BIBLIOTHEQUE DU CERIST

Thomas Lengauver (Ed.) e A 3%

Algorithms — ESA °93

First Annual European Symposium
Bad Honnef, Germany

September 30 - October 2, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris 'Tokyo

Hong Koeng Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Lditors

Gerhard Goos Juris Harlmanis

Universitit Katlsruhe Corpell University

Postfach 69 80 Deparlment of Compucer Scicice
Vincenz-Priessnitz-Straje ! 4130 Upson Hall

2-76131 Karlsrube, Germany ithaca, NY 14833, USA

Volume Rditor

Thomas Lengauer

Gesellschaft fiir Mathematik und Daienverarbeitung mbH
Institui fur methodische Grundlagen (I1)

SchloB Birlinghoven, T3-53732 Sanki Augustin, Germany

o
it
CR Subject Classification (1991 F2, G, L35 203 7

TSBN 3-340-57273-2 Springer-Verlag Berlin licidelberg New York
ISBN 9-387-57273-2 Springer-Verlag New York Berlin Heidelberg

‘This work is subject to copyright. All rights are reserved, whether the whole or pari
of the materizal is concerned, specitically the rights of trans!ation, repriniing, re-use
of illustrations, recitation, broadcasiing, reproduction on microfilms or in any other
way, and storage in data banks, Dupiication of this publication or parts therecf is
permitied only under the provisions of the German Copyright Law of Sepiember 9,
1965, in its curreni version, and permission for nse must always be obtained from
Springer-Verlag. ¥iolations are liable for prosecution under the German Copyright
Law.

© Bpringer-Verlag Berlin Heidelberg 1993
Printed in Germarny

Typesetting: Camera-ready by author
Printing and binding: Druckhsus Beltz, Hemsbach/Bergsir
45/3140-543210 - Printed on acid-free papet

BIBLIOTHEQUE DU CERIST

Preface

The papers in this volume were presented at the First Annual Furopean Sympasium on
Algorithms (ESA™93), held September 30-October 2, 1993, in Bad Honnef/Bonn, Ger-
many. The symposium is intended 1o be an annual series of international conferences,
held in early fall, that cover the field of algerithms. Within the scope of the symposium
lies all rescarch on algorithms, theoretical as well as applied, that is carried gut in the
fields of cornputer science and discrete applied mathematics. The symposium aimus to cater
ta both of thesc research commmunities and to intensify the exchange between them.

The program commitice met April 30, 1993, and selccted the 35 contributed papers in this
volume from 101 abstracts submitted in response 1o Lhe call for papers. The sclection was
based on originality, qualily, and relevance to the study of algorithms. If is anticipated
that most of the submissions will appear in a more polished and complete lorm in scien-
tific journals. The conference program also included invited lectures by Michael Paterson
(Coventry): Evolution of an Algerithm, Alexander Schrijver {Amsterdam): Complexity
of Disjoint Paths Problems in Planar Graphs, and Michael S. Waterman (Los Angeles);
Sequence Comparison and Statistical Significance in Molecular Biclogy.

We wish to thank all members of the program committee, all those who submitted ab-
stracts for consideration, our referees and colleagues who helped in the evaluations of the
abstracts, and the many individuals whe contributed to the success of the conference.

" We would like t0 acknowledge the help of the lollowing sponsoring institulions and cor

porations: Gesellschaft fiir Informatik (GI), Rheinische Friedvich-Wilhelms-Universjtat
Bonn, Gesellschaft fir Mathematik und Datenverarbeitung (GMB), Association for Com-
puting Machincry (ACM) Special Interest Group for Algorithms and Comnputation Thecry,
and European Association for Thearetical Computer Science (EATCS).

Finally we would like to thank the following people for their extracrdinary engagement

in organizing the confercnce: Christine Harms, Brigitte Hénig, Luzia Sassen-Iefleler, and
Egon Waznke.

Bonn, September 1693 Themas Lengauer

BIBLIOTHEQUE DU CERIST

Program Commitiee

Jiti Matoudek {(Praha)
Kurt Mehlhorn {Saarbriicken’
Michel Minoux { Paris)

Rainer Burkard {Graz)
Apdras Frank (Budapest)
Gastor: Gannet {Ziirich)
Mark Jerram {Edinburgh) Miklos Santha (Orsay)
Jan van Leeuwen (Utrecht) Paul Spirakis (Patras)
Thomas Lengauer {Bonn, Chairman} IEsko Ukkonen {Helsinki}
Fabrizio Luccio (Pisa)

Additional Beferees

J. Almeida S. Trani M. Regnier

G. Benson AL Joux F. Rend]

A, Bertossi i, Kalorkon G. Rote

S. Boucheron 3. Kannan R. Rudolf

I.. Caudal C. Kenyon R. Szad

J.M. Couveignes B. Klinz A. Slissenko

C. Crepeau M. Leoncing M, Teillaud

M. Crochemaore Y. Manocussakis P, Tsigas

H. de Fraysseix . Nurmi J. van der Veen
T. Elamaa M. Nykinen J. Vilo

3. Farach I.. Pagli 8. von Stengel
P, Ferragina M. Papatriantafillon J. von zur Gathen

I*. Fiorini

-

Pasaren

G.J. Woginger

JLL. Fouquet . Paschos T. Wanrow

L. Gargano ¥, Pferschy V., Zissimopoulos
D. Gpuycu-Beauchamps P, Raghavan

R. Grossi 3. Rao

so.. R OgME ©

S e D VTN SN ARG S TR IR e . M TR TR 3

BIBLIOTHEQUE DU CERIST

Table of Contents

5. Albers
The Influence of Lookahead in Competitive Paging Algorithms _....o........... .. 1

M.J. Atallah, D.Z. Chen, D.T. Lee
An Optimal Algorithm for Shortest Paths on Weighted Interval and
Circular-Are Graphs, with Applications ... i i i 13

Y. Ben-Asher, D. Gordon, A. Schuster
Efficient Self Simulation Algorithms for Reconfigurable Arrays, 25

P, Bericlazzi, G. Di Battista, C. Mannino, R. Tamassia
Optimal Upward Planarity Testing of Single-Source Digraphs 37

S.N. Bhatt, G. Bilardi, G. Pucci, A. Ranade, A.L. Rosenberg, E.J. Schwabe
On Bufferless Routing of Variable-Length Messages in Leveled Networks 19

D. Breslauer
Saving Comparisons in the Crochemore-Perrin String Matching Algorithm 61

A. Bruggemann-Klein
Tnambiguity of Extended Regular Fxpressions in SGML Document Grammars 73

N.H. Bshonty
On the Direct Sum Conjecture in the Straight Tine Model ..o oo oo oL 85

R.F. Cohen, R. Tamassia
Combine and Conquer: a Gencral Technique for Dynamic Algorithms a7

A, Datta, A. Maheshwari, J.-R. Sack
Optimal CREW-PRRAM Algorithms for Direct Domirance Problems ,............. 109

M. de Berg, M. van Kreveld
Trekking in the Alps Without Freezing or Getling Tired e 121

0. Devillers, M. Golin
Dog Bites Postman: Point Location in the Moving Voronei Diagram and
Related Problems . oou oo ot e e e 133

1. Diaz, M.J. Serna, J. Toran
Parallel Approximation Schemes for Problems on Planar Graphs 145

M.R. Fellows, M.T. Hallett, [I.T. Wareham
DNA Physical Mapping: Three Ways Difficulto 157

P. Flajolet, P. Zimmermann, B. van Cutsem
A Calculus of Random Generationeii i iiraiiae i ieraaees P 169

0. Gerstel, 5. Zaks
The Bit Complexity of Distributed Sortingo 181

BIBLIOTHEQUE DU CERIST

wili

J. Hagauer, GG, Rote

Three-Clustering of Poinss in the Piane ... oo oo

J. Hromkovig, R. Klasing, E.A. Stéhr, H. Wagener
Gossiping in Vertex-Disjoint Paths Mode in d-Dimensional Gride and

PN E S o3 o T S DI

G.F. Italiano, LA, La Poutré, M.H. Rauch

Fully Dynamic Planarity Testing in Planar Embedded Graphs

Z. Ivkovié, E.L. Lloyd

Fally Dynamic Algorithms for Bin Pecking: Being {Mostly) Myopic Helps, ...

T. Jardan

Tncreasing the Vertex-Connectivity in Directed Graphso oL

B. Klinz, R. Rudelf, G.J. Woeginger

On the Recognition of Permuted Bottlencck Monge Matrices

T. Kloks, H. Bodleender, H. Muller, D. Kratsch
Comnputing Treewidth and Minimum Fill-In: A]l You Need are the

Binimal Separators .. e i

M. Kunde
Block Gossiping on Grids and Tori: Deterministic Sorting and

Routing Match the Bisection Bound

J.K. Lenstra, M. Veldhorss, B. Veltman

The Complexity of Scheduling Trees with Communication Delays

E.W. Mayr, B. Werchner

Optimal Tree Contraction on the Hypercube and Related Networks,

M. Paterson (Invited Lecture}

Evolution of an Algorithino

§. Rajasekaran
Mesh Connected Computers with Fixed and Reconfigurable Buses:

Packet Routing, Sorting, and Selection o i

V. Ramachandran, H. Yang o
An Efficient Parallel Algorithm for the Layered Planar Monotone Cirenit

LT T ey 11 « 1 T R R REEE

J.F, Stheyn, M. Kaufmann, . Raman

Randomized Routing on Meshes with Buses ..o,

K. Simon, D. Crippa, F. Collenberg

Oun the Distribution of the Transitive Closure in a Random Acyclic Digraph

A. Scheijver {Invited Lecture)

Complexity of Disjoint Paths Problems in Planar Graphsc.cooiein

192

L2
[}
M

236

248

260

272

284

295

308

309

et e am ey BT iy AR T R BRI ¢ RPN TR TR S T 1 £~ T A

BIBLIOTHEQUE DU CERIST

A. Srivastav, P. Stangier

Integer Multicommeodity Flows with Reduced Demands 360

5. Subramanian

A Fully Dynamic Dala Structure for Reachability in Planar Digraphs a7z

D. Wagner, K. Weihe

A Linear-Time Algorithm for Edge-Disjoint Paths in Planar Graphs 384

M.S. Waterman (Invited Lecture)

Sequence Comnparison and Statistical Significance in Molecular Biclogy 396
- E. Welzl, B. Wollers .

Surface Reconstruction Between Simple Polygons via Angle Criteria e 397

X. Zhou, 8. Nakano, T. Nishizeki

A Linear Algorithin for Edge-Coloring Partial k-Trees oot 409

Author Index B T, 419

1S1430 NA INO3IHLOITdId

rmmn e Gt - T G SRR aaEE e = W oo M M. T PR G b E o B i S S CTAPRGE. YRR SRR e I

BIBLIOTHEQUE DU CERIST

The Influence of Lookahead in Competitive
Paging Algorithms
(Extended Abstract)

Susanme Albers*

Max-Planck-Institut fur Informatik, 66123 Saarbrucken, Germany

Abstract. We intraduce a new mode! of lookahead for on-line paging algo-
rithrs and study several algorithms using this model. A paging algorithm is
on-line with strong lockakead | if it sees the present reguesi and a sequence
of future requests that contains ! pairwise distinct pages. These pages also
differ from the page requested by the present request. We show that strong
lookahead has practical as well as theoretical importance and significantly im-
proves the competitive factors of on-line paging algorithms. This is the first
model of lonkahead having such properties, In addition to lower bounds we
present a number of deterministic and randomized on-line paging algorithms
with strong lookahead which are optimal or nearly optimal.

1 Introduction

In recent years the competitive analysis of on-line algorithms has received much
atteniion [ST85, KMRS88, MMS88, BBKTWI0, G91}. Among on-line problems, the
paging problemis of fundamental interest. Consider a two-level memory system which
has a fast memory that can store & pages and a slow memory that can manage,
basically, an unbounded number of pages. A sequence of requests to pages in the
memory system must be served by a paging algorithm. A request is served if the
corresponding page is in fast memory. If the requested page is not stored in fast
memory, a pege faull occurs. Then a page must be evicted from fast memory so
that the requested page can be loaded into the vacated location. A paging algorithm
specifies which page to evict on a fault. The cost incurred by a paging algorithm
equals the number of page faults. A paging algorithm is on-line il it determines
which page to evict on a fanlt without knowledge of future requests.

‘We analyge the performance of on-line paging algorithms using competitive analy-
sis [ST85, KMRS88], In a competitive analysis, the cost incuzTed by an on-line algo-
rithin is compared to the cost incurred by an opfimal off-line algorithm. An optimal
off-line algorithm knows the entire request sequence in advance and can serve it with
minimum cost. Let Cy4{¢) and Copr(c) be the cost of the on-line algorithm A4 and
the optimal off-line algorithm OPT or request sequence o, Then the algorithm A is
c-competitive, if there exists a constant a such that

'A(O'] <c 'C()PT(G") +a

for all request sequences o. The competiitve factor of A is the infimum of all ¢
such that A4 is c-competitive. If 4 is a randomized algorithm, then C4(c) is the

" This work was done while the author was a student at the Gradujertenkolleg Informatik,

Universitat des Saarlandes, and was supported by & graduate fellowship of the Deutsche
Forschungsgemeinschaft,

BIBLIOTHEQUE DU CERIST

expected cost incurred by 4 on reguest sequence o. In this paper we evaluate ihe
performance of randomized on-line algorithms orly against ihe oblivious adversary
{see [BBKTW90] for detaiis). Belady [B66] has exhibited an optimal off-line paging
algorithm which is also called the MIN algorithm. On a fault, MIN evicts the page
whose next request occurs farthest in the future,

The paging problem (without lockahead) has been studied intensively. Sleator
and Tarjan [ST85] have demonstrated that the well-known replacement algorithms
LRU (Least Recently Used} and FIFO {First-In First-Out) are k-compeiitive. They
have also proved that ne on-line paging algorithm can be better than k-competitive;
hence LRU and FIFQ achieve the best competitive factor. Fiat et al. [FKLSY931]
have shown that ne randomized on-line paging algorithm can be better than (&}
competitive against an oblivicus adversary. Here H{k) = Ele 1/% denates the kth
harmonic number. They have also given a simple replacement algozithm, called the
MARKING algorithm, which is 2H (k)-competitive. McGeoch and Sleator [MS91]
have proposed a more complicated randomized paging algorithm which achieves a
competitive factor of H{k).

In this paper we study the problem of lookahead in on-line paging algorithms. An
important question is, what improvement can be achieved in terms of competitive-
ness, if an on-line algorithm kinows not only the present request to be served, bui
also some future requests, This issue is fundamental from the practical as well as
the theoretical point of view. In paging systems some requests usually wait in line to
be processed by a paging algorithm. One reason is that requests do not necessarily
arrive one after the other, bul rather in blocks of possibly variable size. Farther-
more, if several processes run on a computer, it is likely that some of them incur
page faulis which then wait for service, Many memory systems are also equipped
with prefetching mechanisms, i.e. on a request not only the currently accessed page
but alse some related pages which are expected to be asked next are demanded to
be in fast mernory. Thus each request generates a number of additional requests. In
fact, some paging algorithras used in practice make use of lockahead [S77]. In the
theoretical context a natural question is: What is it worth to know the future?

Previous research on lookahead in om-line algorithms has mostly addressed dy-
nainic location problems and on-line graph prcblems [CGS88, 160, KTa1, H5%2};
only very little is known in the area of paging with lookahead. Consider the intuitive
model of lookahead, which we cail week lookehead, Let { > 1 be an integer, We say
that an on-line paging algorithm has a weck lookahead of gize I, if it sess the present
request to be served and the next I future requests. It is well known that this model
cannot improve the competitive factors of on-line paging algorithms. If an on-line
paging algorithm has a weak lookahead of size [, then an adversary that constructs
a request sequence can simply replicate each request ! times in crder to make the
lookahead useless. The only other result known on paging with lookakead has been
developed by Young [¥91]. According to Young, a paging algerithm is on-line with &
resource-bounded lookahead of size [if it sees the present request and the maximal se-
quence of future requests for which it will incur ! faults. Young presents deterministic
and randomized on-line paging algorithms with resource-bounded lookahead I which
are max{2k/!, 2}-competitive and 2{In{k/!} + 1}-competitive, respectively. However,
the madel of resource-bounded lookakead is unrealistic in practice,

We now inttoduce a mew model of lookahead which has practical as well as
theoretical importance. As we shall see, this model can significantly improve the

BIBLIOTHEQUE DU CERIST

competitive factors of on-line paging algorithms. Let ¢ = o{1),0(2),...,0(m) be a
request sequence of length m. o(t) denotes the request at time £. For a given set S,
card{ S} denotes the cardinality of 5. Let I > 1 be an integer.

Strong lookahead of size !: The on-line algorithm sees the present request and a
sequence of future requests. This sequence contains [pairwise disiinet pages which
also differ from the page 1equested by the present request. More precisely, when
serving request {t), the algorithm knows requests o(t+1),0{t +2),...,0(t'), where
t' = min{s > tleerd({c{t)o(t + 1},...,0(5)}} = I + 1}. The 1equesis o(s), with
s > t' + 1, are not seen by the on-line algorithm at time ¢,

Strong lookahead is motivated by the observation that in request sequences gen-
erated by real programs, subsequences of consecutive requests generally contain a
number of distinct pages. Furthermore, strong lookahead is of interest in the the-
oretical context when we ask how significant it is to know part of the future. An
adversary may replicate requests in the lookahead, but nevertheless it has {o reveal
some really significant information on future requests.

In the following, we always assume that an on-line algorithm has a strong look-
ahead of fixed size ! > 1. If a request sequence o = (1), ¢[2},...,0(m) is given, then
for all £ >> 1 we define a value A(). I card{{a(t),a(t+1},...,a(m)}}) < [+1 then let
A(f) = m; otherwise let A(t} = min{t’ > t{eard({o({t),a{t +1),...,0(t'}}) = 1 + 1}
The lockehead L{t} ai time t is defined as

L(t] = {0(3)]5 =ti+1,..., Ai}}

We say that « page « is in the lookehead al time ¢ if z & L{t).

The remainder of this paper is an in-depth study of paging with strong lockahead.
Strong lookahead is the first model of lookahead that is significant from a practical
and theoretical standpoint and also reduces the competitive factors of on-line paging
algorithms. In Section 2 we consider deterministic on-line algorithins and present a
variant of the algorithm LRU that, given a strong lockahead of size I, where | < k2,
achieves a competitive facter of (k — I). We also show that ne deterministic on-line
paging algorithm with strorg lookahead I, I < k — 2, can be better than {k — I}-
competitive. Thus our proposed algorithm is optimal. Furthermore, we give another
variant of the algorithm LRU with strong lockahead !, I < & — 2, which is (k—14-1)-
competitive. Interestingly, this algorithm does not exploit full lockahead but 1ather
serves the request sequence in a series of blocks. Section 3 addresses randomized on-
line paging algorithms with strong lockahead. We prove that a medification of the
MARKING algorithm with strong lookahead [, I < k — 2, is 2H (k — {)-competitive.
This competitiveness is within a factor of 2 of optimal. In particular, we show that
no randomized on-line paging algorithm with strong lookahead [, ! < k — 2, can
be better than H(k — I)-competitive. Furthermore we present an extremely simple
randomized on-line paging algorithm with strong lookahead !, ! < k - 2, which is
{k — I + 1)-competitive.

2 Deterministic paging with strong lookahead

Unless otherwise stated, we assume in the following that all our paging algerithms
are lazy algorithms, i.e. they only evict a page on a fault.

BIBLIOTHEQUE DU CERIST

Let & > 3. We consider the important case that an on-lirie paging aigotithm has
a strong lookahead of size ! < k — 2. The onlire paging algorithms we present are
extensions of the algorithm LRU fc our model of strong lookahead.
Algorithm LRU{I): On a fault execute the following steps. Among the pages in
fast memory which are noi contained in the present lockahead determine the page
whose last request gccurred least recently. Ewvict this page and load the requested
page.

Theorem 1. Lei { < k—2. The algorithm LRU1} with sirong lockehead ! 12 {k —1)-
competitive.

Now we prove this theorem. Let ¢ = {1}, 0(2),...,5({m} be a request sequence
of length m. We assume without loss of generality that LRU(!) and OPT stari with
an empty fast memory and that on the first k faults, beth LRU(!} and OPT load
the requested page into the fasl memory. Furthermore we assume that o contains at
least [4 1 distinct pages. The {ollowing proof consists of three main parts. First, we
introduce the potential function we use to analyze LRU(I}. In the second part, we
partition the tequest sequence o into a series of phases and then, in the third part,
we bound LRU({}’s amoitized cost using that partition.

1. The potentizl function
We introduce some hasic notations. For t = 1,2,...,A(1) — I, let u{t} = 1 and for
= AL M H1,...,m, let
uft} = mex{t’ < tjeard{{c{t), o'+ 1),...,0()}) =i+ 1}
Hefine
M) = {o(s)]s = plt), u{t)+ 1,..., ¢t}
For a given time ¢, the set M (¢} contains the last ! + 1 requested pages.
Fort=1,2,...,m, let Sppy(t) be the set of pages contained in LRU(I)'s fast
memory after request ¢, and let Sopr{t) be the set of pages contained in OPT’s
fast memory after request £. Sppy(ry(0) and Sopr(0) denote the sets of pages which
are initially in fast memory, i.e. Sprogy(0) = Sopr(0) = @. For the analysis of
the algorithm we assign weights tc all pages. These weights are updated after each
tequest. Let wlx,t} denote the weight of page x after request t, 1 < £ < m. The
weighis are set as follows. ¢ & Spar{t) or = € L(t), then

w(z,) = 0.
Let j = card{Speym{t) \ L(1)). Assign integer weights from the range [1, 5] to the
pages in Sppu (1) \ L(2) such that any two pages =,y € Spreq(t) \ L{Z) satisly
w(;u,i) < wiy, f’)

it the lasi request to z occurred zazlier than the last request to v, Fer i = 1,2,...,m,
let
5{t) = Sprumfit) \{M{E) U L{L) U Sopr (1)}

We now define the potential function:

Ft)= Y wlz,t)

TES(E)

Intuisively, S{¢} contains those pages which cause LRU({] ‘o have s higher cost than
OPT. Instead of the pages r € S{t), OPT can store pages in its fast memory which

BIBLIOTHEQUE DU CERIST

are not contained in Syppyr()(t) but are requested in the future. The weight w(z,1)
of a page = € S(t) equals the number of faults that LRU({) must incur before it can
evict x.

2. The partitioning of the request sequence

We will partition the request sequence ¢ into phases, numbered from 0 to p for some
p, such that phase 0 contains at most [+1 distinct pages and phase i, i =1,2,...,p,
has the following two properties. Let ¢ and ¢ denote the beginning and the end of
phase i, respectively.

Property 1: Phase i contains exactly !+ 1 distinct pages, Le.

card({o(t),a(t +1),...,0(5)}) = I + 1.

Property 2: For all z € SLRU(J)(if_l] \ {L[tl{») U SOPT(ff_l)},
w(z,) <k —1-2.

In the following, we describe how to decompose 5. We partition the request
sequence stariing at the end of . Suppose that we have already construcied phases
P(i+1),P(i+2),..., P(p). We show how to generate phase P(). Let tf = 2 , — 1.
(We let £ = m at the beginning of the decomposition.) Now set t = u(t{) and
compute Sppyay(t — 1)\ L{t}. If Sppuqa{t — 1) \ L(t) # 0, then let y be the most
recently requested page in Sppuy(t — 1)\ L(¥). We consider two cases. If Sppup{t -
D\EL{t) = @ orif Spppp(t — 1)\ L{t) # 0 and ¥ € Sopr(t — 1), then let 7 = ¢
and call the é-th phase P(i) = o(t}),o(t? + 1),...,(2f) a type 1 phase, Otherwise
(if SLRU[I)(t - 1) \L(t) # 0 and y e S()_PT(t - 1]) let ¢/, ¢ < {, be the time
when OPT evicted page y most recently. Let t? = 1" and call the i-th phase P(i) =
o), o(t? 1 1),...,0(if) a type 2 phase.

Lemma2. The partition generaled above salisfies the following conditions.
a) Phase P(0) conlains at most [+ 1 distinct pages.
b) Euvery phase P(3), 1 <1< p, has Property I and Property 2.

Proof. First we prove part a). We show that P(0) is a type 1 phase. This immediately
implies that P(0) contains at most { + 1 vertices. If P(0) was a type 2 phase, then
OPT would evict a page on the first request ={1). However, this is impossible becanse
initially the fast memories are empty and on the first & faults both LRU(!) and OPT
load the requested page into the fast memary.

Now we prove part b) of the lemma. Consider an arbitrary phase P{i), 1 <: < p.
Let t = p(tf). If Sprpay(t — 1)\ L(f) # @, then let y be the most recently requested
page in Scppmy(t — 1) \ L(t} and let t”, ¢ < 1, be the time when y was requested
most recently. If P(i) is a type 2 phase, then let ¢/, ' < ¢— 1, be the time when OPT
evicted ¥ most recently, (Since y € Sppr(t — 1), we have t¥ < ¢ <{ 1)

We show that P{i} contains exactly ! + 1 pages. For a type 1 phase there is
nothing to show. Suppose P(z} is a type 2 phase. Then ! = t'. Let s € [t',t — 1]
be arbitrary and let z be the page requested at time s. We need to show = € L(t).
So assume z ¢ L(t). Then by the definition of y, ¢ ¢ Spryu{t — 1), ie. ¢ was
evicted by LRU(!) at some time s’ £ [s + 1,£ ~ 1]. Since y was not evicted by
LRU(!) at time 5’ and ¢'s most recent request was at time t¥ < 5, we must have
y € (s} C {o(s)... ot — 1),0(t),..., ()} = {o(s'), ..., 00t — 1}} U L{t). But
y ¢ {o(s),...,o(t— 1)} and y & L{z), by the definition of ¢’ and y. Thus = ¢ L(¢)
is impaossible. We conclude that P(1) contains exactly [+ 1 distinct pages.

BIBLIOTHEQUE DU CERIST

It rernains to prove that P(i) has Property 2. Consider an arbitrary page ¢ €
Sprum o N{LH U Sopr (t_,)}. H w{z,1§) = 0, then the property clearly holds.
Therefore assume w{z,1f} > 1. By Property 1, L{t!) contains all pages which are
requested in P(i). Since w(z,t{}) > 1, we have 2 € Sppp(tf) \ L{t{} and hence
z ¢ LY U L{t§) D L{s) for all s € [t},15). Thus, z was a candidate for eviction
by LRU(!} throughout P(:), but was not evicled. This implies immediately that all
pages requested in P{3), i.e. all pages in L{t}}, also belong to Sypy{ff). Using a
very similar analysis we can show that y # 2 and ¥ € Spru()(tf). Hence we have
identified { + 2 pages in Sppu(){tf) which, at time ¢}, were requested later than z.
At time ¥, each of these pages has a weight of 0 or a weight which is greater than
that of . Thus, w{=,) < k—1-2.0

3. Bounding LRU(I)’s amortized cost

Using the partition of o generated above, we will evaluate LRU({)'s amortized cost
on . First we will bound the increase in potential 3 ;" &(t) — $(¢ — 1). Then we
will estimate LRU(])'s actual cost in each phase of ¢, Fort = 1,2,...,m, let

N{t) =S\ S(t—-1).
We set 4‘4(0) = .-_.r{[]) =0 and S(G) = SLRU(I)(O) \ {M[U} J L(U) U Sgpr (0)}, which
is used in the definition of N(1) = S(1}\ $(0).
We present two lemmas whichk are crucial in analyging the change in potential
&(t) — H{t - 1), 1 < t < m. Note that

()~ B(t-1)= Y wizt)— 3. wlzt-1)

&£ 5(¢) TES{t—1}
= E w{z,)+ E (w(we, i) — w(z, t - 1)) ~ Z w{z,t— 1}
e N{t) zeS(t—-13NE(t) z€S{t—~1)\ 5t}

Lemma3. Let 1 <t < m, Ifz & N(t}, then w(z,t) < k—I[-1.

Proof. By the definition of N{(t), we have 2 € Sppu (2) \ {M{£) UL() U Sorr(t)}-
Since » ¢ K(i), page ¢ is not requested in the interval [u(?),f] and hence 2 €
Scruw{u{t) — 1). We have = ¢ M () U L(t) which implies = ¢ I{s} for all s with
u{t) < & < t. Thus, ¢ has been a candidate for eviction by LRU(I} throughout the
interval [u(t),t], but was not evicted. It follows that all pages in A {2} must be in
Sproqy(t)- Note that M(t) contains ! + 1 pages because OFT docs not evict a page
before the (k+ 1)-st fault. At time ¢, ali pages in 3(¢) have a weight of 0 or a weighi
which is greater than wiz,t). Thus wiz,t) <k -i{-1.0

Lemmad. Letl <t <m and ez € S{t — 1IN S(t), Then g's weight satisfies w{zr,—

1} & wix, t). In perticular, if LRU(1) incurs o faull ef time i, then wiz,t — 1) >

w{z, 1).

Proof. Note that by the definition of S(¢ — 1) and 5(t), we have 2 € Sppyg)it ~

I\ Lt — 1) and 2 € Sppyp(t) \ L(t). Hence wiz,t— 1) 2 1 and w{z,t} > 1. The

inequality w{z,t — 1) > w(z,t), follows from the following two statements whose

proofs we omit,

1) Let u, v # =, be a page which satisfies wiy, ¢ — 1) = 0 and w(y, ¢} > 0. Then
wlz, i} < wiy,),

2} Lety, y # =z, be a page which satisfies w(y,1—1) > 0and w(e,t—1) < w(y, t—1}.
Then w(y, t) = 0 or wiz,t} < w(y,t).

BIBLIOTHEQUE DU CERIST

Now suppose that LRU(!) incurs a fault at time ¢. Then, at time £, LRU({} evicts
a page z, z # ¢, whose last request occurred earlier than z's last request, Hence
1 < w(z,t— 1} < w(z, ¢t — 1). Since the statements 1) and 2) hold, =’s weight must
decrease after z is evicted, i.e. w(z,t — 1} > w{z,t). O
Lemma 3 implies that at any time ¢, 1 <¢ < m, a page ¢ € N(t) can cause an
increase in potential of at most & — [— 1. Thus, for every , I < ¢ < m, we have
B(t) — Pt — 1) = (b~ 1 - L)card(N{t}) — W(t), (1)

where W(i) = W3{t} + W?3(t) + W>(2} and
wit)y= > (k—1—1-uw(z,1))

TEN(L)

wit)= > (wlz,t~1) - u(z,2))

z€S(t=1)NS(L)

Wity = > w(et—1).

zeS(t-1\5(2)
Forallt=1,2,...,m, we have
wit) > 0, Wi1) 20, W) > 0. (2)

Clearly, W(t) > 0 and W>{t) > 0. The inequality W?(z} > 0 follows fram Lemma
4.
Next we estimate Z:’;l card(N(t)) and derive a bound on Z:’;l &t} — #(t — 1).
To each element # € N{t) we assign the most recent eviction of ¢ by OPT. More
formally, let -
X ={(z.t) € (| J N®)) x {1, m]lz € N()}.
t=1

We define a function f: X —s [1, m]. For (x,t) € X we define
Fflz,?) = max{s < {|OPT evicts page z at time s}.

Note that f is well-defined. The next lemma presents two properties of the function
f. Part b) will be useful when bounding LRU{{)’s actual cost in each phase of &. The
proof of the lemma is omitted.

Lemmalb. a) The funetion f is injective.
b} Let (z,t) € X and f(z,t) = 1. Lett € [t2,15],0 <i < p. Ifi = 0, then t' € [}, 23],
Ifi> 1, then ' €1t7_,,£5].

Let Topr be the set of all ¢ € [1, m] such that OPT evicts a page at time £. Note
that Capr(o) = card(Topr). Let Tdpp = {f(z.t){(z,t}) € X}. By Lemma 5, f is
injective and hence

3" card(N () = card(X) = card(Thpp)-

=1

Thus, by equation (1), we obtain

o) —B(t—1) = (k— 1~ eard(Tpr) - 3 W(t). (3)

=1

BIBLIOTHEQUE DU CERIST

Mow we bound LRU{I)'s actual cost in each phase of . Fox ¢ = 0,5, ..., 2, let
Crrum(i} be the actual cosi LRU(!) incnrs in serving phase P(3}, and let Copr(i)
be the cost GPT incuis in serving P(i). Furthermore, let

T3pr = Torr \Topr
and, fer : =90,1,...,p, let
2 : r M3 b
Topr{t) = {t € Toppit; St <}

Lemima 8. a) CLRU(!)(O) = Copq‘(@)
b) Fori=1,2,...,p, Crrom(i) < Copr(i)+card(Tipsli~1))+200,, Wit).

Proof. Part a}follows from the fact that phase P{0) contains at most 141 < k distinct
pages and that on the first k faults, both LRU(!) and OPT load the requested page
into the fast memory. ’

In the proof of part b), we consider a fixed ¢ € [1,p]. If Crry(i) = 0, then the
inequality clearly holds because, according to line (2), W(t) > 0 for all ¢ € [}, 7]
50 suppose CLRU{I)(i) > 1. Let C(i) = CGT‘d(SLRU([](tf__l) \ {L(‘tf) U SOPT{tf_l)})-
An easy exercise shows that Cppy (i) < Copr{i)+ C(i). In the following we sketch
how to prove

&(i) < card(T3pg (i~ 1)+ 3 W(2).)

Crrumlt) € Copr{d) + é(%) and inequality {4} imply part b).
We introduce some notations. Let ¢ € [#5,#]. For = € N{2), let Wl{g,t) =

E—1—1—w(z t). For z € 5(t — 1) N S{t}, ket W(z,t) = w{z,t — 1} — w(z,t} and
for z € S(t — 1} \ 8(2), let W3(z,#} = w(z,t— 1). Note that

Wi = > Wi(z,1) Wity = Y Wi(z,t)
ZEN(T) TES(L—1INS(2)
Wﬁ{t) = Z W3{z, t).

zeSft—1)\5(¢)
Forany 2 € N({) (e € S{t — 13N §(t), = € St — 1)\ 5(¢}) we have
Wiz, t) 2 8 {(W3z,1) >0, W{(z,t) > 1). (5)

The inequality W1(z,¢) > 0 follows from Lemma 3. Lemma 4 imples W?2{z, 1) > 0.
fzeS(t—1)\S(t), then ¢ € Sppuy(t - 1)\ L(t — 1) and hence 1 < wlz,t—1) =
W3z, 1).

We sketch the mair idea of the proof of icequality {4). We show that for each
vage = € Spau(ti.1) \ {1L(2) U Sopr{tf_,)} one of the following two statements
holds. _

1} There exists a ¢’ € T3 p{i — 1} such that OPT evicts page ¢ at time ¢
2) There exists a time ¢/ € ¢4, 4f] and 2 j € {1,2,3} such that Wi(z,¢') > 1.
These statements, together with line {5}, imply the corrertness of inequality (4)}.

Consider a page = € Sprra)(tf_)\ {L(#})USorr(ti_,)}}. We distinguish between
{wo main cases.

Case 1: Fort = ¢_,, 10,80 £ 1,...,¢, ¢ S(¢t)

T—=11"%1 7

We can prove that statement 1} holds. Since z € Spryy (171 \{L{2*)USopr (12,0},

BIBLIOTHEQUE DU CERIST

we have ® € Sopr(tf_;). Let ¢' = max{s < t{_;]JOPT evicts page ¢ at time s}.
Using Property 1 and part b) of Lemma 5, we are able to show that ' > t!_; and
' € T3 o, (A detailed proof is omitted here.) Thus ¢ € T3 pr(i — 1).

Case 2: There exists a £, t{_, < t < ¢f, such that = € 51}

In this case we show that the above statement 2} holds. Let fn,in be the smallest
t & [tf_,, tf] such that ¢ € S(2).

Case 2.1: tym = 0]y

Let #” be the time when LRU({) incurs the first fault during phase P(¢). We consider
w(z, t"). I w(z,t") = 0, then = ¢ S(¢"). Hence there must exist a ¢/, i < ' < ¢”,

such that z € S(#' — 1)\ S(t'). Thus W3(x, ') > 1. i w(z,t") > 1, then we can prove

that z € S(t” — 1) N S(¢"). Now Lemma 4 implies W?(z,¢"} > 1.
Case 2.2: T, > 8],
H wiz,tmin) < E—1—1, then Wl(z,tmin) > 1. Suppose w(z,tmm} = & — 1 — 1. By
Property 2, w{z,tf) < k—1— 2. Now a simple argument shows that there must exist
a time ¥ € [tyin + 1,15 such that We(z,#) > 1 or W3z,) > 1.

The proof of Lemma 6 is complete.0

Now il is easy to finish the proof of Theorem 1. We estimate LRU(I)’s amortized
cost. Applying equation (3) and Lemma 6 we can show

Crruy(o) + $(m) ~ $(0) = E Crrom (i) + Z (1) —F(t - 1) <

Z Copr(i) + Z card(Tgpp{i)) + Z W(t) — Z W(t) + (k — I ~ Vcard(Thprp).

=0 =t

Line (2) implies that W() > 0 for all ¢ £ [t}, tg]. Hence
Crruw (o) + 8(m) — 8(0) < Copr(o) ¥ card(Topr) + (k — I — L)eard(Thpr)
< (k — I)COPT({T).
The proof of Theorem 1 is complete.

Next we present another on-line algorithm with strong lookahead. This algorithm
does not use full lookahead but rather sezves the request sequence in a series of blocks.

Algorithm LRU(!)-blocked: Serve the request sequence in a series of blocks
B(1), B(2),..., where B(1) = o(1),¢(2),...,5(M1)) and B{3) = o(tf_, +1},0(t;_, +
2}, .., o{A(ti_y + 1)) for £ > 2. Here t{_,; denotes the end of block B(i — 1). If there
occurs a fault while B(i) is processed, then the following rule applies. Among the
pages in fast memory which are not contained in B{4) determine the page whose last
request occurred least recently. Evict that page.

LRU{{)-blocked has the advantage that it updates its information on future re-
quests only once during each block. Thus it can respond to requests faster that
LRU(!). Furthermore, LRU(I)-blocked takes into account that in practice tequests
often arrive in blacks. Interestingly, this simpler algorithmn is only slightly weaker
than LRU{{). Using a very similar analysis as in the proof of Theorem 1, we are able
to show

Theorem 7. Letl < k—2. The algorithm LRU(l}-blocked with sirong fookahea.d I1s
(k — I+ 1)-competilive.

The following theorem shows that LRU{{} and LRU{{)-blocked are optimal and
nearly optimal, respectively.

BIBLIOTHEQUE DU CERIST

10

Theorem 8, Lei A be 2 deferministic on-line paging algarithm with strong lookahead
!, where | <k —2. If A is c-competitive, then ¢ > (k - 1).

Proof. Let S = {£1,23,...,25+17 be a sel of & + 1 papges, We assume without loss
of gencrality that A’s and OPT’s fast memories initially contain oy, z,,..., 25, Let
SL = {z1,22,...,%1}. We construct a request sequence o cousisiing of a series of
phases. Bach phase contains ! + 1 requesis to { 4 1 distinct pages. The first phase
P(1} consists of requests to the pages in SL, followed by a request to the page xz41
which is not in fast memory, i.e. P{1) = 21,%22,..., 71 £x41- Bach of the following
phases P(i}, ¢ > 2, has the form P(i) = =3, ®3,. .., 21, ¥, where y; £ S\ 5L is chosen
as follows, Let z; € S be the page which is not in A’s fast memory after the last
request of phase i 1. If % € §\ SL, then set 3 = z;. Otherwise, if 2, € 5L, y; is an
arbitrary page in 5\ SL. The algorithm A incurs a cost of 1 in each phase. During
5 — I successive phases, OPT’s cost is at most 1. O

B0 far, we have assumed £ > 3 and ! < £ — 2, which, of course, is the intevesting
case. Note that if [= £ — 1 and the total number of different pages in the memory
system equals k+1, then LRU{!) achieves a competitive factor of 1 because it behaves
like Belady’s oplimal paging algorithm MIN [Bé&8].

3 Randomized paging with strong lonkahead

Suppese a zzndomized paging algorithm has a strong lockahead of size [, Again, we
assume k > 3 and | < k—2. The first algorithm we propose is a slight modification of
the MARKING algorithm due to Fiat ef al, (FELMSY91]. The MARKING algotithm
vroceeds in a series of phases. During each phase a set of masked pages is maintained.
At the beginning of each phase all pages are unmatked. Whenever a page is requested,
that page is matked. On a fault, a page is chosen uniformly at random from among the
unmarked pages in fast memory, and thai page is evicted. A phase ends immediately
before a fanlt, when there are k marked pages in fast memory.

The medified algorithm with strong lookahead ! uses lookahead once during each
phase.
Algorithm MARKING{!}: At the beginning of each phase execute an initial
step; Determine the set S of pages which are in the present lockahead but not in fast
memory. Choose enrd{S) pages nniforrily at rtandom from among the pages in fast
memory which are not contained in the current lookahead. Evict these pages and
load the pages in §. After this initial step proceed with the MARKING algorithm.

Theorem 8. Let! < k — 2. The algerithm MARKING(I) with sirong loakahead | 1s
2H {k — l}-competitive,

Proof. The 1dea of the proof is the sams= as the idea of the original proof of the
MARKING algorithm [FKLMSEY91]. We zssume without loss of generality that
MARKING(!}'s and OPT*s fast memories initially contain the same k pages. During
each phase we compare the cost incnrred by MARKING(I} to the cost incurred by
the optimal algorithm OPT. Consider an arbitrary phase. We use the zame termi-
nology as Fiat et al. A page is called sicle if it is nnmarked but was marked in the
previpus phase, and clean if it is neither stale nor marked.

Let ¢ be the number of clean pages and s be the number of stale pages requested

BIBLIOTHEQUE DU CERIST

il

in the phase. Note that ¢ + s = k. Fiat ¢t al. prove that OPT has an amortized cost
of at least ¢/2 during the phase.

We evaluate MARKING(!})'s cost during the phase, Serving ¢ requests to clean
pages obvicusly costs ¢. I remains to bound the expected cost for serving ihe stale
pages. Let 51 be the number of stale pages contained in the lookahead at the beginning
of the phase and let s; = s—s;. Then s;+¢ > I+1 because every pagein the Jookahead
is either clean or counted in s3. Thus sy = s— sy <k —-c~{I+1—-¢)=k—-1-1,
Note that serving the first s; stale requests does not incur any cost and that we just
have to evaluate MARKING(I)'s cost on the following s, requests to stale pages. We
are able to show that this expected cosi is bounded by

[C C _ c < L
k_.Sj+k_51—1+'..+k"’51—52+1 - k—81+k—-81—1+“. ?—34‘].
The above sum consists of 52 < & —/ — 1 terms and { is missing. Hence the sum is
bounded by c{H{k — I} — 1}, and we conclude that MARKING(!)’s cost during the
phase is bounded from above by cH{k—1}). O

This following theorem implies that MARKING(!) is neaily optimal,

Theorem 10. Letl < k—2 and let A be ¢ randomized on-line paging algorithm with
strong lookahead 1. If A is c-competitive, then ¢ > H(k - 1),

Proof. The proof is similar to Raghavan’s proof that no randomized on-line paging
algorithm without lookahead can be better than H(k)-competitive [R89]. So we just
sketch the difference. Let § = {®;,za2,..., 2411} be a set of k + 1 pages and let
SL = {®3,%2,...,%1}. We construct a request sequence which consists of a series of
phases. The first phase is of the form P{1} = x,#a,..., 21, y1, where y is chosen
uniformly at randem frem all pages in 5§\ SL. The following phases P({} equal P{{) =
£1,%a,.++,T1, ¥, where g is chosen uniformly at random from S\ {SL U {y:i_:}}.
It is possible te partition o into rounds suck thati during each round OPT incurs
a cost of 1 and any deterministic on-line algorithm with strong lookahead ! incurs
an expected cost of at least H(k —). Applying Yao’s minimax principle [Y77}, we
obtain the theorem. O

We conclude this section by presenting another randomized algorithm, called
RANDOM(!)-blocked. As the name suggests this algorithm is a variant of the algo-
rithm RANDOM due to Raghavan and Snir [RS89]. On a fault RANDOM chooses a
page uniformly at randem from among the pages in fast memory and evicts that page.
In terms of competiliveness RANDOM(I)-blocked represents no improvement npon
the previously presented algorithms with strong lockahead. However, RANDOM{I)-
blecked, as the criginal algorithm RANDOM, is very simple and uses no information
on previous reguests.

Algorithm RANDOM({!}-blocked: Serve the request sequence o in a series of
blocks. These blocks have the same structuze as those in the algerithm LRU(I)-
blocked. At the beginning of block B(f) determine the set S; of pages in B(<} which
are not in fast memory. Choose card(S;) pages uniformly at random from among the
pages in fast memory which are not contained in B({). Evict these pages and load
the pages in S;. Then serve the requests in B(7).

Theorem 11. Let I < k — 2. The algorithm RANDOM(!)-blocked with strong look-
ahead ! is {k — | + 1}-competitive.

The proof of the theorem 1s omitted.

