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Preface 

The SEVENTH INTERNATIONAL WORKSHOP ON DISTRIBUTED ALGORITHMS 
(WDAG 93) was held September 27-29 in Lausanne, Switzerland (more pre­
cisely in Les Diablerets, a village located near Lausanne). The workshop followed 
six successive workshops held in Ottawa (1985, proceedings published by Car­
leton University Press), Amsterdam (1987, proceedings published by Springer 
Verlag, LNCS 312), Nice (1989, LNCS 392), Bari (1990, LNCS 484), Delphi 
(1991, LN CS 579) and Haifa (1992, LNCS 647). The WDAG provides an inter­
national forum for the presentation of new research results and the identification 
of future research directions in the area of distributed algorithms. 

Submissions were solicited in ail areas of distributed algorithms and their 
applications, including distributed algorithms for control and communication, 
fault-tolerant distributed algorithms, network protocols, algorithms for manag­
ing replicated data, proto cols for real-time distributed systems, issues of asyn­
chrony, synchrony and real-time, mechanisms for security in distributed systems, 
techniques for the design and analysis of distributed algorithms, distributed 
database techniques, distributed combinatorial and optimization algorithms, and 
distributed graph algorithms. 

A total of 72 papers were received within the submission deadline (33 submis­
sions from Europe, 29 from North America, 6 from the Middle East, 3 from the 
Far East, and 1 from Australia). The Program Committee wishes to thank ail 
the authors who submitted papers for consideration. Out of the 72 submissions 
the Program Committee was able to select the 22 papers appearing in these pro­
ceedings (6 from Europe, 13 from North America, and 3 from the Middle East). 
The selection was based on originality and quality. Relevance of the papers to 
the field of distributed computing was also considered carefully. 

The Program Committee was composed of: 

D. Dolev (Hebrew U. and IBM Almaden) M. Herlihy (DEC CRL) 
G. Le Lann (INRIA, Paris) K. Marzullo (Cornel! U. and 
F. Mattern (U. of Saarland) UC San Diego) 
M. Merritt (AT&T) M. Raynal (IRISA, Rennes) 
A. Schiper (chair, EPF Lausanne P. Spirakis (CTI and Patras U.) 

and Cornell U.) J. van Leeuwen (U. of Utrecht) 
J. Welch (Texas A&M U.) S. Zaks (Technion, Haifa) 

1 wish to thank ail the members of the Program Committee and ail the refer­
ees who assisted them for their careful reviewing carried out within a very short 
period of time. My thanks go also to Alain Sandoz for his excellent organization 
of the Workshop, and for his smooth handling of the submitted and accepted 
papers. 

For the first time this year, a tutorial was organized during the Workshop. 
The title of the tutorial was Specifications and Algorithms for Fault- Tolerant 
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VI 

Broadcasts - A Modula,.. Approaeh. It ;vas presented by Sam Toueg from Cornell 
University. The idea in combining a tutorial with research papers was to attract 
young researchers to the Workshop, and hopefully to the field of distributed 
algorithms. Financial support for the tutorial was provided by the Sème Cycle 
Romand d'Informatique, for which we are gratefuI. 

Lausanne, September 1993 André Schiper 
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Efficient Wait-Free Implementation of a 
Concurrent Priority Queue 

Amos Israeli1 and Lihu Rappoport2 

1 Faculty of Electrical Engineering, Technion, Israel 
2 Faculty of Computer Science, Technion, Israel 

Abstract. We present an efficient wait-free implementation of a concur­
rent priority-queue in the asynchronous shared memory computational 
mode!. In this model each process runs at different speed and might be 
subject to arbitrarily long delays. The new implementation is based on 
the heap data structure in which the Insert and DeleteMin operations 
are long - they take more than one atomic instruction to complete and 
they leave the heap inconsistent until completed. The previous impie­
mentation requires copying the entire data-structure by each processes 
every time it tries to perform an operation. Consequently its space and 
time complexity are linear in the number of processes - p and in the 
size of the data-structure - n. In the new implementation al! processes 
operate directly on the shared copy of the data structure. Its time com­
plexity is O(plog n) and its space complexity is O(n). Moreovèr, the new 
implementation is effectively paraI/el, meaning that al! processes can op­
erate effectively on the object, such that the throughput increases as the 
number of pro cesses increases. 

1 Introduction 

In this paper we present a wait-free implementation for a concurrent priority 
queue in the asynchronous shared memory mode!. We show that the new imple­
mentation is more efficient then the previously known implementations in spa ce, 
time and processor utilization. Vve use the asynchronous shared memory com­
putational mode!. In this model a group of pro cesses communicate via shared 
memory. Each process runs at a different speed, and might be subject to arbi­
trarily long delays. A concurrent object is a data structure residing in the shared 
rnemory and accessible by sorne of the system pro cesses. 

The traditional technique for irnplementing concurrent objects is by the use 
of critical sections: ensuring that only one pro cess operates on the object at a 
given time. The use of critical sections in asynchronous systems is problematic 
in at least two ways: 

1. If a process is delayed inside the cri tic al section, aIl the other processes 
cannot make any progress. 

2. At any given moment only one process can access the object. Thus a more 
appropriate name for an object implemented using critical sections is a shared 
object, rather than a concurrent object. 
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A concurrent object implementation is nGnnblocking if it always guarantees that 
some pro cess completes an operation in a bounded number of a steps. A con­
current object implementation is waii-free if it guarantees that each process 
completes an operation within a bounded number of steps. 

1.1 Related Work 

The work on concurrent wait-free objects starts with the work of Peterson in 
[15] and Lamport in [13, 14] on atomic registers, and continued with the work 
on consensus objects [12, 6, 3, 4J. The work on data structures was initiated 
by Herlihy in [7J where he defines a hîerarchy of concurrent objects snch that 
there is no wait-free implementation of an object using only abjects lower in 
the hierarchy. Herlihy shows that there exist universal objects whieh a!low for a 
wait-free Implementation ofany concurrent object. This result however does not 
relate to the efficiency of the Implementation. Anderson and 1'11011. in [5] show a 
wait-free implementation for the Union-Find problem. 

Herlihy in [8J introducesa general method for converting a sequential data 
structure to a wait-free shared object. He uses the Load Linked and the Store 
Condition al universal atomi<: primitives. As an example he impiements a priority­
queue using the heap data structure. The basic idea of Herlihy's method is as 
follows: The shared object is pointedat by a shared pointer. To apply an oper­
ation to the shared object, process Pi reads the pointer using Load Linkedand 
copies the object to a local copy in the shared memory. Then Pi applies the 
operation sequentially to its local copy, and iinally it tries to swing the shared 
pointer to point to its local copy, using Store Conditional. This Store Condi­
iional instruction succeeds only if the pointer was not changed by some other 
process since it was last read by Pi by the Load Linked instruction. This method 
yields a non-blocking implementation, and by using a technique called operation 
combining, it is converted to be wait-free. 
The method of [8J has three significant drawbacks: 

1. A large amount of memory is needed (for the local copies), thus the space 
complexity of an Implementation obtained using this method is at least p 
times the space complexity of the sequential Implementation it is using, 
where p is the number of thesystem's processes. 

2. A. great dealof copying must be performed, thus the time complexityof an 
implementation obtained uSlng this method is at Jeast linear in n, the size 
of the data structure. 

3. At any given moment, only one process can execute effective instructions. 
Bach pro cess executes operations sequentially on its local copy, whieh IS 
"locked" from other processes. Of ail overlapping trials, only one process 
succeeds in making its local copy the new version of the concurrent object, 
while the work done by allother processes IS wasted. 

Thus any Implementation obtained by this method is inherently sequential: 
If execution of sorne operation on the data structure by a single processor takes 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T
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time t, then execution of r operations takes time at least r . t, regardless of 
how many pro cesses participate in executing the r operations. At any given 
moment, at most one process can execute effective instructions. We define an 
implementation to be effectively paraI/el if it has at least one execution in which 
execution of r operations take less then r . t time. 

Alemany and Felten in [2] reduce the excessive copying and wasteful work 
in Herlihy's implementation by using information extracted by the operating 
system to identify faulty or slow processes. By using the operating system' as an 
oracle, the primary problem of the asynchronous model, that one process cannot 
tell whether another process is halted, is avoided. However, the implementation 
in [2] is still inherently sequential. 

1.2 The Current Work 

In this paper we present a wait-free implementation of a concurrent priority­
queue using a heap. A priority-queue supports two operations: Insert - adds an 
item to the priority-queue, and DeieteMin - deletes the item with the highest 
priority from the priority~queue and returns it. In the sequential implementation 
the Insert and DeieteMin operations in a heap are long - they require more than 
a single atomic instruction to complete and they leave the concurrent object 
in an in consistent state until completed. For example, in an Insert operation, 
the inserted item traverses the data structure, in a sort-like procedure, until 
it reaches its proper location; as long as the item does not get to its proper 
location, the heap is inconsistent. Long operations pose a problem in wait-free 
implementations: a new operation may be started before a previous operation 
is completed, so the data structure may be inconsistent while more than one 
operation is in progress. 

The new implementation improves upon the implementation of [8] in ail three 
aspects mentioned above: 

1. Its space complexity is linear in n, the number of items in the priority queue. 
2. Its time complexity is loga1'ithmic in n, (though in the worst case it is still 

linear in p). 
3. It is effectively parallel. 

The worst case bound for executing a set of l' Insert and DeleteMin operations 
is at most O(prlog n) instructions (by ail processes together), compared with 
O(p1'n) instructions using the implementation in [8] (n is the maximum number 
of items in the priority-queue during execution of the l'operations). The space 
complexity of the current implementation is O(n) memory locations, compared 
with O(pn) in [8]. In the new implementation an operation may be started before 
previous operations are completed while the object is inconsistent. Although the 
object is not always consistent, the correctness holds. 

An important complexity measure is the maximal number of memory words 
accessed by a single atomic instruction in the implementation. It is easy to see 
that if a process is allowed to execute read-modify-write instructions that access 
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unlimited number of memory words, there exists a simple and efficient trans­
formation for any sequential abject to a wait-free concurrentobject. Thus the 
quality of an implementation should be evaluated also by the maximum number 
of memory words accessed by a single atomic instruction in that implementa­
tiun. The new implementation uses atomic primitives that access at most two 
memory words simultaneously. 

The rest of the paper is organized as follows: In section 2 we describe the 
computational model used. The wait~free implementation of the priority-queue is 
constructed in two stages. In section 3 we present a non-blocking implementation 
of 11 priority-queue. In section 4 we introduce a technique by which the non­
blocking implementation of the priority-queue can be made wait-free. 

2 The Model 

We use the asynchronous shared memory computational mode!. In: this model a 
group of sequential pro cesses (or processors) communicate via shared memory. 
The processes are asynchronous - there is no globalclock timing themj each 
process runs at a different speed, and might be subject to arbitrarily long delays. 
A process cannot tell whether another pro cess is halted or is running very slowly. 
Ail of the instructions executed by the processes are atomic, meaning that they 
seem to be executed in a certain point of time, such that no two instructions 
are executed at the same moment, and that the instructions can be ordered. An 
execution is an interleaving of the atomic instructions executed by the processes 
in the system. 

A concurrent. object is a data structure shared by concurrent processes. Each 
object has a type, which defines a set of possible primitive operations and a set 
of possible values for each operation. The primitive operations provide the only 
means to manipulate the object. Each object has a sequential specification that 
defines how the object behaves when its operations are invoked one at a time 
(the sequence of responses ta each sequence of allowed operations). The execution 
interval of an operation is the time interval between the operation invocation 
and the corresponding response. In the sequel, the term instruction refers to an 
instruction in the instruction set of the machine, and the term operation refers 
to an operation defined on an object. 

Intuitively, an implementation of a concurrent object A, is another concurrent 
object J, sueh that the processes in the system cannot distinguish between A 
and J. A concurrent implementation is said to be correct if for any sequence of 
legal operations, for any Execution, it i8 possible to define an occurrence lime for 
each operation, such that the following two conditions hoId: 

1. The occurrence time of each operation is within itsexecution interval. 
2. When the operations are ordered according to their occurrence times, the 

- sequence of corresponding respoTIses agrees with the sequential specification 
of the object. 

This correctness condition, called linearizabiliiy, is denned in [IOJ. 
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A concurrent object implementation is non-blocking if it always guarantees 
that some process completes an operation within a bounded number of a steps. 
A concurrent object implementation is wait-free if there exists a positive integer 
k such that it is guaranteed that a proeess executes at most k instructions in 
order to complete any operation defined on the object, regardless of the speed 
of other pro cesses. 

We use the following atomic primitives to access shared variables: Read, Write, 
Load Linked (LL), Validate (VL) , Store Conditional (SC), Store Conditional 
2 (SC2) and Store Conditional f3 Validate (SCf3V). Let x and y be shared 
variables, and let a and b be local variables or values. We then define: 

Read(x): Read the value of x. 
- Write(x,a): Write the value a to x. 
- LL(x): Read the value of x such that it may be subsequently used in combi-

nation with each of VL, SC, SCf3V and SC2. 
VL(x): If x is not written since the last LL(x) instruction executed, return 
SUCCESS, otherwise return FAILURE. 
SC(x, a): If x is not written sinee the last LL(x) instruction executed, write 
the value a to x and return SUCCESS, otherwise return FAILURE. 

- SCf3V(x,a,y): If x and y are not written sinee the last LL(x) and LL(y) 
instructions executed respectively, write the value a to x and return SUC­
CESS, otherwise return FAILURE. 

- SC2(x,a,y,b): If x and y are not written sinee the last LL(x) and LL(y) 
instructions executed respectively, write the value a to x, write the value b 
to y and return SUCCESS, otherwise return FAILURE. 

These primitives can be implemented using the transaction al memory scheme, 
introdueed by Herlihy and Moss in [9]. Transactional memory allows to define 
customized read-modify-write operations that access multiple, independently­
chosen words of memory. Primitives LL and SC are used in [8], VL is suggested 
in [9], SC2 and SCf3V are the natural generalization of SC and VL for the case 
of accessing two memory words simultaneously. 

3 The Non-Blocking Implementation 

A priority-queue supports two operations: 

Inserl - If the priority-queue is not full, adds an item to the priority-queue and 
returns SUCCESS, otherwise returns FAILURE. 

DeieteMin - If the queue is not empty, deletes the item with the highest priority 
from the priority-queue and returns that item. If the priority-queue is empty 
returns FAILURE. 

We use a heap to implement the priority-queue. A detailed description of 
the heap data structure can be found in [1]. A heap is a complete binary tree, 
in which each node has a value less than or equal to the values of its sons. 
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This implies that for every node v, the values of al! nodes on the path from 
v to the foot have values that are lees than or equal to v's value and that a 
mot of a anysub-tree in the heap is the least of ail nodes in that sub-tree. A 
heap implements a priorrty-queue sequentially with Insert and DeieieMin both 
executedin O(logn), where n is the number of items in the priority-queue. Lower 
values correspond to nodes \Vith higher priorities. 

The heep is usuaUy implemented as an array Heap[LN] of locations, where 
N is the maximum size of the priority-queue. Each location can hold anode. 
Heap[l] is the root of the heap. The right 80n of the node in Heap[tl is in the 
node in Heap[2i + IJ and the left SOli is the node in Heap[2i). The parent of the 
node in Heap[i] ie the node in Heap[li/2JJ. A pointer Tail points at the first free 
location in the heap (the leftmost vacant location in the last level of the heap). 
Tail is initialized to 1. 

Insert adds a node ta the heap by putting it in the location pointed at by 
Tai/. Tail is then incremented by 1. FinaUy, the node is floated up along the 
path from its entry location towards the root, in each step swappedwith its 
parent, until it reaches a location where its parent's value is less than its own 
value. if Tail= N when Inser! is called, Insert returns FAlIURE. DeleteMin 
removes the root of the heap (which has the least value of al! thenodes in the 
heap) and returns it. Then the rightmost node in the last level of the heap is 
moved to the foot and Tail is decremented by 1. Finally, this node IS seeped 
clown by repeated!y swapping it with its least son, until it reaclLes a location 
where both its sons are greater than it. if when DeleteMin is called Tail= 1, 
DeieieMili returns FAILURE. The Insert and DeleteMin procedures described 
above ensure that the heap is always kept as a complete binary tree with depth 
of O(logn), where n is the number of nodes in the heap. 

3.1 The Data Structures Ànd The Routines 

We use the following definitions: An ascending node ls anode that is in the 
middle of being inserted: a location was seized for the uode, but the node has 
not yet reached its correct location. The owner of an ascending node is the 
process that initiated the Insert operation of that node. A descending node is 
anode that has replaced a deleted foot and it is in the middle of being seeped 
down frolll the mot, but has not yet reached its correct location. An independent 
node is anode that is neither descending nor ascending. 

We augment the data structure of the sequential implementation. Anode is 
represented as a triplet (value, type,freeze). value is an integer which specifies 
the node's priority (Iower values correspond to nodes with higher priorities). 
value can be assigned two extra values, -00 and 00, where (X) denotesan empty 
no de and -00 denotes a de!eted foot. type is UP for an ascending node, DaWN 
fora descending node, and IND otherwise. freeze is a binary field that imple­
ments the freezing taken, whose role will be explained in the next subsection. 
A node in the priority-queue can be in one of the foHowing forms (where '.,..' 
stands for either TRUE or FAL3E): (oo,lND,-) - an empty node, (val, UP,-) 
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- an ascending node, (val,DOWN,-) - a descending node, (vaI,IND,-) - anin­
dependent node, (-oo,IND,-) - a root that has been deleted. Heap[i] for i in 
[l..N] is initiated to (oo,IND,FALSE). For convenience we hold an extra loca­
tion, Heap[O], which is initiated to (-oo,IND,-). Tail is a pair (pointer, freeze), 
which is initialized to (1,FALSE). Roughly speaking, nodes are inserted to the 
location pointed at by Tail.pointer. 

The Insert operation (Figure 1) is implemented in two stages. First a location 
is seized for the new node, using the SeizeTail procedure (Figure 1). Then, the 
no de is floated up according to its priority, by calling the Float Up procedure 
(Figure 2). The DeleteMin operation (Figure 3) is implemented by calling the 
DeleteRoot procedure (Figure 3), which first gets an independent no de to the 
root (ifneeded) and then deletes that node and returns it. The above routines use 
the following subroutines: GetN onAsc (Figure 2) - gets to a specified location 
a non-ascending node. GetNonDes (Figure 4) - gets to a specified location a 
non-descending node. SwapRoot - finds a replacement no de for a deleted root 
and replaces the deleted root with that replacement node. The algorithm for 
SwapRoot can be found in [11]. . 

3.2 Manipulating Tail - SeizeTail and SwapRoot 

In this subsection we describe the parts of the algorithm that manipulate Tail. 
These are SeizeTail and SwapRoot. 

Seize Tail (Figure 1) works as follows: if Tail points at an empty location, 
SeizeTail tries to swap that empty location with the new node, using SC - this 
seizes the location. If however the location pointed at by Tail is not empty then 
there are two possibilities: If Tail= N SeizeTail returns FAILURE, otherwise, 
Tail is incremented and the whole process is repeated. 

When a process that executes DeleteMin finds out that the root is already 
deleted, it calls SwapRoot. SwapRoot works as follows: If Tail= 1 the deleted root 
is swapped by an empty no de and SwapRoot returns. Otherwise, a replacement 
for the deleted root must be found. As will be explained later on, the replacement 
must be a non-ascending node. If Tail points at an empty location Tail must be 
decremented. When Tail points at a non-empty location a non-ascending node 
is brought to the location pointed at by Tail (using GetNonAsc, which will be 
described later on). Finally, the no de is moved to the root, marked as descending, 
and the location pointed at by Tail is made an empty location, by a single SC2 
instruction. 

There are two problems that have to be dealt with when manipulating Tail: 

1. Tail must be incremented and decremented using a proto col that ensures 
that no gaps will occur and that non-empty nodes will not be stepped over. 

2. Tail may suffer from a ping-pong effect: A process that tries to insert anode 
may increment Tail to point at an empty location, and just before it puts the 
new node in the empty location, another process, that tries to find anode 
to replace a deleted root, might decrement Tail to point at a non-empty 
location, and so on. 
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Insert(val) 

t := Seize Toil( val); 
if (t = FAILURE) then retarn (FAILURE); 
F/oatUp(t, val); 
return (SUCCESS); 

SeizeTail( val) 

whiIe (TRUE) do 
t := LL( Tail); 
eUT := LL(Heap[t.ptr]); 
if ( Empty( eur) and not Frozen( cur) ) then 

if ( SC(Heap[t.ptr], (val, UP, FALSE) ) then 
return (t.ptr); 

aIse if ( Empty( eUT) and Frozen( eur) ) then 
SCêlV(Heap[t.ptr], (00, IND, FALSE), Tai/); 

else if (t.ptr = N) then 
return (FAILURE); 

else if ( (not Deleted(eur)) and (not Frozen(t)) 
and (not Frozen(c"r)) ) then 

SCêlV( Tail, (t.ptT + 1, t.frz), Heap[t.ptr]); 
else /* Frozen(t) or Deleted(cur) or */ 

1* (Frozen(cur) and (oot Empty(cur)) *f 
SwapRootO; 

endwhile 

Fig. 1. The non-blocking algorithms for InscTt and Seize Tail 

In order to solve the first problem we use the following mies: TlLil may be 
increment only if it points at a non-empty location. Tail may be decrement only 
if it points at an empty location. A new node can be put only at an empty 
location. 

The second problem is solved as follows: If there exists an operation on the 
data structure that takes more than one atomic instruction, and must fiot be 
interrupted until completed, the operation is frozen using a freezing token. The 
operation is divided into steps, such that each step can be completed using asin­
gle atomic instruction. The pro cess that initiates the operation puts a token on 
the memory location which is .tobe accessed by the first step. As the operation 
progresses, the token is moved to the memory location that is to be accessed 
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by the next step. Writing to a memory location, removing the token from that 
location and moving the token to next memory location, are ail executed by a 
single Se2 instruction. When a process finds a memory location with its freez­
ing token on, it must complete the operation before it can write to this memory 
location. The location of the freezing token enables the process to know what 
is the current step of the opération. Writing to a memory location may also be 
conditioned on another location not being frozen, by using an atomic instruction 
that accesses both locations. In the last step, the token is removed. This tech­
nique enables a mode of operation which resembles locking in a non-blocking 
implementation. 

We now describe how the freezing token technique is used to prevent the· 
ping-pong effect. When the root is deleted it is frozen, by setting its freeze 
field to TRUE. SwapRoot first freezes Tail by setting Heap[l].freeze to FALSE 
and Tail.freeze to TRUE by a single Se2 instruction (this moves the freezing 
token from Heap[l] to Tail). If the frozen Tail points at an empty location, Tail 
must be decremented. When Tail is decremented, the empty location pointed 
at by Tail must be frozen, to prevent occupying this location. For this reason 
we use Se2 to decrement Tail. When the frozen Tail points at a non-empty 
location, the freezing token is moved from Tail to the non-empty location. Then 
a non-ascending node is brought to the frozen location (using GetNonAsc, which 
will be described later on). Finally, the no de is moved to the root, marked as a 
descending node, its freeze field is set to off and the location pointed at by Tail 
is made an empty location, by a single Se2 instruction. If a process that executes 
Seize Tail observes a frozen Tail that points at a non-empty location, or a Tail 
that points at a frozen non-empty location, the process cannot increment Tai/. 
Since the pro cess also cannot wait for Tail or for the location to be defrosted, it 
must cali SwapRoot to complete the operation. 

Vnder the assumption that GetNonAsc is non-blocking, it can be shown that 
SeizeTail and SwapRoot are non-blocking. A failure to complete SeizeTail or 
SwapRoot in a certain iteration by sorne process, must be the result of another 
process (executing either SeizeTail or SwapRoot) success. However, SeizeTail 
and SwapRoot are not wait-free, since a process might suffer starvation: A process 
that executes SeizeTail may fail for ever because each time it tries, another 
process may be ahead ofit. The same is true for SwapRoot. 

3.3 The FloatUp and GetNonAsc Procedures 

When a location is seized for anode by SeizeTail, the no de is marked as ascend­
ing. Then, the no de is floated up towards the root by the FloatUp procedure 
(Figure 2). Floating an ascending no de resembles bubble sort - in each step 
FloatUp caUs GetNonAsc (Figure 2), where the ascending no de is compared 
with its parent, and the two of them are swapped if the ascending node's value 
is less than its parent 's value. Swapping the nodes is executed using the Se2 
primitive, which ensures that the swapped nodes are reaUy those meant to be 
swapped. 
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FloatUp( t, vetl) 

whlle (TRUE) do 
eUT:= LL(Heap[tl); 

10 

if( (eur.val = val) and Asc(cur) ) then 
t := GetNonAse(t,eur); 

eIse if( (euT.val .$ val) and (euT.type = IND) ) then 
return (SUCCESS); 

else 
t := parente t); 

endwhile 

GetNonAse(t, eur) 

whlle ( Asc(euT) ) do 
par := LL(Heap[parent(t)]); 

if (par. type = IND) then 
if (par. val .$ eur.val) then !* make CU! independent *i 

if ( SC(Heap[t], (cur.val,IND,cur.fTz) ) then 
break; 

else / * swap CUI and par *1 
if ( SC2(Heap[t], (par. val, IND, cur.frz), 

Heap[pareni(t)], (eur.val, UP, par.frz) ) then 
t :'? parent(t); break; 

else if Des(par) then 
if (GetNonDes(parent(t),par) = i) then 

t := parent(t); break; 

else /* Asc(par) *1 
GetN onAsc(parent( t),par); 

cur := LL(Heap[t]); 

end whlle 

return (t); 

Fig.2. The non-b!ocking a1gorithrns for FloatUp and GetNonAsc 
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The owner of node v, Pi, floats v up until v's parent is an independent no de 
with value less than v's value. Pi then makes v independent and returns. An 
independent node satisfies the property that ail the non-descending nodes on 
the path from it to the root have values less than or equal to its own value. 

If Pi observes that v's parent, u, is a descending node, Pi caUs GetNonDes 
(Figure 4) which either seeps u one location down, or makes u independent. 
GetNonDes is described in the next subsection. If Pi observes that v's part;nt, u, 
is an ascending node, it cannot make v independent, even if u's value is less than 
v's value, since there may still be nodes in the path from u to the root with values 
greater than v's value. Neither can Pi swap v and u, since this would cause u 
to move down and as will be understood from the next paragraph, an ascending 
no de must not move down. Moreover, Pi cannot wait for u to be floated up by 
u's owner. Therefore, Pi floats u one location up, or makes u independent, by 
calling GetN onAsc recursively. 

Since one process may float anode owned by another process, a process 
may lose its node. The owner Pi of node v must not return before v is made 
independent and the Insert( v) operation is completed. Therefore, if Pi loses v, 
Pi locates v by scanning the path from the last location it observed v, towards 
the root, until it reaches the first independent node with value less than or 
equal to v's value. Since an ascending node can only move upwards, if v is not 
located, it must have been made independent and even might have been deleted 
from the priority-queue. If v is not located or if it is found to be independent, 
Float Up returns. This also explains why an ascending no de cannot be used as a 
replacement for a deleted root: locating it would cost O( n) time. 

Vnder the assumption that GetNonDes is non-blocking, it can be shown 
that FloatUp and GetNonAsc are non-blocking as weil. However, FloatUp and 
GetNonAsc are not wait-free, since an ascending node's parent may change again 
and again as an infinite number of ascending and descending nodes move by the 
no de (and as was explained, an ascending node can be made independent only if 
its parent is an independent node, whose value is less than the ascending node's 
value). 

3.4 DeieteRoot and GetNonDes 

A process that executes DeieteRoot (Figure 3) acts according to the type of the 
root. An independent node: deletes the root and returns it. An ascending node: 
caUs GetNonAsc(l). A descending node: caUs GetNonDes(l). A deleted node: 
caUs SwapRoot to find a replacement for the root (which will be seeped down 
later on). An empty node: returns FAILURE. 

GetNonDes (Figure 4) gets to a specified location a non-ascending node. 
First, GetN onDes makes sure that both sons of the specified location are non­
descending (by calling GetNonDes recursively for each of the sons, if needed). 
Then, GetN onDes repeatedly tries to either make the node in the specified lo­
cations to be independent (if it is less than both its sons), or to swap the no de 
in the specified location with its least son (otherwise). 
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DeleteMinO 
return (DeleteRoot()); 

DeleteRootO 

while (TRUE) do 
l'Dot := LL(Heap[l]); 
case root of 

Incl: 
Empty: 
Asc: 
Des: 
Deleted: 

end case 
end while 

if ( SC(Heap[l], (-oo,JND, TRUEl) ) then return (root.val); 
return (FAILURE); 
SC(Heap[l], (root.val, IND, root.fTZ)); 
GetNonDes(l,root); 
SwapRootO; 

Fig. 3. The non-blocking algorithm for DeieteMin 

3.5 Correctness Proof 

We define the occurrence time of an lnsert( v) operation as the time v was made 
independent. We define the occurrence time of a DeieieMin operation as the 
time the foot is de!eted for that operation. The correctness is implied by the 
following lemmas: 

Lemma 1. Locations are seized in arder - with no gaps and without stepping 
over non-empfy locations. 

Lemma2. SeizeTail(v) returns a value t other than FAILURE iffthe location 
Heap[t] is seized for v. IfSeizeTail(v)returns FAILURE then there exists a time 
within the Execution interval of SeizeTaii in which the heap is full. 

Lemma 3. An ascending node can only move up and a descending nade can 
only move down. 

Corollary: An ascending no de cannot be passed by another ascending node 
and a descending node cannat be passed by another descending node. 

Lemma 4. Any non-ascending node v satisfies that eaeh of the independent 
nodes on the pa th from v ta the root has a value that is less than or cqual to v's 
value and eaeh of the ascending nodes on the pathfrom v ta the root has a value 
that is strictly less th an v's value. 
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GetN onDes (t, eur) 

1 := left(t); 
r := right( t); 

while (Des(cur» do 

/* CalI GetNonDes recursively to make sure both sons are non-descending. */ 
Ison := LL( Heap[I]); 
if Des(lson) then GetNonDes(I,lson); 
rson := LL(Heap[r]); 
if Des(rson) then GetNonDes(r,rson); 

while ( VL(Heap[t]) do 

Ison := LL(Heap[l]); 
rson := LL(Heap[r]); 
if ( (lson.val < eur.val) or (rson.val < eur.val) ) then 
/* One of eur's sons is less than eur - swap eur with its least son. */ 

if ( (Ison.val < rson.val) or «(lson.val = rson.val) and Ind(lson» ) then 
if ( SC2(Heap[t], (Ison.val, Ison.type, eur.frz), 

Heap[l], (eur.val, eur.type, Ison.frz» ) then 
return (1); 

else 

else 

if ( SC2(Heap[t], (rson.val, rson.type, eur.frz), 
Heap[r], (eur.val, eur.type, rson.frz» ) then 

return (r); 

/* eur is less than both its sons - make eur independent. */ 
if ( SC(Heap[t],(eur.val,lND,eur.frz» ) then 

return (t); 

end while 
eur := LL(Heap[t]); 

endwhile 
return (t); 

Fig. 4. The non-blocking algorithm for GetNonDes 
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Lemma 5. Let v be an ascending node fast observed by proceSB P; in location x. 
If Pi faila to locate anode with the same value as v by scanning the path from x 
to the root, then v must have already bem made independent. 

Lemma 6. Let Pi be the owner of node v. If Pi returns SUCCESS from In­
sert(v), v has alreadll been made independent. If Pi returns FAILURE from In­
sert(v), then a [ellal occurrence time (within the execution interval of the Insert 
operation) in which the heap was Jull, can be defined. ' 

Corollary: The occurrence time of inserting a node v, can be defined as the 
time v was made independent. 

Lemma 7. Let v be anode returned by process Pi ihat executes DeleteMîn. v 
is then the node with the least value o/all nodes in the priority-queue that were 
inser/ed before v was deleicd (and that have not been deleted from thepriority­
queue before v was deleted). If however Pi returns FAILURE !rom DeleteMin, 
then a legal occurrence time (within the execution interval of the DeleteMin 
operation) in which the heap was empty, can be defined. 

Lemma 8. The algorithm is non-blocking: Under the assumption thai at any 
given time, eventually some process executes an instructions, at any given lime, 
eventuallyan operation initiated hy sorne process is completed.· 

3.6 Time And Space Complexity Analysis 

In this section we briefiy sketch the time complexity analysis for executing a set 
of r Inser/ and DeleteMin operations. Let n be the maximum number of nodes 
in the heap during the execution of the. r operations. We define a step of node v 
as the event of v moving one location (from parent to son or fromson to parent). 
Since an ascending node can only move up, it can step at most logn steps. In 
the same way, a descending node cali step at most log n steps as weil. The time 
complexity is computed using the following lemma: 

Lemma 9. Any iteration consisting of 0(1) instructions, whick is executed in 
Ilny of the subroutines, can be credited to one of the following events, suck that 
ai most 0(1) iterations, eucuted by a specifie process, are credited to the same 
event: Asiep of a non-independent node, seizing Il location for a new node, 
deleting the root and making a node ta be independent. 

In a set ofr operations there are at most O(rlogn) steps ofnon-icndependent 
nodes and ai most 0(1') events of seizing locations for new nodes, deleting the 
root and making nodes to be independent. Together we get a total of at most 
O(riog11.) events. Sinee in a set of l' operations there are at most O(rlogn) 
events, each one of them ls credited for at most 0(1) iterations cOIlsisting of 
0(1) instructions, executed by a specifie process, then each proCeSs can ex.ecute 
at most 0(1' logn) instructions. Therefore al! processes together execute at most 
O(pr log 11.) instructions during the set of l'operations. 
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4 The Wait-Free Implementation 

The non-blocking implementation can be made wait-free, by a technique pre­
sented in this section. The technique is inspired by the operation combining 
technique [8]. However, operation combining suffers from ail the disadvantages 
described earlier, since each process operates on a local copy of the shared object. 

4.1 Making the Non-Blocking Implementation Wait-Free 

We hold a shared array Req[l..p], where p is the number of processes, called the 
shared request array. We also hold, for each process Pi, an array Loca/Reqi [l..p], 
called P;'s local request array. Ali the entries in the shared request array are 
initialized to astate that denotes that there is no pending request. 

Before executing an operation (e.g. seizing a location for a new node), Pi 
issues a request for that operation in Req[ll Pi then copies Req[l..p]to Loca/Reqi, 
and tries to execute each one of the requests registered in Loca/Reqi, until ail 
of them are fulfilled (either by Pi, or by sorne other process). Requests may be 
fulfilled not in the order in which they were issued; the correctness, however, is 
not violated, since each request is fulfilled within the execution interval of the 
corresponding operation. 

When Pi fulfills a request issued by pro cess Pj, Pi marks the request as 
fulfilled in Req[j]. This enables the other pro cesses (and Pj in particular) to 
learn that the request had been fulfilled and that they can move on. Pi must 
not mark the request as fulfilled be/ore it had fulfilled the request, because it 
might fail executing the request or it might even hait. Pi must also not mark the 
request as fulfilled after it had fulfilled the request, since other processes might 
try to fulfill the request before Pi marks it as fulfilled, and then the request might 
be fulfilled more than once (e.g. more than one location seized for the same new 
node). Therefore, both executing a request and marking the request as fulfilled 
in Req[j] must be done simultaneously, by a single atomic instruction. In case 
fulfilling a request in the non-blocking algorithm uses a single SC instruction, 
this is performed by a single Se2 instruction in the wait-free algorithm which 
replaces the SC instruction the non-blocking algorithms. 

Measures must be taken to ensure that after a request is fulfilled, a process 
that tries to fulfill that request continues to execute only a bounded number 
of instructions before it learns that the request had been fulfilled (and returns). 
One way to do this is to augment ail the loop-conditions to check that the request 
is not fulfilled yet. 

4.2 Proving that the Technique Yields a Wait-Fl.'ee Implementation 

We now show that this technique yields a wait-free implementation. Let t1 be 
the time in which Pi finishes copying Req[l..p] and let t2 be the time in which ail 
the requests registered in LocalReqi are fulfilled. The number of requests fulfilled 
by ail processes together within the interval [t1, t2] is bounded by 2p - 1: 
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At most p unfulfiHed requests that were issued befme fi (registered in Req[1..p] 
in 11)' 
At most p - 1 requests that are issued within [tI, t2]: Ail the requests reg­
istered in LocalReq; that are not fulfilled, are still regisiered in Req[l..p]. A 
process Pj that issues a request within [t1, t2J observes these pending re­
quests in Req, copies them to LocalRelJj and does not issue another request 
befme these requests are fulfilled. 

It can be proved that the algorithm to fulfill a request (e.g. Seize Tail) is 
still non-blocking. Since .the number of the requests that can be executed within 
[h, t2] is bounded, since the algorithm to fulfill a request is non-blocking, and 
sinee after a request is fulfilled a process that tries to fulfill that request continues 
to executes a bounded number of instructions befme it learns that the request 
had been fulfilled, we get a wait-free implementation. It can be proved that the 
correctness for is not violated. The wait-free algorithme are described with detail 
in [I1J. 

4.3 Complexity Analysis and Performance 

The time complexity for executing a set of r Inseri and DeieieMin operations in 
the wait-free implementation is o (rp(p + logn)), which is the sum ofD(rp log n) 
(the corresponding time complexity for the non-blocking implementation) and 
O(rp2) (the extra work for scanning the requests arrays). This time complexity is 
compared with O(rp(p+n)) in [8]. The space complexity is O(n+p2), compared 
with O«n + p)p) in [8]. 

Making the implementation wait-free degrades overall system performance. 
Therefore, if the wait..free property is not required, the non-blocking implemen­
tation should be generally preferred over a wait-free implementation. If the wait.. 
free property is required, the level of wait-freedom can be controlled, by having 
a pro cess copy the requests array and trying to fulfill the requests registered 
there only after. sorne constant number, k, of requests it had fulfil!ed for itself. 
With k = 1 we get the current wait-free Implementation. With k = 00 we get 
the current non-blocking Implementation. 

5 Conclusions 

The primary problems that have to be dealt with in an effectively paraUel wait­
free Implementation of a concurrent object are: 

- An operation on the object may be started before previous operations are 
completed, so the object may be in an in consistent state while more than 
one operation i8 in progresses. 
There may exist parts of an operation on the object that take more than 
one atomic instruction and must not be interrupted until completed. 

We have presented three generaI techniques that may be used in converting 
a sequential object to a wait-free, effectively parallel, concurrent object: 
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Marking words in memory as consistent (independent) or inconsistent (non­
independent). 
The use of a freezing token. 
A technique for converting a non-blocking implementation to a wait-free one. 

Using these techniques, we have presented a time and space efficient, effec-
tively parallel, wait-free implementation of a concurrent priority-queue, based on 
a heap data structure. It would be interesting to find a lower bound of wait-free 
implementations of a concurrent priority-queue, given the set of allowed atomic 
primitives. 
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