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Preface

Clieny/server applications arc of increasing importance in industry; they are a signifi-
cant first step towards a global distributed processing model. A very recent response to
this trend is the Distributcd Computing Environment (DCE) of the Open Softwarc
Foundation (OSF), the emerging new industry standard for disteibuted processing. The
papers in this volime discuss the client/server approach based on DCE, illustrating
and analyzing the lunctionality of impertant DCE components and applications. Mo-
reover, a number of contributions also focus on new models beyond traditional
client/server processing and beyond DCE.

The material sommarized in this volume was prescnted at the International Workshop
on the OSF Distributed Computing Environment gn October 7 and 8, 1993 in Karlsru-
he, Germany, This workshop was organized by the German Association of Computer
Science (Gesellschaft fiir Informatik, GI/ITG), together with the University of Kartsm-
he and the Nuclear Rescarch Center in Karlsruhe,

Major subject areas of the workshop were analysis and overview of DCE, methods
and tools for DCE applications, extensions of the DCE remote procedure call, and di-
stributed object-based systems on top of DCE, including the Object Request Broker
{ORB) of the Object Management Group (OMG). Most papers are of practical orienta-
tton but typically have a strong technical and conceptual background. A more detailed
overvicw of the papers is given at the end of the first contribution which gives a sur-
vey of distributed systems, DCE, and approaches beyond DCE.

We would like to thank all people who conteibuted to the success of this workshop.
The members of the program commitice did a very good job in reviewing about 10
papers per commiltce member. The Institute of Telematics of the University of Karls-
ruhe, ecspecially Prof. Dr. Gerhard Kriiger, made the workshop possible by providing a
lot of organizational support. The university supported the workshop by making the
required lecturing halls available. The background organization of the workshop was
made possible by the Gesellschaft fiir Informatik, especially by its working groups on
operating systems and on distributed systems (FA 3.1 and 3.3). We would alse like to
thank the speakers and authors and the colleagues who did the indusiry demonstrations
on DCE; their technical contributions were a major prerequisite for this workshop.
Morcover, the work force who helped with the local organization, especially the col-
leagues and students from the Institute of Telematics did an excellent job.

Finally, we would of course like to thank all companies that supported the workshop
in various ways, including Daimler-Benz AG, Digital Equipment Corporation,
Hewlett-Packard, IBM, the Open Software Foundation, Siemens-Nixdorf, and SUN
Microsystems. The local organization was particularly supported by Dr. Lutz Heuser
of Digital Equipment’s Campus-based Enginecring Center (CEC) in Karlsruhe and by
the Volksbank Karlsruhe. Morcover, we would like to thank all other colleagues who
supported this workshop in one way or the other during the last few months.

Karlsruhe, Angust 1993 Alexander Schill
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Distributed Systems, OSF DCE, and Beyond

M. Bever!, K. Geihs?, L. Heuser’, M. Miihlhsuscer®, A. Schill®

1) IBM European Networking Center, Yangerowstr, 18,
69115 Heidelberg, Germany; e-mail: bever@dhdibml.bimet

2) University of Frankfurt, Dept. of Informatics, P.O. Box 111932,
60054 Frankfurt, Germany; c-mail: geihs@informatik.uni-frankfurt.de

3) Digital Equipment GmbH, CEC Karlsruhe, Vincenz-PrieBnitz-Str, 1,
76131 Karlsruhe, Germany; e-mail: heuser@kampus.enet.dec.com

43 University of Karlsruhe, Insiitute of Telematics, Postfach 6980,
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3) University of Karlsruhe, Institute of Telematics, Postfach 6980,
76128 Karlsruhe, Germany; e-mail: schilli@telematik.informatik.uni-karlstuhe.de

Abstract. This introduction paper presents basic foundations of distributed systems
and applications and then shows how OSF DCE addresses the requirements imposed
hy distributed environments. The DCE architecture is illustrated, the basic functional-
ity of the DCE components is explained, and the DCE RPC as the major base for cli-
ent/server applications is presented in closer detail.

The paper also discusses requirements and new models beyond DCE in order to en-
able cven more advanced distributed applications. In particular, distributed object-
oriented DCE extensions are outlined and directions towards distributed multimedia
applications are pointed out. Moreover, other requirements and trends such as ad-
vanced tool support or distributed transaction facilities are alse discussed. Finally, an
overview of the papers within these proceedings is given.

1 Introduction and Overview

The poiential benefits of distributed processing systems have been widely recognized
{1,2]. They are due to improved economics, functionality, pesformance, reliability and
scalabily. In order to explore the advantages af distributed processing, appropriate
support is needed that enables the development and execution of distributed applica-
tions. A distributed application consists of separatc parts that execute on different
nodes of the network and cooperate in order 1o achicve a common goal. A supporting
infrastructure should make the inherent complexity of distributed processing transpar-
ent as much as possible. The infrastructure is required to integrate a wide range of
compuler system types and should be independent of the underlying communication
technology.

The Open Software Foundation (OSF) has presented such an infrastructure called Dis-
tributed Computing Envirenment (DCE}. It is a collection of integrated software com-
ponents that are added to a computer’s operating system. DCE provides means to
build and run distributed applications in heterogeneous environments.



BIBLIOTHEQUE DU CERIST

[k}

Let us illustrate the role of DCE by an example: Figure 1 shows a distributed office /
manufacturing procedure that implememns a product management scenario. Several
distributed activities are performed by a collection of processes. We assume that each
process is ailocated w0 a differcnt network node, and that nodes are connected by a
physical network. The processes coceperate as shiown by the arows by lorwarding
forms or control data between cach other. Some of the activities can be exccuted in
paraliei (such as the manufacturing and marketing activities) while others arg sequen-
tial, or aliernative (such as regular gualiey control, simplified quality conwrol or by-
passing according o the product type). Each activity can be subdivided hierarchicaily,

. Manufacturing
controt

' Guality conirol

Simple
guality
approval

\ Fetck product
design data

' Approve
marketing

Report E
plan ;

generation

Fig. I Example of a distributed office vrocedure application

An example of an underlying diswibuted system is shown in figure 2. Two hosts and
three workstations are interconnected via an Ethernet and a Token Ring. The two net-
works are coupled via a gateway. Bach computer system offers local resources (at
least CPU and main memory, but possibly also priniers and secondary storage). These
resources can also be accessed remotely and can be shared arnong different computers.
Resource control is performed in a deceniralized and mainly astonomous way. On
each computer systcm, a set of apphlication processes are eperating - as found in our
distributed application. These processes can communicate over the interconnected net-
works via basic interaction mechanisms such as remote procedure call, At this level,
the underlying physical network topology is already considered io be relatively trang-
parznt.

Role of DCE and client/server-model: The OSF Distributed Computing Environ-
ment {IDCE} can now be classified as being a distriboted system, while alse offering a
set of services thai support the development of distributed applications. Basically,
DCE closes the gap between the physical componcnis of a diswibuted system and the
application components.
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Fig. 2 Distributed system with communicating application processes

DCE internally works with the client/server model (sce fig. 3}, and is particularly
well-suited for the development of applications that arc structured according to this
model: A server typically offers some service to a population of clients; typical exam-
ples are print services, computational scrvices or namc translation services. A client
can make usc of a service by sending a scrvice request message to a suitable scrver.
The request can contain input parameters (e.g. data to be printed). The server performs
the requested service and finally sends a scrvice response back to the client. The re-
Sponsc can coftdin output parameters {¢.g. a status indication).

Client Server Server
. Service request | Servicerequest |,
document —»| “document »  "printing
editing” - : archiving” |-e—
Service response Service response

Fig. 3 Client/server maodel

As shown in the figure, a server can alse act as a ¢lient of another service, i.c. delegate
parts of a service request to a peer server. For cxample, a document archiving server
could request a print service in order to offer a more complete document management
functionality to s clients.
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2 DCE: Strategy and Architecture

Based on the introduced foundations, this section presents the general strategy of the
Open Software Foundation towards products for open systems ard then illustrates
DCE as one of these products in moee detail.

2.1 $roals and Strategy of the Open Software Foundation

The Open Sofiware Foundation (OSF) 1s a not-for-profit research and development or-
ganization. {ts members comprise computer hardware and software vendors, end us-
crs, unjversitics and other rescarch institutions, One of the major goals of the OSF is
{0 enabic global interoperabilily among heterogeneous systems by providing a practi-
cal open computing environment [31,

To achieve this, the OSF solicits proposals for open sysiems software technology, then
evaluates the submissions, and finally Heenses the selected solutions for incorporation
mto the OSF open computing environment, That environment s a collection of tech-
nologies that provide for interoperability of diverse systems as well as application
portability.

Its main parts are currently

+ the OSF/1 Unix operating sysiem,

* the O3F/Motf graphical user interface,

s the (JSF Distributed Computing Environment (DCE) and
¢« the O3SF Distributed Management Environment (DME).

From a distributed systems point of view, DCE and DME are of primary importance,
While DCE is the base for building distributed applications and also offcrs & set of dis-
tributed services directly to the end user, DME addresses the issues of network and
system management; it should suffice to rmention that it offers an object-oriented infra-
stucture for distribated management applications, iogether with suppert for the man-
agement protocols SNMP and CMIP. It also provides a management user interface
and several supplemental management services [4]. Morcover, DME uses certain DCE
components, The DME development has not vet reached the same malure stage as
BCE.

In the meantirne, DCE tends to become an industry standard for distributed process-
ing; most of the major computer vendors are members of the OSF and offer (or have
announced) DCE compliant products for their computing platforms. As opposed to
other standards, the implementation of the components existed first, and standardiza-
tion was performed by the Q8F thereafier. This seems 10 have major advaniages con-
cerning the resulting functionality, system performance and imeframe of delivery.

2.2 DCE Architecture andgd Services

Fig. 4 shows the overall DCE architecture [3-6]. All DCE components are based on
local cperating system services {e.g, Unix) and ransport services {e.g. TCPAP). Dis-
tributed applications make explicit use of fundamental DCE services (in ialics in the
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figurc) via C programming intcrfaces. The other DCE services are used implicily via
the fundamental services or via modified operating system services,

Fundamental DCE services: The Thread Service provides a portable implementation
of lightweight processes (threads) according te the POSIX Standard 1003 4a. Thrcads
enable concurrent processing within a shared address spacc, and are cspecially used by
RPC fer implementing asynchronous, non-blocking remote invocations and multi-
threaded servers.

Distributed applications
Distr. Disk-
Diser. Cell Directory S./ Security File less
Time Global Directory Servi System |} Support
Service Service ervece

Remote Procedure Call

Thread Service

Lecal cperating system and transport services

Fig. 4 DCE architecture

The DCE RPC is the major base for heterogeneous systems communication. Based on
RPC, a client request for a remote procedure (i.e. a service request) is transferred to
the server, mapped to a procedure implementation, cxecuted, and finally acknowl-
edged by scnding back results to the clicnt. All input data and results are encoded as
RPC parameters similar to local calls, All parameter conversion and transmission tasks
are handled by call marshalling facilitics that are part of so-called RPC stub compo-
nents at both sites. This way, the remoteness of a call be be masked to a large degree
at the application level. The stubs are generated automatically from an interface de-
scription which specifies the signatures of the invoked procedures. DCE offers a C-
based fnterface Definition Language (IDL}, various kinds of call semantics, nested pa-
rameter structures, secure RPC with authentication and authorization based on the
DCE Sccurity Scrvice, global (up to werldwide) naming of servers bascd on the X.500
dircctory service standard, backward calls from servers 1o clicnts, and bulk data trans-
ter based on lyped pipes (logical channels),

The Cell Directory Service (CDS) supports distributed name management within dedi-
cated management domains. Name management basically comprises mapping of (at-
iributed) names to addresses, and update of name information. Most important, it is
the basc for mapping RPC scrver addresses to client requests. Its functionality is inte-
grated into the DCE RPC programming interface via MST (Name Service Interface).
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CDS exploits replication and caching o achicve {auit tolerance and efficicncy. An ad-
vanced CDS programming interface is offered by the standardized X/Open Divectory
Service Interface.

The Security Service implements authenticaiion, authorization, and encryption. These
mechanisms are tighly mtegrated with DCE RPC; for example, RPC clienis and serv-
ers can he mutually authenticated, servers can dynamically check access control lists
for proper client authorization, and all RPC messages can be encrypted on demand.

Finally, the Distributed Time Service (DTS) implements distributed clock synchroniza-
tion, @ commaon problem in distributed environmenis. It guarantees that local clocks of
participating nodes are synchronized within g given interval, Moreover, synchroniza-
tion with cxact external {ime sources (c.g. with radio clocks) 15 supported. This func-
ponality is tmpostant for implementing timestamp-based distribuied algorithms. It is
also directly exploited by other DCE componentis.

Other DCE services: The Global Directory Service (GDS) exiends CDS by global
naming facilities across adminisiraiive domains. It is based on the X.500 directory
service standard. Thacfore, it enables interoperability not only with other DCE direc-
tory servers bul alse with other X.500 servers worldwide. As an altemative, the fater-
net Domain Name Service can also be used for gichal naming, .

Tiwe Distribuited File Sysiem {DFS) inplements cell-wide transparent distributed file
inanagement. Files can be stored at different servers and can also be replicated. Cli-
efnts, 1.C. application programs, can access files by location-transparent names similar
to a Jecal Unix file system. File access is quiie officient based on whole-file caching at
the client site. This tecinigue also supports scalability by offloading work from file
servers to clients during file access [7]. Interoparability with the widely used Network
File System 13 enabled via an NFS/IDFS inierface. DFS 1s augmented with a Diskless
Support component; it provides boot, swap, and file services for diskless workstations.

In suromary, DCE provides a rich and integrated functionality for diswributed applica-
icns. Morsover, DCE supporis heterogeneous systems interoperability and is offered
in product quality.

2.3 DCE System Configurations and Application Example

DCE supports structuring of distribuied compuling systems into so-called cells in or-
der 1o keep the size of administrative domains manageable. A cell can consist of all
nodes artached (o a local area network but is usually defined according to organiza.
tional considerations rather than physical network siructures. Therefore, it is basically
a set of nodes that are managed togetker by one authority,

Celi characteristics: Most DCE services are especially optimized for intra-cell inter-
actions. While cross-cell commuanication is possible, interactions within a ¢ell are usu-
ally much more frequent, and can therefore benelit from such optimization sigaifi-
cantly. Moreover, cell boundaries represent sccurity firewalls; access 10 scrvers in a
foreign ceil requires special authentication and authorization precedures thatl are dif-
ferent from secure inira-ccll interactions. Finally, the distributed file system within a
cell provides complete location transparence; as opposed to that, explicit cell names
must be specified for file access across cells.
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Example: Fig. 5 shows an example of an application framework based on DCE to im-
plement an office / manufacturing scenario as discussed above. It consists of three
cells A-C for product data management, manufacturing and marketing / sales. Within
each cell, various nodes with dedicated application services exist {such as manutactur-
ing control, machine management, and quality control processes on threg different
nodes in cell B). Moreover, each cell hag a sel of DCE system servers, including sccu-
rity, directory, time, and file servers. Typically, two or more servers of each kind are
configurcd within a ccll in order te improve availability of DCE services and perform-
ance of service access. One or several global directory servers are available in the ex-
ample to enable cross-cell naming, e.g. to identify and access an application server in
a remote cell. Finally, a diskless workstation pool is pant of cell A and is linked to
DFS and other DCE services via the diskiess support component of DCE.

Cell B:
Manufacturing

Cell A:

N 6:
Product data management ode

Machine
mgmt.

Quality
. control

Nede 1:
Management

Security|
: |

Diskless

Node B:
Marketing
services

Sceurity
-| Server

Marketing and Sales

Fig. 5 DCE application example and cell structure
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All nodes, respectively the application processes, and alse the DCE components inter-
act via DCE RPC. For exampie, this 15 indicated within cell A and between cell B and
C in the figuze. RPC servers are located via CDS based on logical names, and via GDS
across cetls. RPC communication can be made sccure by the protocols offered by the
security servers. Bachk process can comprise a number of threads to serve multiple
RPCs concurrently (server site) or o issue multiple RPC requests in paratlel {clicnt
site).

Data management can be based on the distributed file system. This way, different
processes such as the management, secretary, and data management components of
cell A can share file data in a location-transparcnt way. On the other hand, these files
can also be accessed from remote cells upon request, provided that the accessing client
is properly authorized and anthenticated ir: both cases.

3 DCE Remote Procedure Call

As the RPC iends o be the most imponant mechanism within DCE, il shali be de-
scribed in more detail, augmented with practical examples.

3.1 Properties of DCE RPC

Language integration and data representation: The implementation of DCE RPC is
based on the C pregramming language; all interface specifications are given in a spe-
cific fnterface Definition Language (IDL) that is a superset of the declarative part of
C, corresponding to C header file code portions. Morcover, the RPC programming in-
terface is offered as a C library - similar (o the inter{aces ol other DCE compoenents,

IDL allows the specification of arbitrary parameter data types with virtually the same
facilities as found in C. The RPC runtime syster, namely the siabs generated from
IDL, are able to handle nested data structures by fiattening them recursively, transmit-
ting them to the server, and rebutlding them there. All differences concerning data rep-
resentations at the client and server sites are masked by DCE by converting data for-
mats accordingly. This principle is called "recciver makes right” and means that data
are transmitted in the sender’s represeniation and are adapted to the receiver's format
at the destination site. The DCE implementation of a pariicular vendor must therefore
know ali other possible data formats of peer nodes - however, in practice, oaly a few
different formats actually exist.

Call semaniics: The applicatior programmer can choose between diffcrent kinds of
call semantics. For example, the default, at-most-once, makes sure thai a call is exe-
cuted once even if communication messages are temporarily lost. This is achieved by
message refransmission combined with the detection of duplicate messages. Although
node failures cannot be tolerated, message loss can be masked this way, Qiher select-
able semantics provide weaker guarantees in the case of failure but achieve an im-
proved efficiency.

Thread support: Based on threads, it is possible io implement muitithreaded servers;
this just requires an appropriate parameter serting during server initialization. Then a
{static} pool of concurrent server threads is allocated initiatly. The application pro-
graminer, however, must {ake care of comact thread synchronizaton in case of shared
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data modifications. On the client site, threads must be started explicitly to do concur-
rcat, asynchronous calls to multiple servers. Within its body, each thread then per-
forms a synchronous call while different threads are mutually asynchronous.

Security: As mentioned above, secure RPC communication is possible based on the
security service, First, the application client and server run a distributed authentication
protocol in cooperation with a security server. In this phase, they mutually validate
their identity based on a private key encryption approach. In a second phase, the actual
call is exccuted; before the server starts acting upon it, it checks the proper authoriza-
tion of the client based on a local access control list, Finally, the call data can option-
ally bz encrypted in order to enable complete privacy during communication.

Directory
Service
>
Import
Export
Client
- Local call 4
- Locating a snitable server
(binding)

- Encoding of call and parameter
data
- Call ransrnission

Server
- Determination of communication
protocols to be used

- Local installation of
procedure interfaces

- Export of procediire interfaces
to directory service

- Waiting for incoming calls

| client blocks

RPC

- Receiving a call

- Decoding of call data
- Call execution

- Coding of result data
- Transmission of reply

- Receipt of RPC reply -
- Decading of reply

- Continuvation of ¢lient program

- Possible error handling

Fig. 6 Typical DCE RPC runtime scenario

3.2 Building Applications with DCE RPC

Building distributed applications with DCE RPC requires the following steps:

s Interfuce definition: An 1DL interface must be specified with all procedures that

shall be offered by a server.
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s Server implementation: The server proceduses must be implemented as ordinary
C code. Moreover, DUCE-specific server imiiialization steps musi be performed by
the implementation.

o Clieni implementation: Tn the simplest case, the client site is implemented as a
standard C program. Advanced DCE features such as explicil selection among a
group of servers or execution of secure RPC reguire additiona! code, however.

RPC runtime aspects: A typical DCE RPC runtisne scenario is itiustrated in fig. 6.
All functionality that has to be implemented explicitly by the application developer is
shown in #alics, everything else is or can be performed avtomatically by DCE RPC,

The first step is the server initialization. The servers determine which commaunication
protecols to use (such as TCP/IP or UDP/IP}, installs its offered procedure interfaces
with the RPC rantime system, exports the procedure interface information 1o the direc-
tory service (1.e. CDS), and iinally waits for incoming calls.

To inveke an RPC, a client calls the corresponding procedure locaily. However, based
on the stubs that are generated from IDL, an intormal handler routine is executed in-
stead of a local application procedure implementation, B contacts the directory sarvice
for locating a suitable server. The input 18 a logical name for the server and the re-
quired procedure interface, the output is a server address, a so-calied binding handie,
This whole process is called RPC binding. Then the remote call and s input parame-
ters are encoded and {ransmitted to the server. Whide the server ¢xecutes the call, the
citent biocks. The remaining sieps of cail decoding, execution and result ransfer have
already been explained earlier. Finally, the client should include some error handiing
due to possible transmission problems ete.

Example: A program exampic shall illusizate the reguired code; it implements a re-
mote client query against a s¢rver that manages product data. The interface definition
consists of a header with a unique interface number {generated automatically} and
with versioning information, The mierface body comprises the required C type defini-
tions and procedure intcrfaces with fully typed parameter specilications. Some atirib-
wes bevond C are required to distinguish between inpuat and output paramciers, for ox-
ample.

[
unid(765¢3E10-100a-135d-1568-040034e6783 1),
version{1,(h

]

interface ProductData { // Interface for product data

import "globaldef idl"; H} Import of general definitions
const lony maxProd = 10, J Maximum number of products
typedef [siring] char *String; J7 Siring type
typedef siruct {

String productiName; /f Produet name

Swming productAnnotation; f Textual annotation

Plan manufacnuringPlan; /i ... Type defined in globaldef.idl
} ProductDescription; #f Product description data type
long product Juery ( /f Remote query procsdure

fin] Siring productName{maxProd], [ > Product names

[out] ProduciDescrption *pdfmaxProd], /i - Product descriptions

{out] long *status J; I <- Call status
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Server: The server initialization implements the steps discussed above by calling a
number of DCE RPC system functions. A simplified example program looks as fol-
lows:

finclude "productdata.h” #/ Generated by the IDL compiler

#define entryName “f.:/ProdaceServer” [/ Name of server's directory entry
#define maxConcCalls 5 /f Max. number of coneurrent invoc.
main ) {
unsigned status; /f Return stams
rpe_binding_vector_t *bVec; # Vecior of binding handles

[f %% Perform some local initializations (not detailed hera)
H *** Get the acmal vecior of binding handles: **#
mc_server_ing bindings (&bVec, &status);

{f *** Register the interface with a machine-local RPC manager process: ¥**
rpc_ep_register {ProductData_v1_0_s_ifspec, bV¥ec, NULL, NULL, &status);

#f *** Export the interface to the directery service under the given name: ***

rpc_ns_binding_export (rpc_c_ns_syntax_default, entryName,
ProductData_v1_0_s_ifspec, hVec, NULL, &staws);

ff ¥*¥* Now be ready to accep! incoming invocalions concurrently: ***

rpe_server_listen (maxConcCalls, & status);

)

The implecmentation of the server’s application procedures, i.e. of productQuery in this
case, is identical with a local imnplementation and is therefore not detailed here,

Client: The client site is also independent from DCE or distributed systems aspects (if
no advanced RPC functionalitly is desired):

#include "productdaia.h” /f Interface definition header file
main () [
Swing product{maxProd]; /f Product names
ProductDescription *pd[maxProd]; #f Requested product descriptions
long re, status; }f Stams values
mputProductNames (produet); {f Input function (appl. specific)
¢ = productQuery (product, pd, &status); # RPC

{f ... check status value and handle errors

}

In summary, building DCE applications based on the client/server model is a rela-
tively straightforward task for C programmers. However, the usc of advanced features
is more difficult. In the following, such featurcs are sumrmarized bricfly; for deatails,
see [6].
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3.3 Advanced BCE RPC Features

Binding: During binding, the client can controi ihe selection of a specific server ex-
plicidy; this mode is called explicit binding as opposed io the awtomatic binding ap-
plied above. The implementation of cxplicit binding is based op diréciory service in-
teraction procedures 1o be called by the client via sysiem RPCs. Morcover, DCE oilers
facilities to register groups of servers with the directory service and to specify client-
specific search paths through the directory entries, This way, the server selection proc-
ess can be controfled in detail,

Caliback: With DCE RPC, it is possible for a server 10 issue a callback to a client
during remote procedure exccution; the cliert must offer an appropriate call inierface
for that. This way, a server ¢an deliver intermediate results or can reguest farther input
data.

Pipes: For bulk data transfer, logical pipes can be established between client and
server by passing pipe references as RPC parameters. A server can then request farge
chunks of data via the pipe dynamically from the client, and can aiso send buik daia
back to the client this way.

Context: For muitiple clientfserver interactions in a row, it is sometimes uscful to es-
tablisk some context informaiion beiween both sites. An example is information about
an onen file of a file server that is read by a client by several RPCs. DCE RPC olfers
explicit mechanisms {o handic sech coniext information.

Other features such as asynchronous RPCs and secure RPCs have already been dis-
cusscd. Altogether, a quite rich RPC functionality is provided by DCE.

4 Chalienges and Models Beyond DCE

While DCE is a major step towards open distributed computing, the approach is stili
limited to relatively conventionai client/server applications, This presents a number of
ongoing rescarch and devclopment challenges o provide advanced support and new
models beyond DCE. Examples are advanced development and management tools,
distributed chject-oriented systems, diswributed transaction support, and multimedia
extensions,

4.1 Advanced Methoed and Taol Support

Only few commerciaily available dedicated icols exist for client/server type applica-
tions. As a consequence, programmers use design methods, debugging tools and other
sofltware developmeni aids that were developed for the sequential programming lan-
guages used as RPC host languages, The sitvation is similar for managemeni compo-
nents such as source code control tools. The distribution and paralielisin exbibited m
cliens/scrver applications, however, requires dedicated development aids. This require-
ment becomsas even more imporiant as we maove to programming paradigms beyond
client/server, such as the ones described later,

We will, for the remainder, focus on a number of imporiant aspects of iool support
which can be divided into three categories: development toals (here we will discoss
formal specification and design), runtime-level tools (debugging and cooperation), and
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management tools (runtime management and distributed system management). For
some of these topics, we will separately discuss support for DCE-like clicnt/server ap-
plications and for advanced distributed applications.

Formal specification technigiues have gained a lot of attention in the context of com-
munication protocels. This is due to the fact that such protocols are complex (i.c. hard
to describe unambiguously with informal techniques) and that implementations of dif-
ferent vendars have to interoperate in open distributed systems. The formal techniques
used for communication protocols can be applied to distributed applications as well
[8); the application of Lotos, Z, and SDL to distributcd systems is described in {9].
However, the corresponding formal specification techniques usually do nor focus on
any of the most interesting aspects of distributed applications, such as dynamic recon-
figuration of the network of processes (active entities and communication links beeing
added and removed at runtime), hierarchical decomposition, and asynchronous com-
munication. Moreover, the feasibility of formal techniques for large sofiware projects,
and the close coupling of formal techniques te DCE (in the scnse of automatic code
ransformation) have not been achieved to a satisfactory degrec yet. Moreover, in the
client/server context, formal technigues for reasoning about the correctness of RPCs as
such ought to be included.

Design: Specific design tools for distributed applications are hardly in use, either. The
software cngineer would want them (o support visual programming, early animation of
coarse designs, and autematic code generation. An example for a prototype ool with
these features, VDXAB, is described in this volume. It also supporis the design of the
dynamic behaviour of distributed applications "hy example”, based on dedicated calt
scenarios. The ool translates into a distributed version of C++, which is in turn imple-
mented on top of DCE.

Debugging: Distributed debugging is widely recognized as one of the most important
issues to be resofved on the way to cost-effective development of distributed applica-
tons. This owes to the fact that sequential debuggers do rot help resolve some of the
most predominant problems with testing distributed programs: the interference of the
debugger with the code (which can make it impessible to detect the effects of race
conditions), the presence of indeterminisms (which hinder the reproducability ol sub-
sequent debugging sessions), the vast amount of parallel events to be perceived by the
user, and the fack of suppont for notions like "distributed breakpoint™ and "distributed
single-step”. While uncountable contributions to these issues can be lound in the lit-
erature, hardly any commercially available distributed debugging tool exists in the
wider DCE context.

Runtime management: For sequential program development, the management of dif-
ferent versions and branches of source code and exccutable code in the development
environment has been considered an important problem: to resolve this issue, code
management tocls were developed. In contrast, the instaliation of the final software
version in a target environment (i.c. at the customer sitc) was usually deferred to a
one-shet installation procedure. The installaticn of a distributed applicauon however,
i.e. the management of executable code in a distributed environment, is often an itera-
tive and cumbersome task. Exccutables have to be copied to all sites, parameters and
mnput files have to be considercd at these sites, nameserver, network, and operating
system setups have e be adjusted, etc. During execution, performance monitoring is
desired, e.g., as a base for reconfiguration decisions. Such tasks are mostly carried out
by hand today. But with the increasing deployment of distributed applications and the
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continuing sophistication of these applicatons, the nced for user-friendly {(e.g..
graphics-based) and fghly astomared runtime management tools will increase drasti-
cally.

Distributed system management. As DCE shows, disgributed system management is 2
rather comiplex sask. For example, CDS or Sccurily servers most be installed, man-
aged, and replicated. Security Information such as passwords of access conirol lsts
must be maintained. DFS management comprises an even wider variety of differeny
tasks. Therefore, graphical management (00is are required to provide simplified man-
agemenl pser imterfaces. Beyoad this, further higher-level programs are desirable
which antomate other routine management tasks in 2 distributed system such as back-
ups or software upgrades.

To sammarize, tool support for distributed programiming has, for the mosi part, not yet
lefi the academic stage. With DCE, nowever, the development of distributed applica-
tions kas Ieft this stage and more and raorc commercial sites get involved in distrib-
uted programuming. The expected aggravating effects on the software crisiz will prob-
ably lead tc rapid changes in the scene of support ©ols in the vears to come.

4.2 Distributed Object-Oriented Svystems

A step bevond RPC are distributed object-based systems as extensions of program-
ming languages like C++, Smalltalk, Treilis, Modala-2 or Eillcl. An objeci can be de-
fined as a data structure associated with a sci of operaitons. The data strucivre could
refer 1o gther objecis by which an object graph can be built representing a so called
complex object. Thus, as opposed 1o RPC servers, the granularity of objects is scatable
and ranges, in general, from a couple of bytes up to thousands of bytes.

The fine granularity of objects and their capability to form complex objects lead 16 a
unit of mobility, i.e. the object, which is casy to handie. Objects imteract with each
other through "message passing”, i.e. an object sends a remote message to a peer ob-
Jject wo initiate the execuiion of one of the provided operations. At the communicauion
level, message passing is perfoimed by RPC-style location independeni object invoca-
tions whercby interacting objects can reside at different nodes.

However, a3 opposed to RPC with cali-by-value parameter semantics, object refer-
ences (i.e, pointers ic objects) can aiso be passed remotely, leading to call-by-object-
reference semantics, In addition, single objecis or even complete object graphs could
be passed as parameters to the callee {103,

The resulting approach is more flexible than RPC and, in particular, enables a more
natural modeling of distributed applications. Due to the mobility of objects, they can
be relocated dynamizaliy. This way, communicating objects can be co-located in order
to reduce commaunication costs or to increase avatlability during execution of a joint
action of a set of obiscts.

Example: The discussed office / mannfacturing system can directly be mapped to a
distributed environment this way {(see fig. 7). Distibuted office procedures can be rep-
resented a3 task objects transferred between server objects. Typical operations of task
obiects are siart, siop, suspend, or status inguiry while servers provide actual service
invocations, status inquirics, or accounting functions. Data/document abjects aitached
to an office procedure can aleo be modeled as objects. Moreover, since each documert



BIBLIOTHEQUE DU CERIST

15

has a certain structure like chapters, paragraphs and so on, it is likely that such docu-
ment objects are object graphs as mentioned carlier,

Object:
Remote references / Quality control

invocations

Object:
Manufacturing
control

v
Migration

Object:
Sales support

Atxtached data /
document objects

Fig. 7 Distributed object-oriented office procedure modeling

Class structure: The mechanisms to create remote objects, Lo locate and invoke them,
and to relocate them dynamically can be implemented by superclasses from which all
relevant application classes inherit. As an example, a C++ superclass is given below
[11}; it also offcrs methods o fix objects at a certain location in order to prevent mi-
gration, ard to unfix them later:

class DistributedOhbject {
/... Insvance variables like location, size etc,

public:

DistributedObjeet (Location*}; // Constructor to create at a given kocation
~DistributedObject (); /f Destructor

Location *locate (): // Locate the object

boclean move (Location*);  /f Move to a given location

hoolean fix {}; {/ Fix at current location {prevent from moving)
boolean unfix (); /f Release for migrations

void Invoke (f...); /1 Perform generic

invocation

K

Such functionality can be implemented on 1op of DCE RPC as illustrated by other pa-
pers in the proceedings. This requires sophistcated additional mechanisms {or locat-
ing mobile objects {e.g. via forwarding addresses), for synchronizing migrations and
computations, for controlling obicct migrations according to a given goal, and for
monitering and controlling the overall system behaviour.

OMG/CORBA: The industry consortium Object Management Group {OMG) has de-
fined the Object Management Architecture (OMA) for managing objects in distributed
systems. This approach aims at providing support for distributed object interaction in a
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heterogencons environment, In OMA, objects usaily tend to be much larger than they
are at prograraming language level, 1.e. a whole application could be an object. This
approach differs from ohject graphs in the sense that these "coarsc-grained objects”
arc treated as monoliths.

A key component of OMA it is the Object Services Architecture [12-131 that offers
the required services with a very broad spectrum of functionality. In general, these
services provide a higher level of abstraction than DCE does and cover a breader tech-
nological area. Exampies are database- and transaction-oniented services, version ¢on-
irol of software objects, concutrency control, and distributed object replication. Loca-
tion independent object interactions arc supporied by the Common Object Request
Broker Architecture {(CORBA); it supports mechanisme for identifying, locating, and
accessing objects in a distributed environment, However, the Object Management Ar-
chitecture has not yet reached the same level of maturity that DCE has. Morcover,
some functicnality of distributed object-orienied systems mentioncd above, namely
mobility, is not yet supported by CORBA. Several vendors implement - at least par-
tiallv - CORBA on top of DCE.

Open Distributed Precessing (ODP): Distributed system technology has become a
major focus in internaticnal standardisation and harmonisation activiiics, too. As an
ninportant exampic, work in I80 and related standardisation commitiees 1S in progress
1o define a reference model for Open Distributed Processing (ODP). The reference
model will inclnde a descriptive as well as a prescriptive part, The descripiive part
deflines ierminology and modeling gear that can be used to model arbitrary distributed
systems. The prescriptive part specifies when a distributed system may be called an
QODP sysiem. It prescribes architectaral properties that an ODP systern must have, Af-
ter the ODP reference model has been finished, individual ODP standards conforming
to the reference model will be defined. Most likely, one will frst work on standards
for infrastructurs components similar to those that we find in OSF DCE today. ODP
and OSF DCE are two projects that arc compleiely unrelated from an organisaiional
point of view. However, the ODP work on an abstract reference model benefits sig-
nificantly from the design of an infrastructure such as O8F DBCE. The latier shows
what functionality is needed in distribuied processing systems and how components
can be integrated into a comimon framework. Furthermore, when individua! GDP sian-
dards will be sought for, the OSF DCE technology will certainly be a suitable and
promising siarting point. OSF and OMG (see abeve) have expressed their interast ini
advancing the ODP standardisation.

4.3 Distributed Transactioms and Workflows

Transactions are a well-known approach found in database systems, It guarantees so-
called ACID semantics {(atomicity, consistency, isolation, and durability). Atomicity
means that an operation is only performed as a unit; 1t 18 ¢ither fully completed (com-
mit} or its effects do not become visible (abort). Consistency means that a fransaction
iransforms daia from one consistent state intg another consistent siate. Isolation means
that concurrent fransactions execuic iike in a sequential system without interfercnce.
In particular, a transaction Tl will never see any intermediate state of data caused by
another transaction 72 before TZ is compleicd. Finally, durability means that the ef-
fects of o transacton {daiz manipulations eic.} remain persistent afler ransacion com-
pletion; for cxample, they do not get lost after a system crash,
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Distributed transactions: The transacticn properties have proven very useful for im-
plementing processing functionality with strict consistency requirements (like
credit/debit transactions). Therefore, extensions of the basic concept towards distrib-
uted systems have been developed [14). Somc of them are based on RPC or distrib-
uted object interactions, others on pure message passing. The implementation typically
relies on the two-phase commit protocol. In the first phase, all ransaction participants
are polled by a coordinator whether they are able to successfully commit. In the sec-
ond phase, the uniform decision is propagated to them in order to comrmit or abort
jointly,

This concept has also been extended towards nested transactions with hierarchical
subtransactions, This allows for ranning subtransactions in parailel, and for selective
rollback and restart of subtransactions. Standards and implementations on top of DCE:
Meanwhile, there are several emerging product-level implementations of distributed
transactions that conform to new standards. Mast notably, the X/Open consortium has
defined the X/Open Distributed Transaction Frocessing (DIF) application program-
ming interface named XA [15]. This approach is designed to work with standardized
ISO/OSI ransaction protocols, namely CCR and TP,

Conforming to the XA standard, there are several implementations available, The ori-
gins of XA have evolved according to the Tuxedo system [16] of Unix System Labora-
tories that is available on numerous hardware platforms and operating systems. The
Encina transaction processing system |17] of Transarc is an open, XA standards-based
family of components that provide online transaction processing based on DCE.
Transactional integrity is added to DCE programs through Transactional-C, Transac-
tional RPC (TRPC), two-phase commit and the management of recoverable data.
Transactional-C consists of C language extensions to indicate ransaction demarcation,
concurrency control and exception handling. TRPC adds exactly-once scrnantics to
DCE RPC. When a remote procedure is called from within a fransaction, it is executed
exactly once, if the transaction commits and not at all if the transaction aborts. Besides
this basic support for transactional integrity, Encina offcrs a Structured File System
(SFS) and a Monitor as an administrative, runtime and development environment for
transactional applications. Functionality of the Monitor comprises, for example, moni-
toring active clicnts, performing load balarcing and connecting front-end tools {like
OSFE/Mectif). SFS is an record-oriented file system (in contrast to DCE DFS) that
meets the requirements of transactional systems for record-style and recoverable re-
SOUICE Managers.

Workflows arc a rapidly emerging technology area that deals with long-lived, well-
defined activities like office procedures. A workflow system controls the execution of
the global contrel flow and in some cases provides certain reliability support by using
transaction mechanisms, Workflows arc distributed by nature and thus are one of the
key applicaton domain for distributed processing. On the other hand, worktlows in-
roduce a new style of programming since execution order and principles should be
extracted from the single application part and be moved to a separate workflow pro-
gram.

Workflow systems could bencfit from all DCE services. Especially RPC for communi-
cation hetween the workflow and the application parts, authorization and authentica-
tion of users performing the individual steps, and directory services for locating work-
flow servers are important.
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4.4 Disiributed Multimediz Systems

A multimedia system is characterised by the computer controlled generation, manipu-
lation, presentation, storage, and communication of independent discrete media such
as lext and graphics and coniinuous media such as audio and video [18,19]. Applica-
tion domains for multimedia systems are, eo.g., multimedia e-mail, multimedia-
supporled tcaching, viriual reality simuelafion systems, and workstation conferencing
systems. Many of these domains are inkerently distributed. A workstation conferenc-
ing system, for example, allows sharing of window based applications among partici-
pants at diffcrent lecations supported by multimedia services for audic communication
as well as video conferencing.

Distributed multimedia systems impose new chailenges for the communication of con-
tinuons data. Whereas discrete media have time independent values, the values of con-
tinuous media change over time and these changes comtribute fo the media semantics:
Each single value in an audio or video stream represents stream information for some
fraction of time. Changes in the fimes at which values ave played or recorded result in
the modification of the original data semantics and must not happen unintentionally.
The timing demands of continuous media require operaiing and (ranspori sysient sup-
port {or conitections with guaranteed gquality-of-service {QoS) for the transmission of
continueus data [Z0]. This is achicved by allocating somce fraction of the end-systemn
and network resource capacity and scheduling these resources approgpriately. Another
meaningiut requirement i3 the support of multicast since a continuous stream ofien
must be fransmitted from one source io multipie sinks.

For the development of distributed multimedia applications it is reasonable 10 maodel
sources {e.g. a microphone) and sinks (2.g. a loudspeaker) of continuous sireams as
objccts. A source object, for cxample, offers operations to connect itsclf to a sink ob-
iecl and to start, stop or suspend the production of a sirearn. This kind of control op-
erations is performed by conventional DCE RPC communication. When control op-
erations muost be submitted to muliiple sinks, a muliicall extension to the RPC is
convenient. Directlory and security infrasiucture is crucial to wdentify appropriate
sources and sinks. The establishment work for the respective connections, however,
that comprises the negotiation of the required QoeS, and the transmission of the data
ttself can be lefi to the "multimedia” transport systam. As a resulf, spurces and sinks
must be able to cope with the coexistence of dedicated runtime systems for conven-
tonat RPC communication as well as processing of continuous data.

Special support for prodacing, processing and consuming continupus data is needed,
when the data get manipulated within the application. Manipulations are, for example,
encrypling or compressing audio or video information, or mixing and synchronising
different but related streams. A useful construction in this context is 10 concgive the
connection between a source and its sink as an cbject in its own right. Such an object
exhibits two caiegories of operations: a lower level category acting on the established
transport connection and a higher level for controfling it

5 Owerview of the Technical Contributions

The technical contributions in s volume are conccrned with DCE implementation
issues, with applicaiions and tools, but also with models and approaches beyond DCE,
In particular, the following arcas are covered:
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DCE analysis and comparison: DCE is comparcd with thc ANSAware environment
developed in the UK. Moreover, DCE RPC is compared with SUN RPC and with
other RPC uapproaches. Twe perfermance analysis studies evaluate DCE RPC and
CDS in detail. This also leads to concrete recommendations, for example concerning
the configuration of a CDS name space. This way, the conceptual overview given
above is augmented with practical DCE analyses and experiences.

Application support: This part focuses on DCE application support tools and on ac-
wal DCE applications. Two different tools for cnabling Fortran access to DCE serv-
ices are presented. The first tool supports the conversion of existing non-distributed
Fortran applications to distributed DCE applications. The other approach enables di-
rect program-level access from Fortran to C-based DCE functions. One paper presents
a practical DCE application for stock broker support. This contribution emphasizes
how DXCE is used lor real-world applications and reports experiences with DCE appli-
cation development. Another application implements print services and a heterogene-
ous interface to various mail systems based on DCE RPC, using a generic services ar-
chitecture.

Methods and tools: Several other DCE support tools are presented. A formal method
and tool approach focuses on the problem of converting monelithic, non-distributed
programs to distributed applications on top of DCE. A similar transition approach is
prescated for DCE Sccurity, helping 1o incorporate conventional Unix security envi-
ronments into a DCE {ramework. Finaily, advanced tools for resource monitoring in
DCE cells are presenied. Altogether, tool examples from all three categories of devel-
opment, system management and runtime-level are discussed.

RPC extensions: This part covers direct extensions of DCE RPC. The first example is
multimedia support based on new media types and quality of service attributes in IDL,
and on runtime mechanisms for time-constrained RPC and realtime thread scheduling.
Another paper introduces an integration of RPC and message passing, lcading to a
more flexible set of communication facilities. Moreover, optimized RPC scrver selec-
tion is alse addressed in order to relicve the application developer from the sclection
process discussed above. Finally, an ambitious distributed object medel is imple-
mented by an object-oriented RPC extension. It provides the facilities discussed
ahove, but also supports dynamic typing of objects. This allows a more natural inte-
gration of common gencric services in a DCE environment,

(hject-based systems: Several other papers focus on abject-based DCE extensions,
100. An operating implementation of CORBA on top of DCE is presented, showing
that there’s a strong practical relationship between CORBA and DCE. The design and
implementation of a distributed object-oriented framework with mobile objects he-
yond CORBA, but on top of DCE, is illustrated by another contribution. A related pa-
per shows how the more conventional DCE functionality can at least be oifered via
higher-level, object-oriented class interfaces. This way, an improved abstraction is
provided to the application developer. Finally, an object-based tool for graphical sup-
port of DCE applications is presented. This also extends the tool discussion towards
the early phases of appiication design.

In summary, the papers in this volume illustratc that DCE is a practical environment
for building distributed programs. However, they also make the necd for higher-level
tools, models and abstractions obvious. It is hoped that directions for further rescarch
and development in the context of DCE are pointed out this way, and that such work
will help to make DCE a success for open distributed environments.





