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Preface 

The papers in this volume were presented at the First Annual European Symposium on 
Algorithms (ESA'93), held September 30-0ctober 2, 1993, in Bad Honnef/Bonn, Ger
many. The symposium is intended to be an annual series of international conferences, 
held in early fall, tbat cover the field of algorithms. Within the scope of the symposium 
lies ail research on algorithms, theoretical as well as applied, that is carried out in the 
fields of computer science and discrete applied mathematics. The symposium aims to cater 
to both of these research communities and to intensif y the exchange between them. 

The program committee met April 30, 1993, and selected the 35 contributed papers in this 
volume from 101 abstracts submitted in response to the cali for papers. The selection was 
based on originality, quality, and relevance to the study of algorithms. It is anticipated 
that most of the submissions will appear in a more poli shed and complete form in scien
tific journals. The conference program also included invited lectures by Michael Paterson 
(Coventry): Evolution of an Algorithm, Alexander Schrijver (Amsterdam): Complexity 
of Disjoint Paths Problems in Planar Graphs, and Michael S. Waterman (Los Angeles): 
Sequence Comparison and Statistical Significance in Molecular Biology. 

We wish to thank all members of the program commit tee, ail those who submitted ab
stracts for consideration, our referees and colleagues who helped in the evaluations of the 
abstracts, and the many individuals who contributed to the success of the conference. 

We would like to acknowledge the help of the following sponsoring institutions and cor~ 
porations: Gesellschaft für Informatik (GI), Rheinische Friedrich-Wilhelms-Universitiit 
Bonn, Gesellschaft für Mathematik und Datenverarbeitung (GMD), Association for Com
puting Machinery (ACM) Special Interest Group for Algorithms and Computation Theory, 
and European Association for Theoretical Computer Science (EATCS). 

Finally we would like to thank the following people for their extraordinary engagement 
in organizing the conference: Christine Harms, Brigitte Hiinig, Luzia Sassen-HeBeler, and 
Egon Wanke. 

Bonn,September 1993 Thomas Lengauer 
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The Influence of Lookahead in Competitive 
Paging Algorithms 

(Extended Abstract) 

Susanne Albers* 

Max-Planck-Institut rur Informatik, 66123 Saarbrücken, Germany 

Abstract. We introduce a new model of lookahead for on-line paging algo
rithms and study several algorithms using this mode!. A paging algorithm is 
on-line with strong lookahead 1 if it sees the present request and a sequence 
of future requests that contains 1 pairwise distinct pages. These pages aIso 
differ from the page requested by the present request. We show that shong 
lookahead has practical as weIl as theoretical importance and significantly im
proves the competitive factors of on-line paging algorithms. This is the first 
mode! of lookahead having such properties. In addition to lower bounds we 
present a number of deterministic and randomized on-line paging algorithms 
with s!rong lookahead which are optimal or nearly optimal. 

1 Introduction 

In recent years the competitive analysis of on-line algorithms has received much 
attention [ST85, KMRS88, MMS88, BBKTW90, G91]. Among on-line problems, the 
paging problem is of fundamental interest. Consider a two-Ievel memory system which 
has a fast memory that can store k pages and a slow memory that can manage, 
basically, an unbounded number of pages. A sequence of requests to pages in the 
memory system must be served by a paging algorithm. A request is served if the 
corresponding page is in fast memory, If the requested page is not stored in fast 
memory, a page lault occurs. Then a page must be evicted from fast memory so 
that the requested page can be loaded into the vacated location. A paging algorithm 
specifies which page to evict on a fault. The cost incurred by a paging algorithm 
equals the number of page faults. A paging algorithm is on-line if it determines 
which page to evict on a fault without knowledge of future requests. 

We analyze the performance of on-line paging algorithms using competitive analy
sis [ST85, KMRS88]. In a competitive analysis, the cost incuired by an on-line algo
rit hm is compared to the cost incurred by an optimal off-line algorithm. An optimal 
off-line algorithm knows the entire request sequence in advance and can serve it with 
minimum cast. Let CA(<7) and COPT(<7) be the cost of the on-line algorithm A and 
the optimal off-line algorithm OPT ort request sequence <7. Then the algorithm Ais 
c-competitive, if there exists a constant a such that 

CA(<7) :s c· COPT(<7) + a 

for ail request sequences <7. The competitive factor of A is the infimum of ail c 
such that A is c-competitive. If A is a randomized algorithm, then CA(<7) is the 

* This wOIk was done while the author was a student at the Graduiertenkolleg In[ormatik, 
Universitiit des Saarlandes, and was supported hj a graduate feiJ.owshlp of the Deutsche 
Forschungsgemeinschaft. 
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expected cost incurred by A on request sequence (f. In this pape! we evaluate the 
performance of randomized on-Iine algorithms only against the oblivious adversary 
(see [BBKTW90] for details). Belady [B66] has exhibited an optimal off-line paging 
algorithm which is also called the MIN algorithm. On a fault, MIN evicts the page 
whose next request occurs farthest in the future. 

The paging problem (without lookahead) has been studied intensively. Sleator 
and Tarjan [ST85] have demonstrated that the well-known replacement algorithms 
LRU (Least Reeently Used) and FIFO (First-In First-Out) are le-competitive. They 
have also proved that no on-Iine paging algorithm can be better than le-competitive; 
hence LRU and FIFO achieve the best competitive factor. Fiat et al. [FKLSY91] 
have shown that no randomized on-Iine paging algorithm can be better than H(k)
competitive against an oblivious adversary. Here H(k) = I:~=11/i denotes the kth 
harmonie number. They have aIso given a simple replacement algorithm, called the 
MARKING algorithm, which is 2H(Ie)-competitive. McGeoch and Sleator [MS91] 
have proposed a more complicated randomized paging algorithm which achieves a 
competitive fador of H(Ie). 

In this paper we study the problem of lookahead in on-Iine paging algorithms. An 
important question is, what improvement can be achieved in termB of competitive
ness, if an on-Iine algorithm knows not only the present request to be served, but 
aIso sorne future requests. This issue is fundamental from the practical as weil as 
the theoretical point of view. In paging systems sorne requests usually wait in line ta 
be processed by a paging algorithm. One reason is that requests do not necessarily 
arrive one after the other, but rather in blocks of possibly variable size. Further
more, if several pro cesses run on a computer, it is Iikely that sorne of them ineur 
page fauIts which then wait for service. Many memory systems are also equipped 
with prefetching mechanisms, i.e. on a request not only the currently accessed page 
but also sorne related pages which are expected to be asked next are demanded to 
be in fast memory. Thus each request generates a number of additional requests. In 
fact, some paging algorithms used in practice make use of lookahead [S77]. In the 
theoretical context a natura! question is: What is it worth ta know the future? 

Previous research on lookahead in on-line algorithms has mostly addressed dy
namic location problems and on-line graph problems [CGS89, 190, KT91, HS92]; 
only very Iittle is known in the area of paging with lookahead. Consider the intuitive 
mode! of lookahead, which we call weak /ookahead. Let 1 2: 1 be an intege •. We say 
that an on-line paging algorithm has a weale /ookahead of size 1, if it sees the present 
request to be served and the next ! future requests. It is weil known th,tt this mode! 
cannot improve the competitive factors of on-Iine paging algorithms. If an on-line 
paging algorithm has a weak lookahead of size /, then an adversary that constructs 
a request sequence can sim ply replicate each request 1 times in order to make the 
lookahead usdess. The only other result known on paging with lookahead has been 
developed by Young [Y91]. According ta Young, a paging algorithm is on-line with a 
resource-bounded lookahead of size 1 if it Sees the present request and the maximal se
quence offuture requests for which it will incu! 1 faults. Young presents deterministic 
and randomized on-line paging algorithme with resource-bounded lookahead 1 which 
are max{2k/l, 2}-competitive and 2(ln(kjl) + I)-competitive, respectively. However, 
the model of resource-bounded lookahead is unrealistic in practice. 

We now introduce a new model of lookahead which has practical as weil as 
theoretical importance. As we shall see, this model can significantly improve the 
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3 

competitive factors of on-line paging algorithms. Let u = u(I), u(2), ... , u(m) be a 
request sequence of length m. u(t) denotes the request at time t. For a given set S, 
card(S) denotes the cardinality of S. Let /2': 1 be an integer. 

Strong lookahead of size /: The on-line algorithm sees the present request and a 
sequence of future requests. This sequence contains 1 pairwise distinct pages which 
also differ from the page requested by the present request. More precisely, w hen 
serving request u(t), the algorithm knows requests u(t + 1), u(t + 2), ... , u(t'), where 
t' = min{s > tjcard({u(t),u(t+ l), ... ,u(s)}) = 1 + I}. The requests u(s), with 
s 2': t' + 1, are not seen by the on-line algorithm at time t. 

Strong lookahead is motivated by the observation that in request sequences gen
erated by real programs, subsequences of consecutive requests generally contain a 
number of distinct pages. Furthermore, strong lookahead is of interest in the the
oretical context when we ask how significant it is to know part of the future. An 
adversary may replicate requests in the lookahead, but nevertheless it has to reveal 
sorne really significant information on future requests. 

In the following, we always assume that an on-line algorithm has a strong look
ahead offixed size /2': 1. If a request sequence u = u(I), u(2), ... , O"(m) is given, then 
for all t 2': I we define a value >.(t). Ifcard({O"(t),O"(t+I), ... ,u(m)}) < 1+1 thenlet 
>.(t) = m; otherwise let >.(t) = min{t' > tlcard({O"(t), O"(t + 1), ... , u(t')}) = 1 + 1}. 
The lookahead L(t) at time t is defined as 

L(t) = {O"(s)ls = t,t+ 1, .. . ,>.(t)}. 

We say that a page x is in the /ookahead at time t if '" E L(t). 
The remainder ofthis paper is an in-depth study of paging with strong lookahead. 

Strong lookahead is the first model of lookahead that is significant from a practical 
and theoretical standpoint and also reduces the competitive factors of on-line paging 
algorithms. In Section 2 we consider deterministic on-line algorithms and present a 
variant of the algorithm LRU that, given a strong lookahead of size 1, where 1 ::; k - 2, 
achieves a competitive factor of (k - 1). We also show that no deterministic on-line 
paging algorithm with strong lookahead 1, 1 ::; k - 2, can be better than (k - 1)
competitive. Thus our proposed algorithm is optimal. Furthermore, we give another 
variant of the algorithm LRU with strong lookahead 1, 1::; k - 2, which is (k -1 + 1)
competitive. Interestingly, this algorithm does not exploit full lookahead but rather 
serves the request sequence in a series of blocks. Section 3 addresses randomized on
line paging algorithms with strong lookahead. We prove that a modification of the 
MARKING algorithm with strong lookahead /, 1 ::; k - 2, is 2H(k -l)-competitive. 
This competitiveness is within a factor of 2 of optimal. In particular, we show that 
no randomized on-line paging algorithm with strong lookahead 1, 1 ::; k - 2, can 
be better than H(k - I)-competitive. Furthermore we present an extremely simple 
randomized on-line paging algorithm with strong lookahead 1, 1 ::; k - 2, which i5 
(k -1 + I)-competitive. 

2 Deterministic paging with strong lookahead 

Unless otherwise stated, we assume in the following that all our paging algorithms 
are lazy algorithms, i.e. they only evict a page on a fault. 
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4 

Let k 2: 3. Vie consider the important case that an on-line paging aigorithm ha. 
a strong !ookahead of size 1 ::; k - 2. The on-line paging algorithms we present are 
extensions of the algorithm LRU to our model of strong lookahead. 

Algorithm LRU(l): On a fault execute the following steps. Among the pages in 
fast memory which are not contamed in the present lookahead determine the page 
whose last request occurred least recently. Evict this page and load the requested 
page. 

Theorem 1. Let 1 ::; k - 2. The algorithm LRU(I) with strong lookahead 1 is (k -1)
competitive. 

Now we prove this theorem. Let 0' = 0'(1),0'(2), ... , O'(m) be a request sequence 
of length m. We assume without loss of generaJity that LRU(I) and OPT staIt with 
an empty fast memory and that on the first k faults, bath LRU(l) and OPT load 
the requested page into the fast memory. Furthermore we assume that " contains at 
least 1 + 1 distinct pages. The following proof wnsists of three main parts. Fust, we 
introduce the potential function we use to a:nalyze LRU(/). In the second part, we 
partition the request sequence" into a series of phases and then, in the third part, 
we bound LRU(/)'s amortized cost usmg that partitiou. 

1. The potential function 
Wc introduce some basic notations. For t = 1,2, ... , .\(1) - 1, let J.L(t) = 1 and for 
t = .\(1), .\(1) + 1, ... , m, let 

J.L(t) = max{t' < tlcard({O'(t'),O'(t' + 1), ... ,O'(t)}) = /+ l}. 

Denne 
M(t) = {O'(S )Is = l'(t), J.L(t) + 1, ... , t}. 

For a given time t, the set M(t) contains the last 1 + 1 requested pages. 
For t = 1,2, ... , m, let SLRU(I) (t) be the set of pages contained in LRU(l)'. fast 

memory after request t, and let SOPT (t) be the set of pages contaiued in OPT's 
fast memory after request t. SLRU(l)(O) and SOPT(O) denote the sets of pages which 
are initially in fast memory, i.e. SLRi'r(I)(O) = SOPT(O) = 0. For the analysis of 
the algorithm we assign weights te all pages. These weights are updated after each 
request. Let w(a:, t) denote the weight of page a: after request t, 1 ::; t ::; m. The 
weights are set as follows. If a: rf= SLRU(I)(t) or a: E L(t), then 

w(a:, t) = o. 
Let j = Ca,.d(SLRU(!)(t) \ L(t)). Assign integer weights fIOn], the range [1, jl to the 
pages in SLRU(I)(t) \ L(t) such that any two pages a:, y E SLRU(I)(t) \ L(t) satisfy 

w(x, tl < w(y, il 
Hf the lasi requesi to " occllued earlier than the last request to y. For t = 1,2, ... , m, 
let 

Set) = SLRU(I)(t) \ {M(t) U L(t) U SOPT (t)}. 
We now define the potentiai function: 

1>(t) = L wez, i). 
xES(t) 

Intuitively, Set) contains those pages which cause LRU(l) to have a higher cast than 
OPT. Instead of the pages x E Set), OPT can store pages in its fast memory which 
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5 

are not contained in SLRU(I)(t) but are requested in the future. The weight w("" t) 
of a page", E S(t) equaIs the number of faults that LRU(l) must incur before it can 
evict "'. 

2. ,The p'artitioning of the request sequence 
We will partition the request sequence (J' into phases, numbered from 0 to p for sorne 
p, such that phase 0 contains at most 1 + 1 distinct pages and phase i, i = 1, 2, ... , p, 
has the following two properties. Let t~ and tf denote the beginning and the end of 
phase i, respectively. 

Property 1: Phase i contains exactly 1 + 1 distinct pages, i.e. 

card({(J'(tf),(J'(tt + 1), ... ,(J'(ti)}) = 1 + 1. 

Property 2: For aIl '" E SLRU(1) (tLl) \ {L(tS) U SOPT(tl_ 1)}, 

w( "', tn ::; k - 1 - 2. 

In the following, we describe how to decompose (J'. We partition the request 
sequence starting at the end of (J'. Suppose that we have already constructed phases 
P(i+ 1),P(i+2), ... ,P(p). We show how to generate phase pei). Let tl = t~+l-1. 
(We let t; = m at the beginning of the decomposition.) Now set t = !L(tf) and 
compute SLRU(I)(t - 1) \ L(t). If SLRU(I)(t - 1) \ L(t) cF 0, then let y be the most 
recently requested page in SLRU(I)(t -1) \ L(t). We consider two cases. If SLRU(I) (t-
1) \ L(t) = 0 or if SLRU(I)(t - 1) \ L(t) cF 0 and y E SOPT(t - 1), then let tf = t 
and calI the i-th phase pei) = (J'(tn, (J'(t~ + 1), ... , (J'(tn a type 1 phase. Otherwise 
(if SLRU(I)(t - 1) \ L(t) cF 0 and y r:f. SOPT(t - 1» let t', t' < t, be the time 
when OPT evicted page y most recently. Let t~ = t'and calI the i-th phase pei) = 
(J'(tn, (J'(tf + 1), ... , (J'(tn a type 2 phase. 

Lemma 2. The partition generated above satisfies the following conditions. 
a) Phase PlO) contains at most 1 + 1 distinct pages. 
b) Every phase pei), 1::; i ::; p, has Property 1 and Property 2. 

Proof. First we prove part a). We show that PlO) is a type 1 phase. This immediately 
implies that prO) contains at most 1 + 1 vertices. If PlO) was a type 2 phase, th en 
OPT would evict a page on the first request (J'(1). However, this is impossible because 
initially the fast memories are empty and on the first k faults both LRU(l) and OPT 
load the requested page into the fast memory. 

Now we prove part b) of the lemma. Consider an arbitrary phase pei), 1::; i::; p. 
Let t = !L(t;). If SLRU(I)(t - 1) \ L(t) cF 0, then let y be the most recently requested 
page in SLRU(I)(t - 1) \ L(t) and let t", t" < t, be the time when y was requested 
most recently. If pei) is a type 2 phase, then let t', t' ::; t -1, be the time when OPT 
evicted y most recently. (Since y r:f. SOPT(t - 1), we have t" < t' ::; t - 1.) 

We show that Pli) contains exactly 1 + 1 pages. For a type 1 phase there is 
nothing to show. Suppose pei) is a type 2 phase. Then t~ = t' . Let s E [t', t - 1] 
be arbitrary and let", be the page requested at time s. We need to show", E L(t). 
50 assume", r:f. L(t). Then by the definition of y, '" r:f. SLRU(I)(t - 1), i.e. '" was 
evicted by LRU(I) at some time s' E [s + 1, t - 1]. Since y was not evicted by 
LRU(l) at time s'and y's most recent request was at time tIf < s, we must have 
y E L(s') ~ {(J'(s'), ... , (J'(t - 1), (J'(t), ... , (J'(tl')) = {(J'(s'), ... , (J'(t - 1)} U L(t). But 
y r:f. {(J'(s'), ... , (J'(t - 1)} and y r:f. L(t), by the definition of t" and y. Thus '" r:f. L(t) 
is impossible. We conclude that Pli) contains exactly 1 + 1 distinct pages. 
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Tt remains to prove that Pli) has Property 2. Consider an arbitrary page", E 
SLRU(i) (ti_d \ {L(m USOPT(ti_l)}. If wez, tn = 0, then the property clearly holds. 
Therefore assume w(x, tf) :2: 1. By Property 1, L(ttl contains aIl pages which are 
requested in pei). Since w("" tn :2: 1, we have", E SLRU(I)(tf} \ L(ti) and hence 
:z: ri. L(tf) U L(tf) :2 L(s) for all $ E [t~, tl']. Thus, z was a candidate for eviction 
by LRU(l) throughout P(i), but was not evicted. This implies immediately that all 
pages requested in pei), i.e. al! pages in L(tn, also belong ta SLRU(I)(tn. Using a 
very similar analysis we can show that y i= '" and y E SLRU(l) (tf). Renee we have 
identified 1 + 2 pages in SLRU(I)(tl) which, at time ti, were requested later than x. 
At time ti, each of these pages has a weight of ° or a weight w hich is greater than 
that of "'. Thus, w( x, tn ::; k - 1 - 2. 0 

3. Bounding LRU(/)'s a!I1ortized cost 
Using the partition of 0" generated above, we will evaluate LRU(l)'s amortized cast 
on 0". First we will bound the increase in potential 2:::1 pet) - pet - 1). Then we 
will estimate LRU(l)'s actual cast in each phase of 0". For t = 1,2, ... , m, let 

N(t) = Set) \ Set - 1). 

We set M(O) = L(O) = 0 and SeO) = SLRU(!) (0) \ {M(O) U L(O) U Son (O)}, which 
is used in the deflnition of N(l) = S(l) \ SeO). 

We prese!'t two lemmas which ale crucial in analyzing the change in potential 
pet) - pet - 1), 1::; t ::; m. Note that 

pet) - ptt - 1) = "E wC:!:, t) - "E w("" t - 1) 
x€S(t) xES(t-1) 

= L w(x,t)+ "E (w(x,t)-w(:!:,t-l))- "E w(x,t-l). 
xEN(t) xES(t-1)nS(t) xES(t-1)\S(t) 

Lemma3. Lei 1::; t::; m. If:!: E N(t), then w(x, t) ::; k -1- 1. 

Proof. By the definition of N(t), we have:!: E SLRU(I)(t) \ {M(t) U L(t) U Son (t)}. 
Since :!: ri. M(t), page x is not requested in the interval [}L(t) , il and hence x E 
SLRU(I)(}L(t) - 1). We have x ri. M(t) U L(t) which implies z ri. L(s) for al! s with 
j.t(t) S s ::; t. Thus, :!: has been a candidate for eviction by LRU(I) throughout the 
interval [}L(t) , tl, bui was not evicted. It follows that aU pages in M(t) must be in 
SLRU(!)(t). Note that M(t) cantains 1 + l pages because OPT do es not evict a page 
before the (k + 1)-st fault. At time t, al! pages in M(t) have a weight of 0 or a weight 
which is greater than w(x, t). Thus wC:!:, t) ::; k - 1- 1. 0 

Lemma4. Lei 1::; t::; m and xE S(t-l)nS(t). Then x's weight satisfies w(",t-
1) :2: w(x, tl. In particular, if LRU(I) incurs a Jault ai time i, then w('" t - 1) > 
w("" i). 
Proof. Note that by the definition of Set - 1) and Set), we have", E SLRU(l)(t -
1) \ L(t - 1) and x E SLRU(I)(t) \ L(t). Henee wC:!:, t - 1) :2: 1 and wC:!:, i) :2: 1. The 
inequality w(x, t - 1) :2: w(x, t), follaws from the following two statements whose 
praofs we omit. 
1) Let y, y t x, be a page which satisfies w(y, t - 1) = 0 and w(y, t) > o. Then 

wC'", t) < w(y, t). 
2) Let y, y t x, be apagewhich satisfies w(y,t-l) > Oandw(x,t-l) < w(y,t-l). 

Then w(y, t) = 0 or w(x, t) < Wey, t). 
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Now suppose that LRU(/) incurs a fault at time t. Then, at time t, LRU(l) evicts 
a page z, z op x, whose last request occurred earlier than x's last request. Rence 
1 S; w(z, t - 1) < w(x, t - 1). Since the statements 1) and 2) hold, x's weight must 
decrease after z is evicted, i.e. w(x, t - 1) > w(x, t). D 

Lemma 3 implies that at any time t, 1 S; t S; m, a page x E N(t) can cause an 
increase in potential of at most k - / - 1. Thus, for every t, 1 S; t S; m, we have 

Ptt) - ptt - 1) = (k -1- l)card(N(t)) - W(t), 

where W(t) = W 1 (t) + W 2 (t) + W 3 (t) and 

W 1 (t) = "L (k -/- 1 - w(x, t)) 
xEN(t) 

(w(x, t - 1) - w(x, t)) 
xES(t-l)nS(t) 

W 3 (t) = w(x,t-1). 
xES(t-l)\S(t) 

For all t = 1,2, ... , m, we have 

(1) 

(2) 

Clearly, W 1 (t) 2: 0 and W 3 (t) 2: o. The inequality W 2 (t) 2: 0 follows from Lemma 
4. 

Next we estimate 2:;:1 card(N(t)) and derive a bound on 2:;:1 Ptt) - ptt - 1). 
To each element x E N(t) we assign the most recent eviction of x by OPT. More 
formally, let 

x = {(x, t) E (U N(t)) x (1, mllx E N(t)}. 
t=l 

We define a function f : X ---> (1, ml. For (x, t) EX we define 

f(x,t) = max{s S; tlOPT evicts page x at time s}. 

Note that f is well-defined. The next lemma presents two properties of the function 
f. Part b) will be useful when bounding LRU(/)'s actual cost in each phase of Œ. The 
proof of the lemma is omitted. 

Lern.rn.a 5. a) The function f is injective. 
b) Let (x,t) EX andf(x,t) = t'. Lett E (t~,tiJ, 0 S; i S; p. Ifi= 0, thent' E (t~,tgl. 

Ifi 2: 1, then t' E (tL1>tfl. 

Let TOPT be the set of all t E (1, ml such that OPT evicts a page at time t. Note 
that COPT(Œ) = card(ToPT). Let T8PT = {f(x, t)l(x, t) EX}. By Lemma 5, fis 
injective and hence 

m 

"L card(N(t)) = card(X) = card(T8PT). 
t=l 

Thus, by equation (1), we obtain 

'" '" "L Ptt) - ptt - 1) = (k -1- 1)card(T8PT) - "L W(t). (3) 
t=l t=l 
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Now we bound LRU(l)'s adual cost in each phase of (J. For i = 0, l, ... , p, let 
CLRU(l)(i) be the adual cost LRU(l) ineurs in serving phase pei), and let COPT(i) 
be the eost OPT ineurs in serving P(i). Furthermore, let 

T5PT = ToPT \ T6PT 

and, for i = 0, 1, ... , p, let 

T5PT(i) = {t E TJPT itf :::: t :::: ti}. 

Lemma6. a) CLRU(I)(O) = COPT{O) 

b) For i = 1,2, ... , p, CLRU(I)(i):::: COPT(i) + card(TJPT(i - 1)) + :L:~tt W(t). 

Proof. Part a) follows from the fact that phase P(O) eontains at most 1+1 < k distinct 
pages and that on the n.rst Jo fauIts, both LRU(I) and OPT load the requested page 
into the fast memory. ' 

In the proof of part b). we consider a fixed i E [1, pl. If CLRu(l)(i) =: 0, then the 
inequality clearly holds because, according to line (2), W(t) 2: 0 for al! t E [t~, tf]. 
So suppose CLRU(l)(i) 2: 1. Let CCi) =: card(SLRu(l)(ti_l) \ {L(tf) U SOPT(tr_l)})' 
An easy exercise shows that CLRU(I)(i):::: CoPT(i)+ë(i). In the following We sketch 
ho\'l" to prove 

ti 
CCi) :::: card(TJPT(i - 1» + :E W(t). (4) 

t=t~ 

CLRU(I)(i) :::: CoPT(i) + CCi) and inequality (4) imply part b). 
We introduce sorne notations. Let t E [tt, til. For x E N(t), let Wl(x, t) = 

le -1- 1 - w(x, t). For x E Set - 1) n Set), let WZ(x, t) = w(x, t - 1) - w(x, i) and 
for x E Set - 1) \ Set), let W 3 (x, t) = w(x, t - 1). Note that 

W i (t) = :E Wl(x, i) 
xEN(t) 

W 3 (t) = :E W 3 (x, t). 
xES(t-l)\S(t) 

xES(t-l)nS(t) 

For auy x E N(t) (x E Set - 1) n Set), xE Set - 1) \ Set)) we have 

Wl(x, t) ~ 0 (W 2 (x, t) 2: 0, W 3 (x, t) 2: 1). (5) 

The inequality Wl(x, tl ~ 0 follows from Lemma 3. Lemma 4 implies W 2 (x, t) 2: o. 
If xE Set - 1) \ Set), then x E SLRU(I)(t - 1) \ L(t - 1) and hence 1:::: w(x, t - 1) = 
W 3 (x, t). 

We sketch the main idea of the proof of inequality (4). We show that for each 
page x E SLRU(l) (ti_l) \ {L(tf) U SOPT{tl'_l)} one of the following t\'l"O statements 
holds. 

1) There ensts ai' E TJpT(i - 1) snch that OPT evicts page x at time t l
• 

2) There exists a time fI E [t~, if] and a jE {l, 2, 3} such that Wi (x, t') 2: 1. 

These statements, together with line (5), imply the correctness of inequality (4). 
Consider a page x E SLRU(I)(tf_d\{L(t~)USOPT(tf_l)}' We distinguish between 

two main cases. 
Case 1: For t = tf_l,tt,tt + l, ... ,t:', x ri- Set) 
We can prove that statement 1) holds. Sinee x E SLRU(I)(tLl) \ {L(tnUSoPT (ti_l)}' 
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we have 0: ~ SOPT(tLl)' Let t' = max{s :S tf_ll0PT evicts page 0: at time s}. 
Using Property 1 and part b) of Lemma 5, we are able to show that t' 2: tLl and 
t' ~ Tf,PT' (A detailed proof is omitted here.) Thus t ' E T6PT(i - 1). 
Case 2: There exists a t, ti_l :S t :S ti, such that 0: E S(t) 
In this case we showthat the above statement 2) holds. Let tmin be the smallest 
tE [tLl' tn such that 0: E S(t). 
Case 2.1: tmin = tLl 
Let t" be the time when LRU(I) incurs the first fault during phase P(i). We consider 
w(o:, t"). If w(o:, t") = 0, then 0: ~ S(t"). Hence there must exist a t', tt :S t' :S t", 
such that 0: E S(t' -1) \ S(t' ). Thus W 3 (o:, t') 2: 1. If w(o:, t") 2: 1, then we can prove 
that 0: E S(t" - 1) n S(t"). Now Lemma 4 implies W 2(o:, t") 2: 1. 
Case 2.2: tmin > tLl 
If w(o:, tmin) < k - 1- 1, then W 1 (o:, tmin) 2: 1. Suppose w(o:, tmin) = k -1- 1. By 
Property 2, w(o:, tf) :S k -1- 2. Nowa simple argument shows that there must exist 
a time t' E [tmin + 1, tfl such that W2(o:, t') 2: 1 or W 3 (o:, t') 2: 1. 

The proof of Lemma 6 is complete. O 

Now it is easy to finish the proof of Theorem 1. We estimate LRU{l)'s amortized 
cost. Applying equation (3) and Lemma 6 we can show 

p m 

CLRU(I)(<T) + ~(m) - ~(O) = L CLRU(I)(i) + L ~(t) - ~(t - 1) :S 
i::::;:O t::::;:l 

P p-l nt m. 

L COPT(i) + L card(T6PT{i)) + L W(t) - L W(t) + (k -1- l)card(Tf,PT)' 
t::::;:t~ t::::;:l 

Line (2) implies that W(t) 2: 0 for all t E [tg, tg]. Hence 

CLRU(l)(<T) + ~(m) - p(O) :S COPT(<T) + card(T6PT) + (k -1- l)card(T8PT) 
:S (k -1)CoPT(<T). 

The pro of of Theorem 1 is complete. 
Next we present another on-line algorithm with strong lookahead. This algorithm 

do es not use fulllookahead but rather serves the request sequence in a series of blocks. 

Algorithlll LRU(I)-blocked: Serve the request sequence in a series of blocks 
B(I), B(2), ... , where B(I) = <T(I), <T(2), ... , <T(À(I)) and B(i) = <T(ti_l +1), <T(tf_l + 
2), ... , <T(À(tLl + 1)) for i 2: 2. Here ti-l denotes the end of block B(i - 1). If there 
occurs a fault while B(i) is processed, then the following rule applies. Among the 
pages in fast memory which are not contained in B(i) determine the page whose last 
request occurred least recently. Evict that page. 

LRU(I)-blocked has the advantage that it updates its information on future re
quests only once during each block. :Thus it can respond to requests faster that 
LRU{l). Furthermore, LRU(l)-blocked takes into account that in practice requests 
often arrive in blocks. Interestingly, this simpler algorithm is only slightly weaker 
than LRU(l). Using a very similar analysis as in the proof of Theorem 1, we are able 
to show 

Theorem 7. Let 1 :S k - 2. The algorithm LR U (1)- blocked with strong lookaheq~.! is 
(k -1 + 1)-competitive. . 

The following theorem shows that LRU(l) and LRU{l)-blocked are optimal and 
nearly optimal, respectively. 
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Theorexn 8. Lei A be " deierministic on-line paging algorithm with st'rong loakahead 
l, where 1 ::; k - 2. If A is c-compeiitive, then c ::: (k -1). 

Praof. Let S = {"'l, "'2,"" "'k+1} be a set of k + l pages. We assume without loss 
of generality that Ais and OPT's fast memories initiaily contain "'1, "'2, ... , "'k. Let 
SL = {"'l, "'2,"" "'I}. We construct a request sequence Cf consisting of a series of 
phases. Each phase contains 1 + 1 requests to 1 + 1 distinct pages. The first phase 
P(l) consists of requests ta the pages in SL, foilowed by a request to the page "'Hl 

which is not in fast memory, i.e. P(1) = "'1, "'2, ... , "'l, "'k+1' Each of the foilowing 
phases P(i), i::: 2, has the formP(i) = "'1,"'2, ... ,"'I,Vi, whereYi E S\SL is chosen 
as foilows. Let z; E S be the page which is not in A's fast memory after the last 
request of phase i -1. If Zi ES \ SL, then set Yi = Zi. Otherwise, if z; E SL, Yi is an 
arbitrary page in S \ SL. The algorithm A incurs a cost of 1 in each phase. During 
k - 1 successive phases, OPT's cost is at most 1. 0 

So far, we have assumed k ::: 3 and 1 ::; k - 2, which, of course, is the interesting 
case. Note that if 1 = k - 1 and the total number of different pages in the memory 
system equaIs 1:+1, then LRU(I) achieves a competitive factor of 1 because it behaves 
like Belady's optimal paging algorithm MIN [B66]. 

3 Randomized paging with strong lookahead 

Suppose a randomized paging algorithm has a strong lookahead of size 1. Again, we 
assume k ::: 3 and 1 ::; k - 2. The first algorithm we propose is a slight modification of 
the MARKING algorithm due to Fiat et al. [FKLMSY91]. The MARKING algorithm 
proceeds in a series of phases. During each phase a set of marked pages is maintained. 
At the beginning of each phase ail pages ale urunarked. Whenever a page is requested, 
that page is marked. On a fault, a page is chosen uniformly at random !rom among the 
unmarked pages in fast memory, and that page is evided. A phase ends immediately 
before a fault, when the!e are k marked pages in fast memory. 

The modified algorithm with strong lookahead 1 uses lookahead once during each 
phase. 

Aigorithm MARKING(I): At the beginning of each phase execute an initial 
step: Determine the set S of pages which are in the present lookahead but not in fast 
memory. Chooso card( S) pages uniformly at random from among the pages in fast 
memory which are nat contained in the current lookahead. Evict these pages and 
load the pages in S. Aftel this initial step praceed with the MARKING algorithm. 

Theorern 9. Let 1 ::; k - 2. The algorithm MARKING(l) with strong lookahead 1 is 
2H(k - I)-competitive. 

Praof. The idea of the pro of is the same as the idea of the original praof of the 
MARKING algorithm [FKLMSY91]. We assume without loss of generaIity that 
MARKING(l)'s and OPT's fast memories initially contain the same k pages. During 
each phase we compare the cost incurred by MARKING(I) to the cost incurred by 
the optimal algorithm OPT. Consider an arbitrary phase. We use the same termi
nology as Fiat et al. A page Îs called si ale if it is unmarked but was marked in the 
plevious phase, and c1ean if it is neither stale nor marked. 

Let c be the number of clean pages and s be the number of stale pages requested 
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in the phase. Note that c + s = k. Fiat et al. prove that 0 PT has an amortized cost 
of at least c/2 during the phase. 

We evaluate MARKING(I)'s cost during the phase. Serving c requests ta clean 
pages obviously costs c. It remains to bound the expected cast for serving the stale 
pages. Let S1 be the number of st ale pages contained in the lookahead at the beginning 
of the phase and let S2 = S-S1. Then S1 +c 2: 1+ 1 because every page in the lookahead 
is either clean or counted in S1. Thus S2 = S - S1 ::; k - c - (1 + 1 - c) = k - 1- 1. 
Note that serving the first S1 stale requests do es not incur any cast and that we just 
have to evaluate MARKING(I)'s cost on the following S2 requests to stale pages. We 
are able to show that thi. expected cast is bounded by 
ccc ccc --+ + ... + = --+ + ... + . 

k - S1 k - S1 - 1 k - S1 - S2 + 1 k - S1 k - S1 - 1 k - s + 1 

The above sum consists of S2 ::; k - 1 - 1 terms and l is missing. Hence the sum is 
bounded by c(H(k - 1) - 1), and we conclude that MARKING(l)'s cost during the 
phase is bounded from above by cH(k -1). 0 

This following theorem implies that MARKING(I) is nearly optimal. 

Theorem 10. Let 1 ::; k - 2 and let A be a randomized on-line paging algorithm with 
strong lookahead 1. If Ais c-competitive, then c 2: H(k -1). 
Proof. The proof is similar to Raghavan's proof that no randomized on-line paging 
algorithm without lookahead can be better than H(k)-competitive [R89]. So wejust 
sketch the difference. Let S = {"'l, "'2, ... , "'Hl} be a set of k + 1 pages and let 
SL = {"'l, "'2, ... , "'/}. We construct a request sequence which consists of a series of 
phases. The first phase is of the form P(I) = "'10 "'2, ... , "'l, Yb where Y1 is chosen 
uniformly at rand am from ail pages in S\SL. The following phases P(i) equal P(i) = 
"'1, "'2,.··, "'l, Yi, where Yi is chosen uniformly at random from S \ {SL u {Yi-1}}. 
It is possible ta partition 17 into rounds such that during each round OPT incurs 
a cost of 1 and any deterministic on-line algorithm with strong lookahead 1 incurs 
an expected cost of at least H(k - 1). Applying Yao's minimax principle [Y77], we 
o btain the theorem. 0 

We conclu de this section by presenting another randomized algorithm, called 
RANDOM(I)-blocked. As the name suggests this algorithm is a variant of the algo
rithm RANDOM due to Raghavan and Snir [RS89]. On a fault RANDOM chooses a 
page uniformly at random from among the pages in fast memory and evicts that page. 
In terms of competitiveness RANDOM(I)-blocked represents no improvement upon 
the previously presented algorithms with strong lookahead. However, RANDOM(l)
blocked, as the original algorithm RANDOM, is very simple and uses no information 
on previous requests. 

Algorithm RANDOM(I)-blocked: Serve the request sequence 17 in a series of 
blacks. These blocks have the same structure as those in the algorithm LRU(l)
blocked. At the beginning of block E(i) determine the set S, of pages in E(i) which 
are not in fast memory. Choose card(S,) pages uniformly at random from among the 
pages in fast memory which are not contained in E(i). Evict these pages and load 
the pages in Si. Then serve the requests in E(i). 

Theorem 11. Let 1 ::; k - 2. The algorithm RANDOM(I)-blocked with strong look
ahead 1 is (k -1 + I)-competitive. 

The pro of of the theorem is omitted. 
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