BIBLIOTHEQUE DU CERIST

André Schiper (Ed.) A 74§

Qle?

Distributed Algorithms

7th International Workshop, WDAG 93
Lausanne, Switzerland, September 27-29, 1993
Proceedings

Springer-Verlag
Berlim Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Editors

Gerhard Goos Juris Hartmanis

Universitit Karlsruhe Zornell University

Postfach 69 80 Department of Compster Science
Vincenz-Prieysnilz-Sirafie | 4130 Upson Hall

D-76131 Karlsruhe, Germany Tthaca, NY 14853, USA

Volume Editor

André Schiper

Ecole Polytechnigue Féddrale de Lausanne
Département 4’ Informatique

L.aboratoire de Systémes d’Exploiiation
CH-1(015 Lausanne, Switzerland

239

CR Subject Clagsification {1991 £ i, D.1.3, F2.2, C2.5 {.2.4, D445

ISBN 3-540-57271-6 Springer-Verlag Berdin Hetdelberg New York
ISBM 0-387-57271-6 Springer-Verlag Wew York Berlin Heidelberg

This work is subjeci to copyright. A4 rigats are reserved, whether the whole or part
ol the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilims or in any other
way, and storage in data banks. Duslication of this publication ¢r parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1465, in its current version, and permission for use must afways be obtained from
Springer-Verlag. Viclations are liable for presecution under the German Copyrigit
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by awthor
Printing and binding: Druckhaus Beltz, Homsbach/Bergstr.
45/3140-543210 - Prinled on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

The SEVENTH INTERNATICNAL WORKSHOP ON DISTRIBUTED ALGORITHMS
(WDAG 93) was held September 27-29 in Lausanne, Switzerland (more pre-
cisely in Les Ihablerets, a village located near Lausanne). The workshop followed
six successive workshops held in Ottawa (1985, proceedings published by Car-
leton University Press), Amsterdam (1987, proceedings published by Springer
Verlag, LNCS 312), Nice (1989, LNCS 3%2), Bari {1990, LNCS 484), Delphi
(1991, LNCS 579) and Haifa (1992, LNCS 647). The WDAG provides an inter-
national forum for the presentation of new research results and the identification
of future research directions in the arca of distributed algorithins.

Subinissions were solicited in all areas of distributed algorithms and their
applications, wecluding distribuled algorithims for contrel and communication,
fault-tolerant disiributed algorithms, network protocols, algorithms for rnanag-
ing replicated data, protocols for real-time distributed systems, issues of asyn-
chrony, synchrony and real-time, mechanisms for security in distributed systems,
techniques for the design and analysis of distributed algorithms, distributed
database techniques, distributed combinatorial and optimization algorithms, and
distribuied graph algorithms.

A total of 72 papers were received within the submission deadline (33 submis-
sions from Europe, 29 from North America, 6 from the Middle East, 3 from the
Far East, and I from Australia). The Program Commitiee wishes to thank all
the authors who submitled papers for consideration. Out of the 72 submissions
the Program Committee was able to select the 22 papers appearing in these pro-
ceedings (6 from Europe, 13 from North America, and 3 from the Middle East).
The selection was based on originalily and quality. Relevance of the papers to
the fleld of distributed computing was also considered carefully.

The Program Committee was composed of:

D. Dolev (Hebrew U. and IBM Almaden) M. Herlihy (DEC CRL)

G. Le Lann (INRIA, Paris) K. Marzullo (Cornell U. and

F. Mattern (U. of Saarland) UC San Diego)

M. Merritt (AT&T) M. Raynal (TRISA, Rennes)

A. Schiper (chair, EPF Lausanne P. Spirakis (CTI and Patras 1J.)
and Corncell U.) J. van Leeuwen (U. of Utrecht}

J. Welch (Texas A&M U.) S. Zaks ('Technion, Haifa)

I wish to thank all the members of the Program Committee and all the refer-
ees who assisted them for their careful reviewing carried out within a very short
period of fime. My thanks go also to Alain Sandoz for his excellent organization
of the Workshop, and for his smooth handling of the submitted and accepled
papers.

For the first time this year, a tutorial was organized during the Workshop.
The title of the tuforial was Specifications and Algorithms for Fault-Tolerant

BIBLIOTHEQUE DU CERIST

vl

Brozdensts - 4 Modular Approech. Tt was presented by San Toueg from Cornell
University, The idea in combining a tutorial with research papers was to attract
voung researchers to the Workshop, and hopefully to the field of distributed
algorithms. Financial support for the tuiorial was provided by the 3¢me Cycle
Romand d’Informatique, for which we are grateful.

Lausanne, September 1993 André Schiper

List of Referees

Anccanms, L. Mattern, F.
Attiya, H. Merritt, M.
Bakker, E.M. Minet, P.
Breitbach, T. Moran, 5.
Buehler, P. Papatriantafillou, M.
Charron-Bost, B. Pipugeauz, N.
Cidon, I. Priebe, V.
Clegg, M. Rachman, O.
Dolev, D, Raynal, M.
Dolev, §. Ricciardi, A.
Fix, L. ' Richter, J.
Fuenfrocken, S. Bandoz, A.
Guerraoui, R. Schiper, A.
Haldar, S, Schwarz, R.
Helary, J.-M. - Spirakis, P.
Herlthy, M. Tampakas, B.
Herman, T. Tan, R.B.
Tsraeli, A. Tel, G.

e Lann, G. Tsigas, Ph.
Lueling, R. van Leeuwen, J. .
Malki, 5. Welch, J.
Marzullo, K. Zaks, S.

Matsliach, G, Zamsky, A.

BIBLIOTHEQUE DU CERIST

Table of Contents

Wait-free synchronization

Efficient wait-free implementation of a concurrent priority queue
A. Israely, L. Rappoport e e e 1

Binary snapshots
J-H. Hoepmaw, J. Tromp . e 18

Linear-time snapshot protocols lor unbalanced systems

A. Israeli, A. Shaham, A. Shirazi (... 26

Towards a necessary and sufficient condition for wait-free synchronization
1H Anderson, M. Motr ... e 39

Shared memory model

Efficient algorithms for checking the atomicity of a run of read and write
operations

L.M. Kirousis, A.G. Veneris b4

Benign failure models for shared memory
Y. Afek, M. Merritt, G. Taubenfeld 69

Generalized agreement bhetween concurrent fail-stop processes
JE Burns, R.I Cruz, MC. Lowi 34

Controlling memory access concurrency in cfficient fanlt-tolerant parallel
algorithms

P.C. Kanellakis, D. Michatlidis, A.A. Shwarlsman 99

Miscellaneous

Asynchronous epoch management in replicated databascs
M. Rabinovich, E.D. Lazowska i 115

Crash resilienl communication in dynamic networks

S . Doley, LU Welch o e e 129

Distributled job scheduling using snapshots
M. Choy, AK. Smgh I e 145

BIBLIOTHEQUE DU CERIST

Wil

Fauit tolerance

Optimal time self stabilization in dynamic systems

BT 2 L P 160

Tolerating transicnt and permanent failures
5. Anagnostou,_ V. Hedailaeos ... oo i 74

Quick atomic broadcast
P. Berman, A.A. Bharali ... P 189

Time bounds for decision prablems in the presence of timing
uncertainty and failures
H. Attipa, T. Dierasai-Shintel i e, 204

MNetworks and rings

Boolean ronding
M. Flammini, G. Gambosi, S. Salomone 219

Notes on sorting and counting networks

N. Hardavellas, D. Karakos, M. Mavronicolas L. 234
A simple, efficient algorithm for maximum finding cn rings

L. Higham, T. Praglucka e e 249
Wang tilings and distributed orientation on anonymous torus networks

V.R. Syrotiuk, C.J. Colbourn, J. Pachl c.c..cii. .. 264
Miscellaneous

" Fairness of N-party synchronization and its impletmentation in a

distributed environment
O Wu, G. w. Bochkmann, M. Yao 279

Programmuing distributed reactive systems: a strong and weak
synchronous coupling

o Boniol, M. Adelandado 294
Using message semantics {0 reduce rollback in the time warp mechanism

H V. Leong, D. Agrewel, JR. Agre ... oo 309
Tist of Aubiors . . oo e e e 325

B LT = T TIIY S B L I . i I I RPN e o S

BIBLIOTHEQUE DU CERIST

Efficient Wait-Free Implementation of a
Concurrent Priority Queue

Amos Israeli’ and Libu Rappoport?

! Faculty of Electrical Engineering, Technion, Israel
? Faculty of Computer Science, Technion, Israel

Abstract. We present an efficient wait-free implementation of a concur-
rent priority-gueuc in the asynchronous shared memory computational
model. In this model each process runs at different speed and might be
subject to arbitrarily long dclays. The new implementation is based on
the heap data structure in which the Insert and DeleteMin operations
are Jong — they take more thap one atomic instruction to cowmplete and
they leave the heap inconsistent until completed. The previous imple-
mentation requires copying the entire data-structure by each processes
every time it tries to perform an operation. Consequently ils space and
time complexity are linear in the number of processes — p and in the
size of the data-structure — n. In the new unplementation all processcs
operale directly on the shared copy of the data structure. Its time com-
plexity is J(plog n) and its space complexity is O(n}. Moreavér, the new
implementation is effectively parallel, meaning that all processes can op-
erate effectively on the object, such that ihe thronghput increases as the
number of processes increases.

1 Introduction

In this paper we present a wait-free implementation for a concurrent priority
gueue in the asynchronous shared memory model. We show that the new irnple-
mentation is more efficient then the previously known implementations in space,
iime and processor ulilization. We use the asynchronous shared memory com-
putational model. Tn this model a group of processes communicate via shared
memeory, Each process runs at a different speed, and might be subject to arbi-
trarily long delays. A concurrent object is a data structure residing in the shared
memory and accessible by some of the system processes.

The t{raditional technique for implementing concurrent objects is by the use
of critical seclions: ensuring that only one process operates on the object at a
given time. The use of critical sections in asynchronous systems is problematic
in at least two ways:

1. If a process is delayed inside the crilical section, all the other processes
cannot make any progress.

2. At any given moment only one process ean access the object. Thus a more
appropriate nane for an object implemented using critical sections is a shared
object, rather than a concurrent object.

BIBLIOTHEQUE DU CERIST

[AW]

A concurrent object iinplemeniation is nen-blocking if it always guaraniees that
some process compleies an operation in a bounded number of & steps. A con-
current object implementation is weaél-free il it guarantees that eack process
completes an operation within a bounded number of steps.

1.1 Related Work

The work on concurrent wait-free objects starts with the work of Pelerson in
115} and Lamport in {13, 14] on atomic registers, and continued with the work
on consensus objects [12, 6, 3, 4]. The work on data structures was initiated
by Herlihy in [7] where he defines a hierarchy of concurrent objects such that
there is no wait-free implementation of an object using only objects lower in
the hierarchy. Herlihy shows that there exist universal objecls which allow for a
wait-free implementaticn of any concurrent object. This result however does not
relate to the efliciency of the implementation, Anderson and Weoll in {5] show a
wait-fres implementation for the Union-Find problem.

Herlihy in {8] introduces.a general method for converting a sequentizal data
structure to a wait-free shared ohjsct. He uses the Load Linked and ihe Siore
Conditional universal atomic primitives. As an example he implements a priority-
queue using the heap data structure. The basie idea of Herlihy’s method is as
follows: The shared object is pointed at by a shared pointer. To apply an oper-
ation to the shared object, process F: reads the pointer using Loed Linked and
copies the object o a local copy in the shared memory. Then F; applles the
aperstion sequentially to its local copy, and finally i tries to swing the shared
pointer to point to its local copy, nsing Store Cenditional, This Sisre Condi-
iional instruction succeeds only if the pointer was not changed by some other
process since it was last read by F; by the Load Linked instruction. This method
¥ields a non-blocking implementation, and by using a technique called speration
combining, it is converted to be wait-free.

The methed of [8] has three significant drawbacks:

1. A large amount of memary is needed (for the local copies), thus the space
complexity of an implementation obtained using this method is at least p
times the spare complexity of the sequential implementation it is using,
where p is the number of the system’s processes.

2. A greetl deal of copying must be perfermed, thus the time complexity of an
implementation obtained using this method is at least lkirear i n, the size
of the data structure.

3. At any given moment, only one process can evecule effeciive instruclions.
Each process executes operations sequentially on its local copy, which is
“locked” from other processes, Of all overlapping trials, only one process
succeeds in making its local copy the new version of the concu?xent object,
while the work done by all ather processes is wasted.

Thus any implementation obtained by this method is mberenily sequential
If execution of some operation an the data structure by a single processor takes

BIBLIOTHEQUE DU CERIST

time ¢, then execution of r operations takes time at least r . ¢, regardless of
how many processes participate in executing the » operations. At any given
moment, at most one process can execute effective instructions. We define an
implementation to be effectively parallelif it has at least one execution in which
execution of r operations iake less then r -t time.

Alemany and Felten in [2] reduce the excessive copying and wasteful work
in Herlihy's implementation by using information extracted by the operating
system to identify faulty or slow processes. By using the operating system as an
oracle, the primary problem of the asynchronous model, that one process cannot
tell whether another process is halted, is avoided. However, the implementation
in {2] is still inherently sequential.

1.2 The Current Work

In this paper we preseni a wait-free implementation of a concurrent priority-
queue using a heap. A priorily-queue supports two operations: Insert — adds an
item fo the priority-queue, and DeleteMin — deletes the item with the highest
priority from the priority-queue and returns it. In the sequential implementation
the Inser? and DelefeMin operations in a heap are fong - they require more than
a single atomic instruction to complete and they leave the concurrent object
in an inconsistent state until completed. For example, in an Insert operation,
the inserted item traverses the data structure, in a sort-like procedure, until
it reaches its proper location; as long as the item does not get to its proper
location, the heap is inconsistent, Long operations pose a problem in wait-free
implementations: a new operation may be started before a previous operation
is completed, so the data structure may be inconsistent while more than one
operation is in progress.

The new implementation improves upon the implementation of [§] in all three
aspects mentioned above:

1. Its space complexity is linear in n, the number of items in the priority queue.

2. Its time complexity is logarithmic in »n, {though in the worsl case it is stil]
linear in p).

3. It is effectively parallel.

The worst case bound for executing a set of r Insert and DelefeMin operations
is at most O(prlogn) instructions {by all processes together), compared with
O(prn} instructions using the implementation in [8] (n is the maximum number
of items in the priority-queue during execution of the r operations). The space
complexity of the current implementation is ({n} memory locations, compared
with O(pn) in [8]. In the new implementation an operation may be started before
previous operations are completed while the object is inconsistent. Although the
object is not always consistent, the correctness holds.

An important complexity measure is the maximal number of memory words
accessed by a single atomic instruction in the implementation. It is easy to see
that if a process is allowed to execute read-modify-write instructions that access

BIBLIOTHEQUE DU CERIST

unlimited number of memory words, there exists a simble and efficient trans-
formasion for any sequential object to a wait-free concurrent object. Thus the
quality of an implementation should be evaluated also by the maximum number
of memory words accessed by a single atomic instruction in that implementa-
tion. The new implementation uses atomic primitives that access at most two
memory words simultaneously.

The rest of the paper is erganized as follows: In section 2 we desecribe the
computational model used. The wait-free implementalion of the priority-queue is
constructed in two stages. In section 3 we present a non-blocking implementation
of a priority-queue. In section 4 we introduce a technique by which the non-
blocking implementation of the priority-queue can be made wait-free.

2 The Model

We use the asynchronous shared memory computational model. In this madel a
group of sequential processes (or processors} communicate via shared memory.
The processes are asynchrencus ~ there is no global clock timing them; each
process runs at a different speed, and might be subject to arbitrarily long delays.
A precess cannot tell whether another process is halled or is running very slowly.
All of the instructions executed by the processes are alomic, meaning thai they
seemm to be executed in a certain poiat of time, such that no two instructions
are execuled at the same moment, and that the instructions can be ordered. An
execution is an interleaving of the atomic instructions executed by the processes
in the system.

A concurreni ebject is 3 data structure shared by concurrent processes. Each
object has a type, which defines a set of possible primitive operations and a set
of possible values for each operation. The primitive aperations provide the only
means to manipulate the object. Each object has a sequential specification that
defines how the object behaves when its operations are invoked one at a time
{the sequence of responses to each sequence of allowed operations). The ezecution
inferval of an operation is the time interval beiween the operation invocation
and the corresponding response. In the sequel, the term insiruciion refers to an
mstruction in the instruction set of the machine, and the {erm operation refers
to an operation defined on an object.

Intuitively. an fmplemenfation of a concurrent object A, is another concurrent
object I, such that the processes in the systemn cannot distinguish between A
and I. A concurrent implementation is said to be correci if for any sequence of
legal operations, for any execution, it is possible to define an occurrence time for
each operation, such that the following two conditions hold:

1. The occurrence time of each operation is within its cxecution inferval.
2. When the operations are ordered according to their cccurrence times, the
sequence of corresponding responses agress with the sequential specification

of the object. _

This correciness condition, called linearizability, is defined in [10].

BIBLIOTHEQUE DU CERIST

A concurrent object implementation is non-blocking if it always guarantees
that some process completes an operation within a bounded number of a steps.
A concurrent object implementation is weit-free if there exists a positive integer
k such that it is gnaranteed that a process executes at most k instructions in
order to complete any operation defined on the object, regardless of the speed
of other processes.

We use the following atomic primitives to access shared variables: Read, Write,
Load Linked (LL}, Validale (VL}, Store Conditional {SC}, Store Conditional
2 (SC2) and Store Conditional & Validate (SC&V). Let z and y be shared
variables, and let ¢ and b be local variables or values. We then define:

— Read(z): Read the value of 2.

— Write(r,a): Write the value a to =.

- LL{z}: Read the value of = such that it may be subsequently used in combi-
nation with each of VL, §C, SC&V and 5C2.

— VI{z): If z is not written since the last LL{z) instruction executed, return
SUCCESS, otherwise return FAILURE.

— 5€(z,a): If x is not written since the last LL{z} instruction executed, write
the value a to £ and return SUCCESS, otherwise return FAILURE.

— SCBV(r,a,y): If z and y are not written since the last LL{x) and LL{y}
instructions executed respectively, write the value ¢ to z and return SUC-
CESS, otherwise return FAILURE.

~ S5C2(z,a,3,b}): If z and y are not writlen since the last LL{z} and LL(y)}
instructions executed respectively, write the value a to z, write the value b
to y and return SUCCESS, otherwise return FAJILURE.

These primitives can be implemented using the fransactional memory scheme,
introduced by Herlihy and Moss in [9]. Transactional memory allows to define
customized read-modify-write operations that access multiple, independently-
chosen words of memory. Primitives LL and SC are used in [8], VI is suggested
in [4], SC2 and SC&V are the natural generalization of SC and VL for the case
of accessing two memory words simultaneously.

3 The Non-Blocking Implementation

A priority-queue supports two operations:

Insert - If the priority-queue is not full, adds an item to the priority-queue and
returns STCCESS, otherwise returns FAILURE.

DeleteMin - If the queue is not empty, deletes the items with the highest priority
from the priority-queue and returns that item. If the priority-queue is empty
returns FAILURE.

We use a heap to implement the priority-queue. A detailed description of
the heap data structure can be found in [1]. A heap is a complete binary tree,
in which each node has a value less than or equal to the values of its sons.

BIBLIOTHEQUE DU CERIST

This implies that for every node », the values of all nodes on the path from
to the root have values that are less than or equal to v’s value and that a
root of a any sub-tree in the heap is the least of all nodes in that sub-tree. A
heap implements a priority-quene sequentially with 'nsert and DeleteMin both
executed in Oflogn}, where n is the number of items in the priority-queue. Lower
values correspond to nodes with higher priorities.

The heep is usually implemented as an array Heap[l..N] of loceitons, where
N is the maximum size of the priority-queue. Each location can hold a2 node.
Heup[1] is the root of the heap. The right son of the node in Heap[s) ic in the
aode in Heap{2i + 1] and the leff son is the node in Heap{2i]. The parent of the
node in Heapli] ie the node in Heap{|i/2]]. A pointer Tail points at the first free
location in the heap (the leftmost vacant location in the last level of the heap).
Tail is initialized to 1.

Insert adds a node to the heap by putting it in the locaiion pointed at by
Tail. Tail is then incremented by 1. Finally, the node is floated up along the
path from its entry location towards the root, in each step swapped with its
narent, until it reaches a location where its parent’s value is less than iis own
value. if Tatlz== N when Insert is called, Insert returns FAJLURE. DeleteMin
removes the root of the heap {which has the Jeast value of all the nodes in the
heep) and returns it. Then the rightmost node in the last level of the heap is
moved to the root and Tadl is decremented by 1. Finally, this node is seeped
down by repeatedly swapping it with its least son, until it reaches a location
where both its sons are greater than it. if when DeleteMin is called Tail= 1,
DeleleMin returns FAILURE. The Insert and DeleteMin procedures desecribed
above ensure that the heap is always kept as a complete binary tree with depth
of O{logn)}, where n is the number of nodes in the heap.

3.1 The Daia Stracetures And The Routines

We use the following definitions: An ascending node le a Licde that is in the
middle of being inserted: a location was seized for the node, but the node has
not yet reached its correct location. The owner of an ascending node is the
process that initiated the Fnsert gperation of that node. A desceading node is
a node that has replaced a deleted root and it is in the middle of being seeped
down from the root, but has not yet reached ils correct location. An independent
node is a node thai is neither descending ncr ascending.

e augment the data structure of the sequential implementation. A node is
represented as e triplet (valué, type, freeze). veluc is an integer which specifies
the node’s priority (lower values correspond to nodes with bigher pricrities).
value can be assigned two axtra values, —00 and oc, where oo denotes an empty
node snd —oo denotes a deleted root. type is UP for an ascending node, DOWN
for a descending node, and IND otherwise. freeze is a binary field that imple-
ments the freezing loken, whose role will be explained in the next subsection,
A node in the priority-queue can be in one of the foilowing forms (where -’
stznds for either TRUE or FALSE): (co,IND,-} — an empty node, (vel, UP,~)

BIBLIOTHEQUE DU CERIST

— an ascending node, {val, DOWN,-) ~ a descending node, (vel,IND,-} - an in-
dependent node, {~-oc,IND,-} — a root that has been deleted. Heapli] for i in
[1..N] is initiated to (o0,/JND,FALSE). For convenience we hold an extra loca-
tion, Heap[0], which is initiated to (—oo,IND,-). Tail is a pair (pointer, freeze),
which is initialized to {1,FALSFE). Roughly speaking, nodes are inserted to the
location pointed at by Tail.pointer.

The Insert operation (Figure 1) is implemented in two stages. First a location
is seized for the new node, using the Seize Tail procedure (Figure 1). Then, the
node is floated up according to its priority, by calling the FloaiUp procedure
(Figure 2). The DeleteMin operation (Figure 3) is implemented by calling the
DeleteRoot procedure (Figure 3), which first gets an independent node to the
root (if needed) and then deletes that node and returns it. The above routines use
the following subroutines: GetNonAsc (Figure 2) — gets to a specified location
a non-ascending node. GeiNonDes (Figure 4) — gets to a specified location a
non-descending node. SwapBoeot — finds a replacement node for a deleted root
and replaces the deleted root with that replacement node. The algorithm for
SwapRoot can be found in {11]. ‘

3.2 Manipulating Tail — SeizeTa! and SwepRoot

In this subsection we describe the parts of the algorithm that manipulate Ta:l.
These are SeizeTail and SwapRoot.

SeizeTail (Figure 1) works as follows: if Tail points at an empty location,
SeizeTail tries to swap that empty location with the new node, using §C — this
seizes the location. If however the location pointed at by Ta#! is not empty then
there are two possibilities: If Tail= N SeizeTail returns FAILURE, otherwise,
Tail is incremented and the whole process is repeated.

When a process that executes DeleteMin finds out that the root is already
deleted, it calls SwapRool. SwapRoot works as follows: If Tail= 1 the deleted roat
is swapped by an empty node and SwapRoot returns. Otherwise, a replacement
for the deleted root must be found. As will be explained later on, the replacement
must be a non-ascending nede, If Tail points at an empty location Tail must be
decremented. When Tail points at a non-empty location a non-ascending node
is brought to the location pointed at by Tail (using GeiNonAse, which will be
described later on). Finally, the node is moved to the root, marked as descending,
and the location pointed at by Ta:il is made an empty location, by a single 5C2
instruction.

There are two problems that have to be dealt with when manipulating Taul:

1. Tail must be incremented and decremented using a protocol that ensures
that no gaps will occur and that non-empty nodes will not be stepped over,

2. Tail may suffer from a ping-pony effect: A process that tries to insert a node
may increment Ta#l to point at an empty location, and just before it puts the
new node in the empty location, another process, that tries to find a node
to replace a deleted root, might decrement Tail {o point at a non-empty
location, and so on.

'BIBLIOTHEQUE DU CERIST

fnsert{val}

t 1= SeizeTasl{val);

if (¢ = FAILURE) then retarn {FALURE);
FloatUp(t,vai);

return (SUCCESS)

Seize Toil(val)

while {TRUE) da
t = LL{Tail);
cur ;= LI{ Heap{t.ptr]);
if { Empty{cur} and noi Frozen{cur)) then
if { SC(Heapft.ptr], (val, UP, FALSE)}) then
return (1.ptr);
alae if { Empty{cur) and Frozen{cur) } then
SCEV (Heaplt.ptr], (00, IND, FALSFE), Tail);
else if (i.ptr = ¥) then
return (FAILURE);
alse if ({not Deleted(cur)) and {not Frozen(1))
and {not Frozen{cur)} } then
SCOBV(Tail, {L.ptr 4+ 1,1.frz), Heap[tptr]);
alse [+ Frozen(t) or Deleted{cur) or =/
/* {Frozer{cur) and {not Empty{cur)) +/
SwapRoot(}; '
end while

Fig, 1. The non-blocking algorithms for fneert and Seize Tail

In crder to sclve the first problem we use the following rules: Teil may be
inerement only if it points at a non-empiy location. Teil may be decrement only
if it points at an empty location. A new node can be put only at an empty
iocation,

The second problem is solved as follows: If there exists an operation on ihe
data structure that takes more than one atomic instruction, and rnust not be
interrupted until completed, the operation is frozen using a freezing fokon. The
cperation is divided into stepa, such that each step can be completed using a sin-
gle atomic instruction. The process that initiates the operation puts a ioken on
the memory location whiclh is to be accessed by the first step. As the operation
progresses, the token is moved to the memory location that is to be accessed

P ——

BIBLIOTHEQUE DU CERIST

by the next step. Writing to a memory location, removing the token from that
location and moving the token to next memory location, are all execuied by a
single SC? instruction. When a process finds a memory location with its freez-
ing token on, it must complete the operation before it can write to this memory
location. The location of the freezing token enables the process to know what
is the current step of the opération. Writing to a memory location may also be
conditioned on another Jocation not being frozen, by using an atomic instruction
that accesses both locations. In the last step, the token is removed. This tech-
nique enables a mode of operation which resembles locking in a non-blocking
implementation.

We now describe how the freezing token technique is used to prevent the.
ping-pong effect. When the root is deleted it is frozen, by setting its freeze
field to TRUE. SwapRoot first freezes Tail by setting Heap[l]. freeze to FALSE
and Tail. freeze to TRUE by a single §C2 instruction (this moves the freezing
token from Heap{1] to Teasl). If the frozen Tedl points at an empty location, Tail
must be decremented. When Teil is decremented, the empty location pointed
at by Ta# must be frozen, {0 prevent occupying this location. For this reason
we use SC2 Lo decrement Tuil. When the frozen Tuil points at a non-empty
location, the freezing token is moved from 7uail to ithe non-empty location. Then
a non-ascending node is brought to the frozen location {using GetNonAse, which
will be described later on). Finally, the node is moved to the root, marked as a
drescending node, its freeze field is set to off and the location pointed at by Tail
is made an empty location, by a single SC? instruction. If a process that executes
Seize Tail observes a frozen Tail that points at a non-empity location, or a Tail
that points at a frozen non-empty location, the process cannot increment Tadl.
Since the process also cannot wait for Tail or for the location to be defrosted, it
must call SwapRoeol to complete the operation.

Under the assumption that GeiNonAsc is non-blocking, it can be shown that
SeizeTail and SwapRoot are non-blocking. A fatlure to complete SeizeTail or
SwapRoot in a certain iteration by some process, must be the result of another
process (executing either SeizeTuil or SwapRoot) success. However, SeizeTail
and SwapRoot are not wait-iree, since a process might suffer starvation: A process
that executes SefzeTuil may fail for ever because each time it tries, another
process may be ahead of it. The same is true for SwapRoot.

3.3 The FloatUp and GelNonAsc Procedures

When a location is seized for a node by SeizeTail, the node is marked as ascend-
ing. Then, the node is floated up towards the root by the FloatUp procedure
{(Figure 2). Floating an ascending node resembles bubble sort -- in each step
FloatUp calls GetNonAdsc (Figure 23, where the ascending node is compared
with its parent, and the two of them are swapped if the ascending node’s value
is less than its parent’s value. Swapping the nodes is executed using the SC2
primitive, which ensures that the swapped nodes are really those meant to be
swapped.

BIBLIOTHEQUE DU CERIST

Float Up(t, val)

while {TRUE) do
cur <= LL{Heaplt)):
if { (eur.vel = val) and Ascicur) } then
= GetNonAsc(t,cur);
else H'({cur.val < val) aud (cur.type = IND)) then
return {SUCCESS),
else
t = parent({});
ead while

GetNondscit, cur)

while { Asc{cur) } do
par := LL{ Heap{perert{t}});

if (par.type = IND)} then
if (par.val < cur.vel) then [« make cur independent =/
if { 5C(Heapit], (cur.val, IND cur.frz)) then
break ;
elsa /* swap cur and par */
if (SC2(Heap(t], (par.val, IND, cur. frz),
Heaplpareni(t)), {cur.vel, UP, par.frz)) then
t = parent(l); break;

alse if Des{par) then
if {GeiNoaDes{parent(i),par) = t) then
t := parent(t); break ;
slse f+ Asclpar) #/
GetNonAsc(perent(l),par};
eur = LL{ Heapit]); '

end while

return {1);

¥ig. 2. The non-blocking algorithms for FloailUp and GeiNenAec

e mn e rEre e L mem R TS . EEIEEEWE TREE. -+ b tTTiet ¢ memae « A TR . . A mmh WARROKRE. . L e . R - masp. AR - Ee

o R] e 1T TR

BIBLIOTHEQUE DU CERIST

11

The owner of node v, F;, floats v up until ©’s parent is an independent node
with value less than v’s value. P; then makes v independent and returns. An
independent node satisfies the property that all the non-descending nodes on
the path from it to the root have values less than or equal to its own value.

If P; observes that v's parent, u, is a descending node, P; calls GetNonDes
(Figure 4) which either seeps u one location down, or makes u independent.
GetNonDes is described in the next subsection. If P observes that v’s parent, u,
is an ascending node, it cannot make v independent, even if u’s value is less than
©’s value, since there may still be nodes in the path from u to the root with values
greater than v’s value. Neither can P, swap v and wu, since this would cause u
to move down and as will be understood from the next paragraph, an ascending
node must not move down. Moreover, P, cannot wait for u to be floated up by
#’s owner. Therefore, P; floats u one location up, or makes u independent, by
calling GetNonAsc recursively.

Since one process may float a node owned by another process, a process
may lose its node. The owner F; of node v must not return before v is made
independent and the fnsert(v) operation is completed. Therefore, if P; loses v,
F; locates v by scanning the path from the last location it ohserved v, towards
the root, until it reaches the first independent node with value less than or
equal to v's value. Since an ascending node can only rmove upwards, if v is not
located, it must have been made independent and even might have been deleted
from the priority-queue. If v is not located or if it is found to be independent,
FloatUp returns. This also explains why an ascending node cannot be used as a
replacement for a deleted root: locating it would cost O{n) time.

Under the assumption that GefNenDes is non-blocking, it can be shown
that FloatUp and GetNonAsec are non-blocking as well. However, FloatUp and
GetNonAsc are not wait-free, since an ascending node’s parent may change again
and again as an infinite number of ascending and descending nodes move by the
node (and as was explained, an ascending node can be made independent only if
its parent is an independent node, whose value is less than the ascending node’s
value).

3.4 DeleteRool and GelNonDes

A process that executes DeleteRoot (Figure 3) acts according to the type of the
root. An independent node: deletes the root and returns it. An ascending node:
calls GetNonAse(l). A descending node: calls GetNonDes(1). A deleted node:
calls SwapRoot to find a replacement for the root (which will be seeped down
later on). An empty node: returns FAILURE.

GetNonDes (Figure 4) gets to a specified location a non-ascending node.
First, GetNonDes makes sure that both sons of the specified location are non-
descending (by calling GeiNonDes recursively for each of the sons, if needed).
‘Then, GetNonDes repeatedly tries to either make the node in the specified lo-
cations to be independent (if it is less than both its sons), or to swap the node
in the specified location with its least son (otherwise}.

BIBLIOTHEQUE DU CERIST

12

DeleteMin)
return (DeleicRooi());

DeleteRoot{)
while (THUE) do

roat 1= LL(Heap{1]);

case root of

Ind: if { SO(Heupit], {—oo, IND, TRUE)) } then return {rooi.vai);
Fmpty: return (FAILURE);
Asc SC{Heap[1], {root.vel, IND, root. frz});
Des: GetNonDes(1,raot);
Deleted: SwapRoot();
end case
end while

Fig. 3. The non-blocking algorithm for Deleie}in

3.3 Correctness Proof

We define the occurrence time of an Insert(s) operation as the time v was made
independent. We define the cccurrence time of a DeleieMin operation as the
time the root is deleted for that operation. The correciness is implied by the
following lemmas:

Lemme 1. Locations are scized in order - wilh no geps and withoul stepping
aver non-emply locations.

Lemma 2, SeizcTail{v) refurns @ value ¢ other than FAILURE iff the location
Heap{t] is seized for v, If SeizeTail(v} returns FAILURE then there exisis a time
within the ezecution interval of SeizeTail tn which the heap is full

Lemma 3. An ascending node carn only move up and ¢ descending node can
gnly move down.

Corollary: An ascending node cannot be passed by another ascending node
and a descending node cannot be passed by another descending node.

Lemma4. Any non-ascending node v satisfies lhat each of the independent
nodes on the path from v to the root has a velue that is less than or equal o v’s
vafue and eack of the ascending nodes on the paih from v to the roof kus ¢ value
that 1s strictly less than v’s valze.

e e e mARTTR- T Aim.TTaEear MW e T IR irlm v MM RIS T S TEATIMERL - L me 0w = wr W ane R -

BIBLIOTHEQUE DU CERIST

13

GetNonDes(t, cur)

D= left(t);
r 1= right{f);

while (Des{cur)) do

/¥ Call GeiNonDes recursively to make sure both sons are non-descending. +/
{son := LL(Heapll]);

if Des{lson) then GetNonDes(l,lson);

rson := LI{Heap[r]);

if Des(rson) then GetNonDes(r,rson);

while { VL{Heaplt])) do

lson := LL{Heapli]);
rson := LL{Heap[r]});
if ((isen.val < cur.val) or (rson.val < cur.val)) then
/* One of cur’s sons is less than cur — swap cur with its least son. +/
if { (Ison.vel < rson.val) or ({lson.val = rson.val) and Ind(ison}) } then
if (5C2(Heop[t], (1s0n.val, Ison.type, cur. frz),
Heapll], (cur.val, cur.type,lson.frz))) then
return (I);
else
if (SC2(Heap(t], (raon.val, vson.type, cur. frz),
Heap[r], (cur.val, cur.lype, rson.frz}}) then
return {r};

else
[cur is less than both its sons - make cur independent. *»/
if (SC(Heap[t),(cur.val IND, cur. frz}}) then
return (1);

end while

cur := LL(Heap[t]);
end while
return (t);

Fig. 4. The non-blocking algorithm for GetNeonles

BIBLIOTHEQUE DU CERIST

14

Lemuna 5. Let v be an ascending node last observed by proczss Py in lacation x,
If P; fails to locate a node with the same value as v by scanning the path from
to the root, then v must have elready been made independent, '

Lemnia 6. Let P; be the owner of node v. If P; returns SUCCESS from In-
sert(v), v has already been made independent. If Py returns FAILURE from In-
sert(v), then @ legal occurrence time (within the execation interval of the Insert
operation) in which the heap was fufl, can be defined.

Corollary: The occurrence time of lnseriing a node v, can be defined as the
time v was made independent.

Lemma 7. Lel v be & node relurned dy process By thal execules Deletediin. v
is then the node with the least value of all nodes in the priorily-queve that were
inserted before v was deleied (and that have not been deleted from the priority-
quene before v was deleted). If however P; veturns TAILURE from DeleteMin,
then o legal occurrence time (within the execulion inferval of the DeleteMin
operation} fn which the heap was emply, can be defined.

Lemma 8. The algorithm is non-blocking: Under the assumption thai af eny
given lime, evenlually some process ezecules an insiruciions, at any given fime,
eventnally an operation initiated by some process is completed. -

3.8 Time And Space Complexity Analysie

Tn this section we briefly sketch the time complexity anaiysm for executing a set
of v Insert and Deicteifin operetions. Lei n be the maximum number of nodes
in the heap during the execution of the » operations. We define a sfep of node v
as the event of v moving one location {from parent to son or from son to parent).
Since an ascending node can only move up, it can step at most logn steps. In
the same wey, 2 descending node can step at most log n steps as well, The time
complexity is computed using the following lemma:

Lemma9. Any ileralion consisting of O{1) instruciions, which is excculed in
any of the subroutines, can be crediled 1o one of the following evenis, suck ihat
at most O(1) tleralions, erecuted by e specific process, ere credited fo the same
cvent: A step of a non-independent node, seizing a loceiion for ¢ new node,
deleting ihe root and making a node to be independent.

In a set of » operations there sre at most Ofr logn) steps of non-independent
nodes and at most {{r) events of seizing locations for new nodes, deleting the
root and making nodes to be independent. Together we get a total of at most
O(rlogn) events. Since in a set of r operations there are st most O{rlogn)
events, each one of them is credited for at most Q1) iterations consisting of
0{1) instructions, executed by a specific process, then each process can execute
at most O(rlogn) instructions. Therefore all processes together execute at most
O{prlog n) instructions during the set of r cperations.

P

BIBLIOTHEQUE DU CERIST

15

4 The Wait-Free Implementation

The non-blocking implementation can be made wait-free, by a technique pre-
sented in this section. The technique is inspired by the operation combining
technique [8]. However, operation combining suffers from all the disadvantages
described earlier, since each process operates on a local copy of the shared object.

4.1 Making the Non-Blocking Implementation Wait-Free

We hiold a shared array Reg[l..p], where p is the number of processes, called the
shared request array. We also hold, for each process F;, an array LocalReg[1..p],
called F’s local request array. Al the eniries in the shared request array are
initialized to a state that denotes that there is no pending request.

Before executing an operation {e.g. seizing a location for a new node}, F;
issues a request for that operation in Regfz]. P then copies Reg[l..p] to LocalReg;,
and iries to execule each one of the requesls registered in LocalReq;, until all
of them are fulfilled (either by P, or by some other process}). Requests may be
fulfilled not in the order in which they were issued; the correctness, however, is
not violated, since each request is fulfilled within the execution interval of the
corresponding operation.

When P; fulfills a request issued by process P;, P; marks the request as
fulfilled in Reg[7]. This enables the other processes (and P; in particular) to
learn that the request had been fulfilled and that they can move on. F; must
not mark the request as fulfilled before it had fulfilled the request, because it
might fail executing the request or it might even halt. P; must also not mark the
request as fulfilled efter it had [ulfilled the request, since other processes might
try to fulfill the request before P; marks it as fulfilled, and then the request might
be fulfilled more than once {e.g. more than one location seized for the same new
node}. Therefore, both executing a request and marking the request as fulfilled
in Req{j] must be done simultaneously, by a single atomic instruction. In case
fulfilling a request in the non-blocking algorithm uses a single SC instruction,
this is performed by a single 5C2 instruction in the wait-free algorithm which
replaces the SC instruction the non-blocking algorithms.

Measures must be taken to ensure that after a request is fulfilled, a process
that tries to {ulfill that request continues to execule only a bounded number
of instructions before it learns that the request had been fulfilled (and returns).
One way to do this is {0 augment all the loop-conditions to check that the request
is not fulfilled yet.

4.2 Proving that the Technique Yields a Wait-Free Implementation

We now show that this technique yields a wait-free implementation. Let ¢; be
the time in which P; finishes copying Reg[1..p] and let 1, be the time in which all
the requests registered in LocalReg; are fulfilled. The number of requests fulfilled
by all processes together within the interval [t1,%2] is bounded by 2p — 1:

BIBLIOTHEQUE DU CERIST

16

- At most p unfulfitied requests that weze issued before 15 {registered in Reg{l..p]
iIl_ f;).)

— At most p — 1 requests that are isgsued within [#1,£:]: All the requests reg-
istered in LocalReg; that are not fulfilled, are still registered in Reg{l..p}. A
process P; that issues a request within {ty,#s} observes these pending re-
quests in Reg, copies them to LocalReg; and does not issue another request
before these requestls are fuliilled.

It can be proved that the algorithm to fulfill & request (e.g. SeizeTail) is
still non-blocking. Since the number of the requests that can be executed within
ft1,12] is bounded, since the algerithm to fulfill a request is non-blocking, and
gince after a requesi is fulfilled a process that tries to fulfill that request continues
to executes a bounded number of instructions before it learns that the request
had been fulfilled, we get a wait-free implementation. It can be proved that the
correctness for is not violated. The wait-free algorithime are described with detail
in 110

4.3 Complexity Analysis and Performance

The time complexity for executing a set of r Inseri and DeleteMin operaticns in
the wait-free implementation is O(rp(p +logn)}, whick is the sum of G{rplogn)
(the corresponding time complexity for the non-blocking implemeniation) and
O(rp?) (the extra work for sconning the requests arrays). This time complexity is
compared with O(rp(p+n))} in [8). The space complexity is O(n+p*), compared
with O({n + p)p) in [8].

Making the implementation wait-free degrades overall system performance.
Therefore, if the wait-free property is not required, the non-blocking implemen-
tation should be generally preferred over a wait-free implementation. If the wait-
free property is required, the level of wait-frecedom can be controlled, by having
a process copy the requests array and trying to fulfill the requests registered
there only after some constant number, k, of requests it had fulfilied for itself.
With & = 1 we get the current waii-free implementation. With 2 = co we get
the current non-blocking implementation.

5 Conclusions

The primary provlems that have to be dealt with in an effectively parallel wait-
free implementation of a concurrent object are:

— An operation on the object may be started before previous operations are
completed, so the object may be in an inconsistent state while more than
one operation is in progresses.

— There may exist parts of an operation on the ebject that take more then
one atomic instruction and must not be interrupted uniil completed.

We have presented three general techniques that may be used in converting
a sequential cbject to a wait-free, effectively parallel, concurrent object:

. eem Tex

BIBLIOTHEQUE DU CERIST

17

— Marking words in memory as consistent {independent) or inconsistent (non-

independent).

~— The use of a freezing token.
— A technique for converting a non-blocking implementation to a wait-free one.

Using these technigques, we have presented a time and space efficient, effec-

tively paraliel, wait-free implementation of a concurrent priority-queue, based on
a heap data structure. It would be inieresting to find a lower bound of waitfree
implementations of a concurrent priority-queue, given the set of allowed atomic
primitives.

References

1

[

10

11.

12,

13.

i4.

15.

A. V. Aho, 1L.E. Hopcroft, J. D. Ullmar. Data Structures and Algorithms. pages
139-145.

. 1. Alemany, E. W, Felten. Performance Issues in Non-blocking Synchronization on

Shared-memory Multiprocessors. In Proceedings of the 11th ACM Symposium on
Principles of Distributed Computing, pages 124134, August 1992

. Aspnes I. and M. Heslihy, Fast Randomized Consensus Using Shared Memory,

Jour. of Algorithms, Vol. 11, pages 441-461, September 1990,

. J. Aspnes, Time-~ and Space-Effictent Randomized Consensus, Proceedings of the

9th ACM Conference on Principles of Distributed Computing, August 1990, pages
325-331.

. R. L Anderson, H. Woll. Wait-Free parallel algorithms for the union-find problem.

In Proceedings of the 28rd ACM Symposium on Theory of Computlation, pages
370-380, May 1991.

. B. Chor, A. Israeli, and M. Li, *On Processors Coordination Using Asyuchronous

Hardware, Proceedings of the 6th ACM Conference on Principles of Distributed
Computing, pages 86-97, August 1987,

. M. P. Herlihy. Impossibility and universality results for wait-free synchronization,

In Seventh ACM SIGACT-SIGOPS Symposgium on Principles of Disiributed Com-
puting, August 1938.

. M. P. Herlihy. A methodology for implementing highly concurrent data structures.

DEC Cambridge Research Lab Technical report 91/10.

. M. P. Herlihy, J. E. B. Moss. Transactional Memaory: Architectural Support for

Lock-Free Data Structures. DEC Cambridge Research Lab Technical report 92/7.
M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent
objects. In ACM TOFPLAS, 12(3):463-492, 1990,

A, Israeli and L. Rappoport, Efficient Wait-Free Implementation of a Concurrent
Priority Queue. Tehnion, Faculty of Compuier Science, Technical report 781,
Lout M. C, and H. H. Abu-Amara, Memory Requirements for Agreement among
Unreliable Asynchronous Processes, Advances in Computing Research, JAI press,
1987, pages 163-183.

L. Lamport, “On Interprocess Communication. Part 1. Basic Formalism”, Dis-
tributed Computing 1, 2 19886, pages 77-85.

L. Lamport, “On Interpracess Communication. Part TI: Algorithms”, Distributed
Computing 1, 2 1986, pages 86-101.

G.L. Peterson, Concurrent reading while writing, ACM Transactions on Program-
ming Languages and Systems, Vol. 5, No. 1, pages 46-55.

