node ta the heap by putting it in the location pointed at by
Tai/. Tail is then incremented by 1. FinaUy, the node is floated up along the
path from its entry location towards the root, in each step swappedwith its
parent, until it reaches a location where its parent's value is less than its own
value. if Tail= N when Inser! is called, Insert returns FAlIURE. DeleteMin
removes the root of the heap (which has the least value of al! thenodes in the
heap) and returns it. Then the rightmost node in the last level of the heap is
moved to the foot and Tail is decremented by 1. Finally, this node IS seeped
clown by repeated!y swapping it with its least son, until it reaclLes a location
where both its sons are greater than it. if when DeleteMin is called Tail= 1,
DeieieMili returns FAILURE. The Insert and DeleteMin procedures described
above ensure that the heap is always kept as a complete binary tree with depth
of O(logn), where n is the number of nodes in the heap.

3.1 The Data Structures Ànd The Routines

We use the following definitions: An ascending node ls anode that is in the
middle of being inserted: a location was seized for the uode, but the node has
not yet reached its correct location. The owner of an ascending node is the
process that initiated the Insert operation of that node. A descending node is
anode that has replaced a deleted foot and it is in the middle of being seeped
down frolll the mot, but has not yet reached its correct location. An independent
node is anode that is neither descending nor ascending.

We augment the data structure of the sequential implementation. Anode is
represented as a triplet (value, type,freeze). value is an integer which specifies
the node's priority (Iower values correspond to nodes with higher priorities).
value can be assigned two extra values, -00 and 00, where (X) denotesan empty
no de and -00 denotes a de!eted foot. type is UP for an ascending node, DaWN
fora descending node, and IND otherwise. freeze is a binary field that imple­
ments the freezing taken, whose role will be explained in the next subsection.
A node in the priority-queue can be in one of the foHowing forms (where '.,..'
stands for either TRUE or FAL3E): (oo,lND,-) - an empty node, (val, UP,-)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

- an ascending node, (val,DOWN,-) - a descending node, (vaI,IND,-) - anin­
dependent node, (-oo,IND,-) - a root that has been deleted. Heap[i] for i in
[l..N] is initiated to (oo,IND,FALSE). For convenience we hold an extra loca­
tion, Heap[O], which is initiated to (-oo,IND,-). Tail is a pair (pointer, freeze),
which is initialized to (1,FALSE). Roughly speaking, nodes are inserted to the
location pointed at by Tail.pointer.

The Insert operation (Figure 1) is implemented in two stages. First a location
is seized for the new node, using the SeizeTail procedure (Figure 1). Then, the
no de is floated up according to its priority, by calling the Float Up procedure
(Figure 2). The DeleteMin operation (Figure 3) is implemented by calling the
DeleteRoot procedure (Figure 3), which first gets an independent no de to the
root (ifneeded) and then deletes that node and returns it. The above routines use
the following subroutines: GetN onAsc (Figure 2) - gets to a specified location
a non-ascending node. GetNonDes (Figure 4) - gets to a specified location a
non-descending node. SwapRoot - finds a replacement no de for a deleted root
and replaces the deleted root with that replacement node. The algorithm for
SwapRoot can be found in [11]. .

3.2 Manipulating Tail - SeizeTail and SwapRoot

In this subsection we describe the parts of the algorithm that manipulate Tail.
These are SeizeTail and SwapRoot.

Seize Tail (Figure 1) works as follows: if Tail points at an empty location,
SeizeTail tries to swap that empty location with the new node, using SC - this
seizes the location. If however the location pointed at by Tail is not empty then
there are two possibilities: If Tail= N SeizeTail returns FAILURE, otherwise,
Tail is incremented and the whole process is repeated.

When a process that executes DeleteMin finds out that the root is already
deleted, it calls SwapRoot. SwapRoot works as follows: If Tail= 1 the deleted root
is swapped by an empty no de and SwapRoot returns. Otherwise, a replacement
for the deleted root must be found. As will be explained later on, the replacement
must be a non-ascending node. If Tail points at an empty location Tail must be
decremented. When Tail points at a non-empty location a non-ascending node
is brought to the location pointed at by Tail (using GetNonAsc, which will be
described later on). Finally, the no de is moved to the root, marked as descending,
and the location pointed at by Tail is made an empty location, by a single SC2
instruction.

There are two problems that have to be dealt with when manipulating Tail:

1. Tail must be incremented and decremented using a proto col that ensures
that no gaps will occur and that non-empty nodes will not be stepped over.

2. Tail may suffer from a ping-pong effect: A process that tries to insert anode
may increment Tail to point at an empty location, and just before it puts the
new node in the empty location, another process, that tries to find anode
to replace a deleted root, might decrement Tail to point at a non-empty
location, and so on.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

Insert(val)

t := Seize Toil(val);
if (t = FAILURE) then retarn (FAILURE);
F/oatUp(t, val);
return (SUCCESS);

SeizeTail(val)

whiIe (TRUE) do
t := LL(Tail);
eUT := LL(Heap[t.ptr]);
if (Empty(eur) and not Frozen(cur)) then

if (SC(Heap[t.ptr], (val, UP, FALSE)) then
return (t.ptr);

aIse if (Empty(eUT) and Frozen(eur)) then
SCêlV(Heap[t.ptr], (00, IND, FALSE), Tai/);

else if (t.ptr = N) then
return (FAILURE);

else if ((not Deleted(eur)) and (not Frozen(t))
and (not Frozen(c"r))) then

SCêlV(Tail, (t.ptT + 1, t.frz), Heap[t.ptr]);
else /* Frozen(t) or Deleted(cur) or */

1* (Frozen(cur) and (oot Empty(cur)) *f
SwapRootO;

endwhile

Fig. 1. The non-blocking algorithms for InscTt and Seize Tail

In order to solve the first problem we use the following mies: TlLil may be
increment only if it points at a non-empty location. Tail may be decrement only
if it points at an empty location. A new node can be put only at an empty
location.

The second problem is solved as follows: If there exists an operation on the
data structure that takes more than one atomic instruction, and must fiot be
interrupted until completed, the operation is frozen using a freezing token. The
operation is divided into steps, such that each step can be completed using asin­
gle atomic instruction. The pro cess that initiates the operation puts a token on
the memory location which is .tobe accessed by the first step. As the operation
progresses, the token is moved to the memory location that is to be accessed

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

by the next step. Writing to a memory location, removing the token from that
location and moving the token to next memory location, are ail executed by a
single Se2 instruction. When a process finds a memory location with its freez­
ing token on, it must complete the operation before it can write to this memory
location. The location of the freezing token enables the process to know what
is the current step of the opération. Writing to a memory location may also be
conditioned on another location not being frozen, by using an atomic instruction
that accesses both locations. In the last step, the token is removed. This tech­
nique enables a mode of operation which resembles locking in a non-blocking
implementation.

We now describe how the freezing token technique is used to prevent the·
ping-pong effect. When the root is deleted it is frozen, by setting its freeze
field to TRUE. SwapRoot first freezes Tail by setting Heap[l].freeze to FALSE
and Tail.freeze to TRUE by a single Se2 instruction (this moves the freezing
token from Heap[l] to Tail). If the frozen Tail points at an empty location, Tail
must be decremented. When Tail is decremented, the empty location pointed
at by Tail must be frozen, to prevent occupying this location. For this reason
we use Se2 to decrement Tail. When the frozen Tail points at a non-empty
location, the freezing token is moved from Tail to the non-empty location. Then
a non-ascending node is brought to the frozen location (using GetNonAsc, which
will be described later on). Finally, the no de is moved to the root, marked as a
descending node, its freeze field is set to off and the location pointed at by Tail
is made an empty location, by a single Se2 instruction. If a process that executes
Seize Tail observes a frozen Tail that points at a non-empty location, or a Tail
that points at a frozen non-empty location, the process cannot increment Tai/.
Since the pro cess also cannot wait for Tail or for the location to be defrosted, it
must cali SwapRoot to complete the operation.

Vnder the assumption that GetNonAsc is non-blocking, it can be shown that
SeizeTail and SwapRoot are non-blocking. A failure to complete SeizeTail or
SwapRoot in a certain iteration by sorne process, must be the result of another
process (executing either SeizeTail or SwapRoot) success. However, SeizeTail
and SwapRoot are not wait-free, since a process might suffer starvation: A process
that executes SeizeTail may fail for ever because each time it tries, another
process may be ahead ofit. The same is true for SwapRoot.

3.3 The FloatUp and GetNonAsc Procedures

When a location is seized for anode by SeizeTail, the no de is marked as ascend­
ing. Then, the no de is floated up towards the root by the FloatUp procedure
(Figure 2). Floating an ascending no de resembles bubble sort - in each step
FloatUp caUs GetNonAsc (Figure 2), where the ascending no de is compared
with its parent, and the two of them are swapped if the ascending node's value
is less than its parent 's value. Swapping the nodes is executed using the Se2
primitive, which ensures that the swapped nodes are reaUy those meant to be
swapped.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

FloatUp(t, vetl)

whlle (TRUE) do
eUT:= LL(Heap[tl);

10

if((eur.val = val) and Asc(cur)) then
t := GetNonAse(t,eur);

eIse if((euT.val .$ val) and (euT.type = IND)) then
return (SUCCESS);

else
t := parente t);

endwhile

GetNonAse(t, eur)

whlle (Asc(euT)) do
par := LL(Heap[parent(t)]);

if (par. type = IND) then
if (par. val .$ eur.val) then !* make CU! independent *i

if (SC(Heap[t], (cur.val,IND,cur.fTz)) then
break;

else / * swap CUI and par *1
if (SC2(Heap[t], (par. val, IND, cur.frz),

Heap[pareni(t)], (eur.val, UP, par.frz)) then
t :'? parent(t); break;

else if Des(par) then
if (GetNonDes(parent(t),par) = i) then

t := parent(t); break;

else /* Asc(par) *1
GetN onAsc(parent(t),par);

cur := LL(Heap[t]);

end whlle

return (t);

Fig.2. The non-b!ocking a1gorithrns for FloatUp and GetNonAsc

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

11

The owner of node v, Pi, floats v up until v's parent is an independent no de
with value less than v's value. Pi then makes v independent and returns. An
independent node satisfies the property that ail the non-descending nodes on
the path from it to the root have values less than or equal to its own value.

If Pi observes that v's parent, u, is a descending node, Pi caUs GetNonDes
(Figure 4) which either seeps u one location down, or makes u independent.
GetNonDes is described in the next subsection. If Pi observes that v's part;nt, u,
is an ascending node, it cannot make v independent, even if u's value is less than
v's value, since there may still be nodes in the path from u to the root with values
greater than v's value. Neither can Pi swap v and u, since this would cause u
to move down and as will be understood from the next paragraph, an ascending
no de must not move down. Moreover, Pi cannot wait for u to be floated up by
u's owner. Therefore, Pi floats u one location up, or makes u independent, by
calling GetN onAsc recursively.

Since one process may float anode owned by another process, a process
may lose its node. The owner Pi of node v must not return before v is made
independent and the Insert(v) operation is completed. Therefore, if Pi loses v,
Pi locates v by scanning the path from the last location it observed v, towards
the root, until it reaches the first independent node with value less than or
equal to v's value. Since an ascending node can only move upwards, if v is not
located, it must have been made independent and even might have been deleted
from the priority-queue. If v is not located or if it is found to be independent,
Float Up returns. This also explains why an ascending no de cannot be used as a
replacement for a deleted root: locating it would cost O(n) time.

Vnder the assumption that GetNonDes is non-blocking, it can be shown
that FloatUp and GetNonAsc are non-blocking as weil. However, FloatUp and
GetNonAsc are not wait-free, since an ascending node's parent may change again
and again as an infinite number of ascending and descending nodes move by the
no de (and as was explained, an ascending node can be made independent only if
its parent is an independent node, whose value is less than the ascending node's
value).

3.4 DeieteRoot and GetNonDes

A process that executes DeieteRoot (Figure 3) acts according to the type of the
root. An independent node: deletes the root and returns it. An ascending node:
caUs GetNonAsc(l). A descending node: caUs GetNonDes(l). A deleted node:
caUs SwapRoot to find a replacement for the root (which will be seeped down
later on). An empty node: returns FAILURE.

GetNonDes (Figure 4) gets to a specified location a non-ascending node.
First, GetN onDes makes sure that both sons of the specified location are non­
descending (by calling GetNonDes recursively for each of the sons, if needed).
Then, GetN onDes repeatedly tries to either make the node in the specified lo­
cations to be independent (if it is less than both its sons), or to swap the no de
in the specified location with its least son (otherwise).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

12

DeleteMinO
return (DeleteRoot());

DeleteRootO

while (TRUE) do
l'Dot := LL(Heap[l]);
case root of

Incl:
Empty:
Asc:
Des:
Deleted:

end case
end while

if (SC(Heap[l], (-oo,JND, TRUEl)) then return (root.val);
return (FAILURE);
SC(Heap[l], (root.val, IND, root.fTZ));
GetNonDes(l,root);
SwapRootO;

Fig. 3. The non-blocking algorithm for DeieteMin

3.5 Correctness Proof

We define the occurrence time of an lnsert(v) operation as the time v was made
independent. We define the occurrence time of a DeieieMin operation as the
time the foot is de!eted for that operation. The correctness is implied by the
following lemmas:

Lemma 1. Locations are seized in arder - with no gaps and without stepping
over non-empfy locations.

Lemma2. SeizeTail(v) returns a value t other than FAILURE iffthe location
Heap[t] is seized for v. IfSeizeTail(v)returns FAILURE then there exists a time
within the Execution interval of SeizeTaii in which the heap is full.

Lemma 3. An ascending node can only move up and a descending nade can
only move down.

Corollary: An ascending no de cannot be passed by another ascending node
and a descending node cannat be passed by another descending node.

Lemma 4. Any non-ascending node v satisfies that eaeh of the independent
nodes on the pa th from v ta the root has a value that is less than or cqual to v's
value and eaeh of the ascending nodes on the pathfrom v ta the root has a value
that is strictly less th an v's value.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

13

GetN onDes (t, eur)

1 := left(t);
r := right(t);

while (Des(cur» do

/* CalI GetNonDes recursively to make sure both sons are non-descending. */
Ison := LL(Heap[I]);
if Des(lson) then GetNonDes(I,lson);
rson := LL(Heap[r]);
if Des(rson) then GetNonDes(r,rson);

while (VL(Heap[t]) do

Ison := LL(Heap[l]);
rson := LL(Heap[r]);
if ((lson.val < eur.val) or (rson.val < eur.val)) then
/* One of eur's sons is less than eur - swap eur with its least son. */

if ((Ison.val < rson.val) or «(lson.val = rson.val) and Ind(lson») then
if (SC2(Heap[t], (Ison.val, Ison.type, eur.frz),

Heap[l], (eur.val, eur.type, Ison.frz») then
return (1);

else

else

if (SC2(Heap[t], (rson.val, rson.type, eur.frz),
Heap[r], (eur.val, eur.type, rson.frz») then

return (r);

/* eur is less than both its sons - make eur independent. */
if (SC(Heap[t],(eur.val,lND,eur.frz») then

return (t);

end while
eur := LL(Heap[t]);

endwhile
return (t);

Fig. 4. The non-blocking algorithm for GetNonDes

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

14

Lemma 5. Let v be an ascending node fast observed by proceSB P; in location x.
If Pi faila to locate anode with the same value as v by scanning the path from x
to the root, then v must have already bem made independent.

Lemma 6. Let Pi be the owner of node v. If Pi returns SUCCESS from In­
sert(v), v has alreadll been made independent. If Pi returns FAILURE from In­
sert(v), then a [ellal occurrence time (within the execution interval of the Insert
operation) in which the heap was Jull, can be defined. '

Corollary: The occurrence time of inserting a node v, can be defined as the
time v was made independent.

Lemma 7. Let v be anode returned by process Pi ihat executes DeleteMîn. v
is then the node with the least value o/all nodes in the priority-queue that were
inser/ed before v was deleicd (and that have not been deleted from thepriority­
queue before v was deleted). If however Pi returns FAILURE !rom DeleteMin,
then a legal occurrence time (within the execution interval of the DeleteMin
operation) in which the heap was empty, can be defined.

Lemma 8. The algorithm is non-blocking: Under the assumption thai at any
given time, eventually some process executes an instructions, at any given lime,
eventuallyan operation initiated hy sorne process is completed.·

3.6 Time And Space Complexity Analysis

In this section we briefiy sketch the time complexity analysis for executing a set
of r Inser/ and DeleteMin operations. Let n be the maximum number of nodes
in the heap during the execution of the. r operations. We define a step of node v
as the event of v moving one location (from parent to son or fromson to parent).
Since an ascending node can only move up, it can step at most logn steps. In
the same way, a descending node cali step at most log n steps as weil. The time
complexity is computed using the following lemma:

Lemma 9. Any iteration consisting of 0(1) instructions, whick is executed in
Ilny of the subroutines, can be credited to one of the following events, suck that
ai most 0(1) iterations, eucuted by a specifie process, are credited to the same
event: Asiep of a non-independent node, seizing Il location for a new node,
deleting the root and making a node ta be independent.

In a set ofr operations there are at most O(rlogn) steps ofnon-icndependent
nodes and ai most 0(1') events of seizing locations for new nodes, deleting the
root and making nodes to be independent. Together we get a total of at most
O(riog11.) events. Sinee in a set of l' operations there are at most O(rlogn)
events, each one of them ls credited for at most 0(1) iterations cOIlsisting of
0(1) instructions, executed by a specifie process, then each proCeSs can ex.ecute
at most 0(1' logn) instructions. Therefore al! processes together execute at most
O(pr log 11.) instructions during the set of l'operations.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

15

4 The Wait-Free Implementation

The non-blocking implementation can be made wait-free, by a technique pre­
sented in this section. The technique is inspired by the operation combining
technique [8]. However, operation combining suffers from ail the disadvantages
described earlier, since each process operates on a local copy of the shared object.

4.1 Making the Non-Blocking Implementation Wait-Free

We hold a shared array Req[l..p], where p is the number of processes, called the
shared request array. We also hold, for each process Pi, an array Loca/Reqi [l..p],
called P;'s local request array. Ali the entries in the shared request array are
initialized to astate that denotes that there is no pending request.

Before executing an operation (e.g. seizing a location for a new node), Pi
issues a request for that operation in Req[ll Pi then copies Req[l..p]to Loca/Reqi,
and tries to execute each one of the requests registered in Loca/Reqi, until ail
of them are fulfilled (either by Pi, or by sorne other process). Requests may be
fulfilled not in the order in which they were issued; the correctness, however, is
not violated, since each request is fulfilled within the execution interval of the
corresponding operation.

When Pi fulfills a request issued by pro cess Pj, Pi marks the request as
fulfilled in Req[j]. This enables the other pro cesses (and Pj in particular) to
learn that the request had been fulfilled and that they can move on. Pi must
not mark the request as fulfilled be/ore it had fulfilled the request, because it
might fail executing the request or it might even hait. Pi must also not mark the
request as fulfilled after it had fulfilled the request, since other processes might
try to fulfill the request before Pi marks it as fulfilled, and then the request might
be fulfilled more than once (e.g. more than one location seized for the same new
node). Therefore, both executing a request and marking the request as fulfilled
in Req[j] must be done simultaneously, by a single atomic instruction. In case
fulfilling a request in the non-blocking algorithm uses a single SC instruction,
this is performed by a single Se2 instruction in the wait-free algorithm which
replaces the SC instruction the non-blocking algorithms.

Measures must be taken to ensure that after a request is fulfilled, a process
that tries to fulfill that request continues to execute only a bounded number
of instructions before it learns that the request had been fulfilled (and returns).
One way to do this is to augment ail the loop-conditions to check that the request
is not fulfilled yet.

4.2 Proving that the Technique Yields a Wait-Fl.'ee Implementation

We now show that this technique yields a wait-free implementation. Let t1 be
the time in which Pi finishes copying Req[l..p] and let t2 be the time in which ail
the requests registered in LocalReqi are fulfilled. The number of requests fulfilled
by ail processes together within the interval [t1, t2] is bounded by 2p - 1:

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

16

At most p unfulfiHed requests that were issued befme fi (registered in Req[1..p]
in 11)'
At most p - 1 requests that are issued within [tI, t2]: Ail the requests reg­
istered in LocalReq; that are not fulfilled, are still regisiered in Req[l..p]. A
process Pj that issues a request within [t1, t2J observes these pending re­
quests in Req, copies them to LocalRelJj and does not issue another request
befme these requests are fulfilled.

It can be proved that the algorithm to fulfill a request (e.g. Seize Tail) is
still non-blocking. Since .the number of the requests that can be executed within
[h, t2] is bounded, since the algorithm to fulfill a request is non-blocking, and
sinee after a request is fulfilled a process that tries to fulfill that request continues
to executes a bounded number of instructions befme it learns that the request
had been fulfilled, we get a wait-free implementation. It can be proved that the
correctness for is not violated. The wait-free algorithme are described with detail
in [I1J.

4.3 Complexity Analysis and Performance

The time complexity for executing a set of r Inseri and DeieieMin operations in
the wait-free implementation is o (rp(p + logn)), which is the sum ofD(rp log n)
(the corresponding time complexity for the non-blocking implementation) and
O(rp2) (the extra work for scanning the requests arrays). This time complexity is
compared with O(rp(p+n)) in [8]. The space complexity is O(n+p2), compared
with O«n + p)p) in [8].

Making the implementation wait-free degrades overall system performance.
Therefore, if the wait..free property is not required, the non-blocking implemen­
tation should be generally preferred over a wait-free implementation. If the wait..
free property is required, the level of wait-freedom can be controlled, by having
a pro cess copy the requests array and trying to fulfill the requests registered
there only after. sorne constant number, k, of requests it had fulfil!ed for itself.
With k = 1 we get the current wait-free Implementation. With k = 00 we get
the current non-blocking Implementation.

5 Conclusions

The primary problems that have to be dealt with in an effectively paraUel wait­
free Implementation of a concurrent object are:

- An operation on the object may be started before previous operations are
completed, so the object may be in an in consistent state while more than
one operation i8 in progresses.
There may exist parts of an operation on the object that take more than
one atomic instruction and must not be interrupted until completed.

We have presented three generaI techniques that may be used in converting
a sequential object to a wait-free, effectively parallel, concurrent object:

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

17

Marking words in memory as consistent (independent) or inconsistent (non­
independent).
The use of a freezing token.
A technique for converting a non-blocking implementation to a wait-free one.

Using these techniques, we have presented a time and space efficient, effec-
tively parallel, wait-free implementation of a concurrent priority-queue, based on
a heap data structure. It would be interesting to find a lower bound of wait-free
implementations of a concurrent priority-queue, given the set of allowed atomic
primitives.

References

1. A. V. Aho, J.E. Hopcroft, J. D. Ullman. Data Structures and Algorithms. pages
139-145.

2. J. Alemany, E. W. Felten. Performance Issues in Non-blocking Synchronization on
Shared-memory Multiprocessors. In Proceedings of the llth ACM Symposium on
Princip/es of Distributed Computing, pages 124-134, August 1992.

3. Aspnes J. and M. Herlihy, Fast Randomized Consensus Using Shared Memory,
Jour. of A/gorithms, Vol. 11, pages 441-461, September 1990.

4. J. Aspnes, Time- and Space-Efficient Randomized Consensus, Proceedings of the
9th ACM Conference on Princip/es of Distributed Computing, August 1990, pages
325-331.

5. R. J. Anderson, H. Wollo Wait-Free parallel algorithms for the union-find problem.
In Proceedings of the 23rd ACM Symposium on Theory of Computation, pages
370-380, May 1991.

6. B. Chor, A. Israeli, and M. Li, "On Processors Coordination Using Asynchronous
Hardware, Proceedings of the 6th A CM Conference on Princip/es of Distributed
Computing, pages 86-97, August 1987.

7. M. P. Herlihy. Impossibility and universality results for wait-free synchronization.
In Seventh ACM SIGACT-SIGOPS Symposium on Princip/es of Distributed Com­
puting, August 1988.

8. M. P. Herlihy. A methodology for implementing highly concurrent data structures.
DEC Cambridge Research Lab Technical report 91/10.

9. M. P. Herlihy, J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. DEC Cambridge Research Lab Technical report 92/7.

10. M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent
objects. In ACM TOPLAS, 12(3):463-492, 1990.

11. A. Israeli and L. Rappoport, Efficient Wait-Free Implementation of a Concurrent
Priority Queue. Tehnion, Faculty of Computer Science, Technical report 781.

12. Loui M. C. and H. H. Abu-Amara, Memory Requirements for Agreement among
U nreliable Asynchronous Processes, Advances in Computing Research, JAl press,
1987, pages 163-183.

13. 1. Lamport, "On Interprocess Communication. Part 1: Basic Formalism", Dis­
tributed Computing 1, 2 1986, pages 77-85.

14. L. Lamport, "On Interprocess Communication. Part II: Algorithms", Distributed
Computing 1, 2 1986, pages 86-101.

15. G.L. Peterson, Concurrent reading while writing, ACM Transactions on Program­
ming Languages and Systems, Vol. 5, No. 1, pages 46-55.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

