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Preface 

Client/server applications are of increasing importance in industry; they are a signifi
cant first step towards a global distributed processing mode!. A very recent response ta 
this trend is the Distributed Computing Environment (DCE) of the Open Software 
Foundation (OSF), the emerging new industry standard for distributed processing. The 
papers in this volume discuss the client/server approach based on DCE, illustrating 
and anal yzing the functionality of important DCE components and applications. Mo
reover, a number of contributions also focus on new models beyond traditional 
client/server processing and beyond DCE. 

The material summarized in this volume was presented at the International Workshop 
on the OSF Distributed Computing Environment on Octaber 7 and 8, 1993 in Karlsru
he, Germany. This workshop was organized by the German Association of Computer 
Science (Gesellschaftfür Informatik, GIIITG), together with the University of Karlsru
he and the Nuclear Research Center in Karlsruhe. 

Major subject areas of the workshop were analysis and overview of DCE, methods 
and tools for DCE applications, extensions of the DCE remote procedure cali, and di
stributed object-based systems on top of DCE, including the Object Request Broker 
(ORB) of the Object Management Group (OMG). Most papers are of practical orienta
tion but typically have a strong technical and conceptual background. A more detailed 
overview of the papers is given at the end of the flfst contribution which gives a sur
vey of distributed systems, DCE, and approaches beyond DCE. 

We would like to thank ail people who contributed to the success of this workshop. 
The members of the program committee did a very good job in reviewing about 10 
papers per committee member. The Institute of Telematics of the University of Karls
ruhe, especially Prof. Dr. Gerhard Krüger, made the workshop possible by providing a 
lot of organizational support. The university supported the workshop by making the 
required lecturing halls available. The background organization of the workshop was 
made possible by the Gese/lschaftfür Informatik, especially by its working groups on 
operating systems and on distributed systems (FA 3.1 and 3.3). We would also like to 
thank the speakers and authors and the colleagues who did the industry demonstrations 
on DCE; their technical contributions were a major prerequisite for this workshop. 
Moreover, the work force who helped with the local organization, especially the col
leagues and students from the Institute of Telematics did an excellent job. 

Finall y, we would of course like ta thank all companies that supported the workshop 
in various ways, including Daimler-Benz AG, Digital Equipment Corporation, 
Rewlett-Packard, IBM, the Open Software Foundation, Siemens-Nixdorf, and SUN 
Microsystems. The local organization was particularly supported by Dr. Lutz Reuser 
of Digital Equipment's Campus-based Engineering Center (CEC) in Karlsruhe and by 
the Volksbank Karlsruhe. Moreover, we would like to thank all other colleagues who 
supported this workshop in one way or the other during the last few months. 

Karlsruhe, August 1993 Alexander Schill 
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Distributed Systems, OSF DCE, and Beyond 
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, A. Schill5 

1) IBM European Networking Center, Vangerowstr. 18, 
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5) University of Karlsruhe, Institute of Telematics, Postfach 6980, 
76128 Karlsruhe, Gennany; e-mail: schill@telematik.infonnatik.uni-karlsruhe.de 

Abstract. This introduction paper presents basic foundations of distributed systems 
and applications and then shows how OSF DCE addresses the requirements imposed 
by distributed environments. The DCE architecture is illustrated, the basic functional
ity of the DCE components is explained, and the DCE RPC as the major base for cli
ent/server applications is presented in closer detail. 

The paper also discusses requirements and new models beyond DCE in order to en
able even more advanced distributed applications. In particular, distributed object
oriented DCE extensions are outlined and directions towards distributed multimedia 
applications are pointed out. Moreover, other requirements and trends such as ad
vanced tool support or distributed transaction facilities are also discussed. Finally, an 
overview of the papers within these proceedings is given. 

1 Introduction and Overview 

The potential benefits of distributed processing systems have been widely recognized 
[1,2]. They are due to improved economics, functionality, performance, reliability and 
scalability. In order to explore the advantages of distributed processing, appropriate 
support is needed that enables the development and execution of distributed applica
tions. A distributed application consists of separate parts that execute on different 
nodes of the network and cooperate in order to achieve a common goal. A supporting 
infrastructure should make the inherent complexity of distributed processing transpar
ent as much as possible. The infrastructure is required to integrate a wide range of 
computer system types and should be independent of the underlying communication 
technology. 

The Open Software Foundation (OSF) has presented such an infrastructure called Dis
tributed Computing Environment (DCE). It is a collection of integrated software com
ponents that are added to a computer's operating system. DCE provides means to 
build and run distributed applications in heterogeneous environments. 
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Let us illustrate the mie of DCE by an example: Figure l shows a distributed office ; 
manufacturing procedure that implements a product management scenario. Several 
distributed activities are performed by a collection of processes. We assume that each 
process is allocated to a different network !iode, and that nodes are connected by a 
physical network. The processes cooperate as shown by the arrows by forwarding 
forms or control data between each other. Sorne of the activilies can be executed in 
parallei (such as the manufacturing and marketing activities) while others are sequen
lial, or alternative (such as regular quality control, simplified quality control or by
passing according to the product type), Each activity can be subdivided hierarchically. 

Fig. l Example of a distributed office procedure application 

An example of an underlying distributed system is shown in figure 2. Two hosts and 
three workstations are interconnected via an Ethernet and a Token Ring. The two net
works are coupled via a gateway. Each computer system offers local resources (al 
least CPU and main memory, but possibly also printers and secondary storage). These 
resources can also he accessed remotely and can he shared among different computers. 
Resource control is performed in a decentralized and mainly autonomous way, On 
each computer system, a set of application processes are operating - as found in our 
distributed application. These processes can communicate over the interconnected net
works via basic interacùon mechanisms snch as remote procedure cali. At this level, 
the underlying physical network topology is aIready considered ta he relaùvely trans
parent. 

Role of DCR and c1ient/server-model: The OSF Distributed Compuùng Environ
ment (DCE) can now he classified as being a distributed system, while also offering a 
set of services that support the development of distributed applications. Basically, 
DCE closes the gap hetween the physical components of a distributed system and the 
application components. 
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External storage 
media 

Fig. 2 Dislributed system with communicating application processes 

DCE internally works with the client/server model (see fig. 3), and is particularly 
well-suited for the development of applications that are structured according to this 
model: A server typically offers sorne service ta a population of clients; typical exam
pies are print services, computational services or name translation services. A client 
can make use of a service by sending a service request message ta a suitable server. 
The request can contain input parameters (e.g. data ta be printed). The server performs 
the requested service and finally sends a service response back to the client. The re
sponse can contain output parameters (e.g. a status indication). 

Client Server Server 

"document 
Service request 

"document 
Service request 

"printing" 
editing" Service response 

archiving" 
Service response 

Fig. 3 Client/server model 

As shown in the figure, a server can also act as a client of another service, i.e. delegate 
parts of a service request to a peer server. For example, a document archiving server 
could request a print service in order ta offer a more complete document management 
functionality ta its clients. 
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2 DCE: Strategy and Architecture 

Based on the introduced foundations, this section presents the general strategy of the 
Open Software Foundation towards products for open systems and then illustrates 
DCE as one of these products in more detail. 

2.1 Goals and Strategy of the Open Software Foundation 

The Open Software Foundation (OSF) is a not-fOI-profit research and development Of

ganization. Its members comprise computer hardware and software vendors, end us
ers, universities and other research institutions. One of the major goals of the OSF is 
to enable global interoperability among heterogeneous systems by providing a practi
cal open computing environment [3]. 

To achieve ülis, the OSF solicits proposais for open systems software technology, then 
evaluates the submissions, and finally licenses the selected solutions for incorporation 
into the OSF open compuùng environment. That environment is a collection of tech
nologies that provide for interoperability of diverse systems as well as application 
portability. 

Its main parts are currently 

• the OSF/l Unix operating system, 

• the OSF/Motif graphicai user interface, 

• the OSF Distributed Computing Environment (DCE) and 

• the OSF Distributed Management Environment (DME). 

From a distributed systems point of view, DCE and DME are of primary importance. 
While DCE is the base for building distributed applications and also offers a set of dis
tributed services directly to the end user, DME addresses the issues of network and 
system management; it should suffice to mention that il offers an object-oriented infra
structure for distributed management applications, together with support for the man
agement protocols SNMP and CMIP. It also provides a management user interface 
and several supplemental management services [4]. Moreover, DME uses certain DCE 
components. The DME development has not yet reached the same mature stage as 
DCE. 

In the meantime, DCE tends to become an industry standard for distributed process
ing; most of the major computer vendors are members of the OSF and offer (or have 
announced) DCE compliant products for their computing platforms. As opposed ta 
other standards, the implementation of the components existed firs!, and standardiza
tion was performed by the OSF thereafter. This seems to have major advantages con
cerning the resulting functionality, system performance and timeframe of delivef'j. 

2.2 DCE Architecture and Services 

Fig. 4 shows the overall DCE architecture [5-6]. AlI DCE components are based on 
local operating system services (e.g. Unix) and transport services (e.g. TCPjIP). Dis
tributed applications make explicit use of fundamental DCE services (in italics in the 
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figure) via C programming interfaces. The other DCE services are used implicitly via 
the fundamental services or via modified operating system services. 

Fundamental DCE services: The Thread Service provides a portable implementation 
of lightweight processes (threads) according to the POSIX Standard l003.4a. Threads 
enable concurrent processing within a shared address space, and are especially used by 
RPC for implementing asynchronous, non-blocking remote invocations and multi
threaded servers. 

Distributed applications 

Distr. Disk-

Distr. Celi Directory S.I Security File less 
Time Global Directory 

Service System Support 
Service Service 

r--

,1 Remote Procedure Cali 
1 

~I Thread Service 
1 

Local operating system and transport services 

Fig.4 DCE architecture 

The DCE RPC is the major base for heterogeneous systems communication. Based on 
RPC, a client request for a remote procedure (i.e. a service request) is transferred to 
the server, mapped to a procedure implementation, executed, and finally acknowl
edged by sending back results ta the client. Ali input data and results are encoded as 
RPC parameters similar to local calls. Ali parameter conversion and transmission tasks 
are handled by cali marshalling facilities that are part of so-cailed RPC smb compo
nents at both sites. This way, the remoteness of a cali be be masked to a large degree 
at the application level. The stubs are generated automaticaily from an interface de
scription which specifies the signatures of the invoked procedures. DCE offers a C
based Interface Definition Language (IDL), various kinds of cali semantics, nested pa
rame ter structures, secure RPC with authentication and authorization based on the 
DCE Security Service, global (up to worldwide) naming of servers based on the X.500 
directory service standard, backward cails from servers ta clients, and bulk data trans
fer based on typed pipes (logical channels). 

The Celi Directory Service (CDS) supports distributed name management within dedi
cated management domains. Name management basicaily comprises mapping of (at
tributed) names to addresses, and update of name information. Most important, it is 
the base for mapping RPC server addresses ta client requests. Its functionality is inte
grated inta the DCE RPC programming interface via NSI (Name Service Interface). 
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CDS exploits replication and caching to achieve fault tolerance and efficiency. An ad
vanced CDS programming interface is offered by the standardized X/Open Directory 
Service Interface. 

The Security Service implemems authentication, authorization, and encryption. These 
mechanisms are tighly integrated with DCE RPC; for example, RPC clients and serv
ers can he mutually authenticated, servers can dynamical!y check access control lists 
for proper client authorization, and all RPC messages can he encrypted on demand. 

Finally, the Distributed Time Service (DTS) implements distributed clock synchroniza
tion, a common problem in distributed environments. Il guarantees that local clocks of 
participatiug uodes are synchronized within a given interval. Moreover, synchroniza
tion with exact external time sources (e.g. with radio cloeks) is supported. This fune
tionality is important for implementing timestamp-based distributed algorithms. It is 
also directly exploited by other DCE components. 

Other DCE services: The Global Directory Service (GDS) extends CDS by global 
naming facilities across administrative domains. Ii is based on the X.500 directory 
service standard. Therfore, il enables interoperability not only with other DCE direc
tory sen'ers but also with other X.500 servers woridwide. As an alternative, the Inter
net Domain Name Service can also be used for global naming. 

The Distributed File System (DFS) implements cell-wide transparent distributed file 
management. Files can be stored at different servers and can also be replicated. Cli
ents, i.e. application programs, can access files by location-transparent names similar 
to a local Unix file system. File access is quite efficient based on whole-file caching al 
the client site. This teclmique also supports scalability by offloading work from file 
servers to clients during file access [7]. Interoperability with the widely used Network 
File System is enabled via an NFSIDFS interface. DFS is augmented with a Diskless 
Support componen!; it provides boat, swap, and file services for diskless workstations. 

In summary, DCE provides a rich and integrated functionality for distributed applica
tions. Moreover, DCE supports heterogeneous systems interoperability and is offered 
in product quality. 

2.3 DCE System Configurations and Application Example 

DCE supports structuring of distributed computing systems into so-called cells in or
der to keep the size of administrative domains manageable. A cell can consist of all 
nodes attached to a local area network but is usually defined according to organiza
tional considerations rather than physical network structures. Therefore, it is basically 
a set of nodes that are managed together by one authorit'j. 

Cell characteristics: Most DCE services are especially optimized for intra-cell inter
actions. Whiie cross-cell communication is possible, interactions within a cel! are usu
ally much more frequent, and can therefore benefit from such optimization signifi
cantly. Moreover, cell boundaries represent security firewalls; access to servers in a 
foreign ceil requires special authentication and authorization procedures that are dif
ferent from secure intra-ceIl interactions. Finally, the distributed file system within a 
ceIl provides compiete location transparence; as opposed to thal, explicit cel! names 
must be specified for file access across cells. 
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Example: Fig. 5 shows an example of an application framework based on DCE to im
plement an office / manufacturing scenario as discussed above. It consists of three 
cells A-C for product data management, manufacturing and marketing / sales. Within 
each cell, various nodes with dedicated application services exist (such as manufactur
ing control, machine management, and quality control processes on three different 
nodes in cell B). Moreover, each cell has a set of DCE system servers, including secu
rit y, directory, time, and file servers. Typica!ly, two or more servers of each kind are 
configured within a cell in order to improve availability of DCE services and perform
ance of service access. One or severa! global directory servers are available in the ex
ample to enable cross-cell naming, e.g. to identify and access an application server in 
a remote cell. Finally, a diskless workstation pool is part of cell A and is linked to 
DFS and other DCE services via the diskless support component of DCE. 

Cell B: 
Manufacturing 

Cell A: 

Cell C: 

Fig. 5 DCE application example and cell structure 
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Ali nodes, respectively the application processes, and a1so the DCE components inter
act via DCE RPC. For example, this is indicated within cel! A and between cel! Band 
C in the figure. RPC servers are located via CDS based on logical names, ~md via GDS 
across celIs. RPC communication can be made secure by the protocols offered by the 
security servers. Each process can comprise a number of threads ta serve multiple 
RPCs concurrenÛY (server site) or to issue multiple RPC requests in parallel (client 
site). 

Data management can be based on the distributed file system. This way, different 
processes such as the management, secretary, and data management components of 
cell A can share file data in a location-transparent way. On the other hand, these files 
can a1sobe accessed from remme cells upon request, provided that the accessing client 
is properly authorized and authenticated in bath cases. 

:3 DCE Remote Procedure Cali 

As the RPC tends ta be the mas! important mechanism within DCE, il shall be de
scribed in more detail, augmented with practical examples. 

3.1 Properties of DCE RPC 

Language integration and data representation: The implementation of DCE RPC is 
based 011 the C programming language; ail interface specifications are given in a spe
cifie Interface Definition Language (lDL) !hat is a superset of the declarative part of 
C, corresponding to C header file code portions. Moreover, the RPC programming in
terface is offered as a C Iibrary - similar ta the interfaces of où'ler DCE components. 

illL allows the specification of arbitrary parameter data types with virtually the same 
facilities as found in C. The RPC runtime system, namely the stubs generated from 
illL, are able ta handle nested data structures by flattening them recursively, transmit
ting them to the server, and rebuilding them there. Al! differences concerning data rep
resentations at the client and server sites are masked by DCE by converting data for
mats accordingly. This principle is called "receiver makes right" and means that data 
are transmitted in the sender's representation and are adapted ta the receiver's format 
at the destination site. The DCE implementation of a particular vendaT must therefore 
know all ether possible data formats of peer nodes - however, in practice, only a few 
different formats actually exist. 

Cali semantics: The application programmer can choose between different kinds of 
calI semantics. For example, the default, at-most-once, makes sure that a calI is exe
cuted once even if communication messages are temporarily 105t. This is achieved by 
message retransmission combined with the detection of duplicate messages. Although 
node failures cannat he tolerated, message loss can be masked this way. Other select
able semantics provide weaker guarantees in the case of failure but achieve an im
proved efficiency. 

Thread support: Based on threads, it is possible to implement multithreaded servers; 
this just requires an appropriate parameter setting during server initialization. Then a 
(static) pool of concurrent server threads is allocated initially. The application pro
grammer, however, must take care of correct thread synchronization in case of shared 
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data modifications. On the client site, threads must he started explicitly to do concur
rent, asynchronous caUs to multiple servers. Within its body, each thread then per
forms a synchronous calI while different threads are mutually asynchronous. 

Security: As mentioned above, secure RPC communication is possible based on the 
security service. First, the application client and server run a distributed authentication 
protocol in cooperation with a security server. In this phase, they mutually validate 
their identity based on a private key encryption approach. In a second phase, the actual 
cali is executed; before the server starts acting upon it, it checks the proper authoriza
tion of the client based on a local access controllist. Finally, the cali data can option
ally be encrypted in order to enable complete privacy during communication. 

Client 

- Local call 

Directory 
Service 

Import 

- Locating a suitable server 
(binding) 

- Encoding of cali and parameter 
data 

Server 

- Determination of communication 
protocols to be used 

)
~ - Local installation of 

E 
procedure interfaces 

xport 
,,- Export of procedure interfaces 

to directory service 
- Waiting for incoming calls 

- Cali transmission 
1 

-1------11-1 - Receiving a cali 

1 - Decoding of cali data 

: client blocks - Call execution 
- Coding of result data 

RPC 

• - Receipt of RPC reply 
~I-____ -I - Transmission of reply 

- Decoding ofreply 
- Continuation of client program 

- Possible error handling 

Fig. 6 Typical DCE RPC runtime scenario 

3.2 Building Applications with DCE RPC 

Building distributed applications with DCE RPC requires the following steps: 

• Interface definition: An IDL interface must be specified with ail procedures that 
shall he offered by a server. 
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• Server implementation: The servel' procedures must be implemented as ordinary 
C code. Moreover, DCE-specifie server initiaHzation steps must be performed by 
the implementation. 

" Client implementation: In the simples! case, îhe client site is implemented as a 
standard C program. Advanced DCE features such as explicit selection among a 
group of servers or execution of secure RPC require additional code, however. 

RPC runtime aspects: A typical DCE RPC runtime scenario is illustrated in fig. 6. 
Ail functionality that lias to he implemented explicitly by the application developer is 
shown in italics, everything else is or can be performed automatically by DCE RPC. 

The first step is the server initialization. The servers determine which communication 
protocols ta use (such as TCP/IP or UDP/IP), installs its offered procedure interfaces 
with the RPC runtime system, exports the procedure interface information to the direc
tory service (i.e. CDS), and finally waits for incoming calls. 

To invoke an RPC, a client caUs the corresponding procedure locally. However, based 
on the stubs that are generated from IDL, an internaI handler routine is executed in
stead of a local application procedure implementation. It contacts the directory service 
for locating a suitable server. The input is a logical name for the server and the re
quired procedure interface, the output is a server address, a so-called binding handle. 
This whole process is called RPC binding. Then the remole cali and its input parame
ters are encoded and transmitted to the server. While the server executes the cali, the 
client b1ocks. The remaining steps of cali decoding, execution and result transfer have 
already been explained earlier. Finally, the client should include sorne error handling 
due to possible transmission problems etc. 

Examp!e: A program example shall iIlustrate the required code; it implements a re
mole client query against a server Ihat manages product data. The interface definition 
consists of a header with a unique interface number (generated autornatically) and 
with versioning information. The interface body comprises îhe required C type defini
tions and procedure interfaces with fully typed parameter specifications. Sorne attrib
utes heyond C are required to distinguish between input and output parameters, for ex
ample. 

[ 
uuid(765c3b 1 0-1 OOa-135d-1568-040034e67831), 
version(1.0) 
] 
interface ProductData [ 

import "globaldef,idl"; 
const long maxProd = 10; 
typedef [string] char *String; 
typedef struct { 

String productName; 
String productAnnotation; 
Plan manufacturingPlan; 

} ProductDescription; 

long productQuery ( 
[in] String productName[maxProd], 
[out] ProductDescription *pd[maxProd], 
[out] long *status ); 

/1 Interface for product data 
Il ImpOlI of general definitions 
1/ Maximum number of products 
Il S !ring type 

Il Product name 
Il Textual annotation 
Il ... Type defined in globaldef.idl 
Il Product description data type 

Il Remote query procedure 
Il -> Product names 
Il <- Product descriptions 
1/ <- Cali status 
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Server: The server initialization implements the steps discussed above by calling a 
number of DCE RPC system functions. A simplified example program looks as fol
lows: 

#include "productdatah" 
#define entryName "/.:/ProductServer" 
#define maxConcCalls 5 

main () { 
unsigned status; 
rpc_binding_ vectoct *b V ec; 

// Generated by the IDL compiler 
// Name of server's directory entry 
// Max. number of concurrent invoc. 

// Return status 
// Vector ofbinding handles 

//*.* Perform sorne local initializations (not detailed here) 
//*** Get the actual vector of binding handles: *** 
rpc_server_inq_bindings (&bVec, &status); 

// *** Register the interface with a machine-local RPC manager process: *** 
rpc_ep_register (ProductData_vl_O_s_ifspec, bVec, NULL, NULL, &status); 

// *** Export the interface to the directory service under the given name: *.* 
rpc_ns_binding_export (rpc_c_ns_syntax_default, entryName, 

ProductData_vl_O_s_ifspec, bVec, NULL, &status); 

/1*'* Now be ready to accept incoming invocations concurrently: **. 
rpc_server_listen (maxConcCalls, &status); 
} 

The implementation of the server's application procedures, i.e. of productQuery in this 
case, is identical with a local implementation and is therefore not detailed here. 

Client: The client site is also independent from DCE or distributed systems aspects (if 
no advanced RPC functionality is desired): 

#include "productdata.h" 

main () { 
String product[maxProd]; // Product names 
ProductDescription *pd[maxProd]; 
long rc, status; 

inputProductNames (product); 
rc = productQuery (product, pd, &status); 
// ... check status value and handle errors 
} 

// Interface definition header file 

// Requested product descriptions 
// Status values 

/1 Input function (app!. specific) 
/lRPC 

In summary, building DCE applications based on the client/server model is a rela
tively straightforward task for C programmers. However, the use of advanced features 
is more difficult. In the following, such features are summarized briefly; for deatails, 
see [6]. 
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3.3 Advanced DCE RPC Features 

Binding: During binding, the client can control the selection of a specifie serve; ex
plicitly; this mode is called exp/icit binding as opposed to the automatic binding ap
plied above. The implementation of explicit binding is based on directory service in
ternction procedures to be cal!ed by the client via system RPCs. Moreover, DCE offers 
facilities to register groups of servers with the directory service and to specify client
specifie search paths through the directory entries. This way, the server selection proc
ess can he controlled in detail. 

Callback: With OCE RPC, il is possible for a server to issue a callback to a client 
during remote procedure execution; the client must offer an appropriate calI interface 
for that. This way, a serveT can deliver interrnediate results or can request further input 
data. 

Pipes: For bulk data transfer, logical pipes ean he established between client and 
server by passing pipe references as RPC parameters. A server can then request large 
chunks of data via the pipe dynamically from the client, and can ruso send bulk data 
back to the client this way. 

Context: For multiple client/server interactions in a row, il is sometimes useful to es
tablish sorne contex! information between both sites. An exarnple is information about 
an open file of a file server that is read by a client by several RPCs. DCE RPC offers 
explicit mechanisms to handle such context information. 

Other features such as asynchronous RPCs and secure RPCs have already been dis
cussed. Altogether, a quite rieh RPC fUllctionality is provided by DCE. 

4 Challenges and Models Beyond DCE 

While DCE is a major step towards open distributed computing, the approach is still 
Iimited to relatively conventional client/server applications. This presents a number of 
ongoing research and development challenges to provide advanced support and new 
models beyond DCE. Examples are advanced development and management tools, 
distributed object-oriented systems, distributed transaction support, and multimedia 
extensions. 

4.1 Advanced Method and Tool Support 

Only few commercially available dedicated tools exist for client/server type applica
tions. As a consequence, programmers use design methods, debugging tools and other 
software deveJopment aids that were developed for the sequential programming lan
guages used as RPC host languages. The situation is similar for management compo
nents sucll as source code control tools. The distribution and parnllelism exllibited in 
client/server applications, however, requires dedicated development aids. This require
ment becomes even more important as we move to programming paradigms beyond 
c1ient/server, such as the ones described later. 

We will, for the remainder, focus on a number of important aspects of tool support 
which can be divided into three categories: development tools (here we will discuss 
formal specification and design), runtime-Ievel tools (debugging and cooperation), and 
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management tools (runtime management and distributed system management). For 
sorne of these topics, we will separately discuss support for DCE-like client/server ap
plications and for advanced distributed applications. 

Formai specification techniques have gained a lot of attention in the context of com
munication protocols. This is due to the fact that such protocols are complex (i.e. hard 
to describe unambiguously with informai techniques) and that implementations of dif
ferent vendors have to interoperate in open distributed systems. The formai techniques 
used for communication protocols can be applied to distributed applications as weil 
[8]; the application of Lotos, Z, and SDL to distributed systems is described in [9]. 
However, the corresponding formai specification techniques usually do not focus on 
any of the most interesting aspects of distributed applications, such as dynamic recon
figuration of the network of processes (active entities and communication links beeing 
added and removed at runtime), hierarchical decomposition, and asynchronous com
munication. Moreover, the feasibility of formai techniques for large software projects, 
and the close coupling of formai techniques to DCE (in the sense of automatic code 
transformation) have not been achieved to a satisfactory degree yet. Moreover, in the 
client/server context, formai techniques for reasoning about the correctness of RPCs as 
such ought to be included. 

Design: Specific design tools for distributed applications are hardly in use, either. The 
software engineer would want them to support visual programming, early animation of 
coarse designs, and automatic code generation. An example for a prototype tool with 
these features, VDAB, is described in this volume. Il also supports the design of the 
dynamic behaviour of distributed applications "by example", based on dedicated cali 
scenarios. The tool translates into a distributed version of C++, which is in turn imple
mented on top of DCE. 

Debugging: Distributed debugging is widely recognized as one of the most important 
issues to be resolved on the way to cost-effective development of distributed applica
tions. This owes to the fact that sequential debuggers do not help resolve sorne of the 
most predominant problems with testing distributed programs: the interference of the 
debugger with the code (which can make it impossible to detect the effects of race 
conditions), the presence of indeterminisms (which hinder the reproducability of sub
sequent debugging sessions), the vast amount of parallel events to be perceived by the 
user, and the lack of support for notions like "distributed breakpoint" and "distributed 
single-step". While uncountable contributions to these issues can be found in the lit
erature, hardly any commercially available distributed debugging tool exists in the 
wider DCE context. 

Runtime management: For sequential program development, the management of dif
ferent versions and branches of source code and executable code in the development 
environ ment has been considered an important problem; to resolve this issue, code 
management tools were developed. In contrast, the installation of the final software 
version in a target environment (i.e. at the customer site) was usually deferred to a 
one-shot installation procedure. The installation of a distributed application however, 
i.e. the management of executable code in a distributed environment, is often an itera
tive and cumbersome task. Executables have to be copied to aIl sites, parameters and 
input files have to be considered at these sites, nameserver, network, and operating 
system setups have to be adjusted, etc. During execution, performance monitoring is 
desired, e.g., as a base for reconfiguration decisions. Such tasks are mostIy carried out 
by hand today. But with the increasing deployment of distributed applications and the 
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continuing sophistication of these applications, the nee<! for user-friendly (e.g., 
graphics-based) and highly automated runtime management tools will increase drasti
cally. 

Distributed system management: As DCE shows, distributed system management is a 
radIer complex task. For example, CDS or Security servers must Ile installe<!, man
age<!, and replicated. Security information sueh as passwords or access control lists 
must be maintained. DFS management comprises an even wider variety of different 
tasks. Therefore, graphical management tools are required to provide simplified man
agement user interfaces. Beyond this, further higher-level programs are desirable 
which automate other routine management tasks in a distributed system such as back
ups or software upgrades. 

To summarize, tocl support for distributed programming has, for the most part, not yet 
left the academic stage. With DCE, however, the development of distributed applica
tions has left this stage and more and more commercial sites get involved in distrib
uted programming. The expected aggravating effects on the software crisis will prob
ably lead 10 rapid changes in the scene of support tools in the years to come. 

4.2 Distribllted Object-Oriented Systems 

A step beyond RPC are distributed object-based systems as extensions of program
ming languages like C++, Smalltalk, Trellis, Modula-2 or EiffeL An object can be de
fined as a data structure associated with a set of operations. The data structure could 
refer to other objects by which an abject graph can be bull! representing a so called 
complex object. Thus, as opposed 10 RPC servers, the granula.rity of objects is scalable 
and ranges, in general, from a couple of bytes IIp to lhousands of bytes. 

The fine granularity of objects and their capability to form complex objects lead to a 
unit of mobility, i.e. the object, which is easy to handle. Objects interact with each 
other through "message passing", i.e. an abject sends a remote message to a peer ob
ject to initiale the execution of one of the provided operations. At the communication 
level, message passing is performed by RPC-style location independent object invoca
tions whereby interacting objects can reside at different nodes. 

However, as opposed to RPC with call-by-value parameter semantics, object refer
ences (i.e. pointers to objects) can also be passed remotely, leading to call-by-object
reference semantics. In addition, single objects or even complete object graphs could 
he passed as parameters to the callee [lOlo 

The resulting approach is more flexible t.ljan RPC and, in particular, enables a more 
natural modeling of distributed applications. Due to the mobility of objects, they can 
he relocated dynamically. This way, communicating objects can he co-located in order 
to reduce communication costs or to increase availability during execution of a joint 
action of a set of objects. 

Example: The discussed office 1 manufacturing system can directly be mapped to a 
distributed environment this way (see fig. 7). Distributed office procedures can be rep
resented as task objects transferred between server objects. Typical operations of task 
objects are start, stop, suspend, or status inquiry whiJe servers provide actual service 
invocations, stalus inquiries, or accounting functions. Data/document objects attached 
10 an office procedure can also Ile mode!ed as objects. Moreover, sinee each document 
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bas a certain structure like chapters, paragraphs and so on, it is likely that such docu
ment objects are object graphs as mentioned earlier. 

Object: 
Manufacturing 
control 

Object: 
Quality control 

Fig.7 Distributed object-oriented office procedure modeling 

Class structure: The mechanisms to create remote objects, to locate and invoke them, 
and to relocate them dynamically can he implemented by superclasses from which all 
relevant application classes inherit. As an example, a C++ superclass is given below 
[11]; it also offers methods to fix objects at a certain location in order to prevent mi
gration, and to unfix them later: 

class DistributedObject ( 
Il ... Instance variables like location, size etc. 
public: 
DistributedObject (Location*); Il Constructor to create at a given location 
-DistributedObject 0; Il Destructor 
Location *locate 0; Il Locate the object 
boolean move (Location'); Il Move to a given location 
boolean fix 0; Il Fix at current location (prevent from moving) 
boolean unfix 0; Il Release for migrations 
void Invoke (II ... ); Il Perform generic 
invocation 
}; 

Such functionality can be implemented on top of DCE RPC as illustrated by other pa
pers in the proceedings. This requires sophisticated additional mechanisms for locat
ing mobile objects (e.g. via forwarding addresses), for synchronizing migrations and 
computations, for controlling object migrations according to a given goal, and for 
monitoring and controlling the overall system hehaviour. 

OMG/CORBA: The industry consortium Object Management Group (OMG) has de
fined the Object Management Architecture (OMA) for managing objects in distributed 
systems. This approach aims at providing support for distributed object interaction in a 
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heterogeneous environment. In OMA, objects usally tend to be much larger than they 
are at programming language Jevel, i.e. a whole application could be an object. This 
approach differs from object graphs in the sense tbat these "coarse-grained objects" 
are treated as monoliths. 

A key comp<ment of OMA it is the Object Services Architecture [12-13] that offers 
the required services with a very broad spectrum of functionality. In general, these 
services provide a higher Ievel of abstraction than DCE does and cover a broader tech
nological area. Examples are database- and transaction-oriented services, version con
trol of software objects, concurrency control, and distributed object replication. Loca
tion independent object interactions are supported by the Common Object Request 
Broker Architecture (CORBA); it supports mechanisms for identifying, locating, and 
accessing abjects in a distributed environment. However, the Object Management Ar
chitecture bas not yel reached the same level of maturity that DCE has. Moreover, 
some functionality of distributed object -oriented systems mentioned above, namely 
mobility, is no! yel supported by CORBA. Several vendors implement - al least par
tially - CORBA on top of DCE. 

Open Distributed Processing (ODP): Distributed system technology has become a 
major focus in international standardisation and harmonisation activities, too. As an 
important example, work in ISO and related standardisation committees is in progress 
to define a reference model for Open Distributed Processing (ODP). The reference 
model will include a descriptive as weIl as a prescriptive part. The descriptive part 
defines terminology and modeling gear that can be used to model arbitrary distributed 
systems. The prescriptive part specifies when a distributed system may he called an 
ODP system. Il prescribes architectural properties that an ODP system must have. M
ter the ODP reference model has been finished, individual ODP standards conforming 
to the reference mode! will be defined. Most likely, one will first work on standards 
for infrastructure components similar to those tha! we find in OSF DCE today. ODP 
and OSF DCE are two projects that are completely unrelated from an organisational 
point of view. However, the ODP work on an abstract reference mode! benefits sig
nificantly from the design of an infrastructure such as OSF DCE. The latter shows 
what functionality is needed in distributed processing systems and how components 
can be integrated into a common framework. Furthermore, when individual ODP stan
dards will be sought for, the OSF DCE technology will certainly be a suitable and 
promising starting point. OSF and OMG (see above) have expresse!! their interest in 
advancing the ODP standardisation. 

4.3 Distributed Transactions and Workflows 

Transactions are a well-lmown approach found in database systems. Il guarantees so
called ACID semantics (atomicity, consistency, isolation, and durability). Atomicity 
means that an operation is only performed as a unit; it is either fully completed (com
mit) or its effects do not hecome visible (abort). Consistency means tha! a transaction 
transforms data from one consistent state into another consistent state. Isolation means 
that concurrent transactions execute iike in a sequentia! system withou! inlerference. 
In particular, a transaction Tl will never see any intermediate state of data caused by 
another transaction Tl before T2 is completed. Finally, durability means that the ef
fects of a transaction (data manipulations etc.) rernain persistent after transaction com
pletion; for ex ample, they do not gel lost after a system crash. 
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Distributed transactions: The transaction properties have proven very useful for im
plementing processing functionality with strict consistency requirements (Iike 
credit/debit transactions). Therefore, extensions of the basic concept towards distrib
uted systems have been developed [14]. Sorne of them are based on RPC or distrib
uted object interactions, others on pure message passing. The implementation typically 
relies on the two-phase commit protocol. In the first phase, all transaction participants 
are polled by a coordinator whether they are able to successfully commit. In the sec
ond phase, the uniform decision is propagated to them in order to commit or abort 
jointly. 

This concept has also been extended towards nested transactions with hierarchical 
subtransactions. This allows for running subtransactions in parallel, and for selective 
rollback and restart of subtransactions. Standards and implementations on top of DCE: 
Meanwhile, there are several emerging product-Ievel implementations of distributed 
transactions that conform to new standards. Most notably, the X/Open consortium has 
defined the X/Open Distributed Transaction Processing (DTP) application program
ming interface named XA [15]. This approach is designed to work with standardized 
ISO/OSI transaction protocols, namely CCR and TP. 

Conforming to the XA standard, there are several implementations available. The ori
gins of XA have evolved according to the Tuxedo system [16] of Unix System Labora
tories that is available on numerous hardware plaüorms and operating systems. The 
Encina transaction processing system [17] of Transarc is an open, XA standards-based 
family of components that provide online transaction processing based on DCE. 
Transactional integrity is added to DCE programs through Transactional-C, Transac
tional RPC (TRPC), two-phase commit and the management of recoverable data. 
Transactional-C consists of C language extensions to indicate transaction demarcation, 
concurrency control and exception handling. TRPC adds exactly-once semantics to 
DCE RPc. When a remote procedure is called from within a transaction, it is executed 
exactly once, if the transaction commits and not at ail if the transaction aborts. Besides 
this basic support for transactional integrity, Encina offers a Structured File System 
(SFS) and a Monitor as an administrative, runtime and development environment for 
transactional applications. Functionality of the Monitor comprises, for example, moni
toring active clients, performing load balancing and connecting front-end tools (like 
OSF/Motil). SFS is an record-oriented file system (in contrast to DCE DFS) that 
meets the requirements of transactional systems for record-style and recoverable re
source managers. 

Workflows are a rapidly emerging technology area that deals with long-lived, well
defined activities like office procedures. A workflow system controls the execution of 
the global control flow and in sorne cases provides certain reliability support by using 
transaction mechanisms. Workflows are distributed by nature and thus are one of the 
key application domain for distributed processing. On the other hand, workflows in
troduce a new style of programming since execution order and principles should be 
extracted from the single application part and be moved to a separate workflow pro
gram. 

Workflow systems could benefit from ail DCE services. Especially RPC for communi
cation between the workflow and the application parts, authorization and authentica
tion of users performing the individual steps, and directory services for locating work
flow servers are important. 
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4.4 Distributed Multimedia Systems 

A multimedia system is characterised by the computer controlled generation, manipu
lation, presentation, storage, and communication of independent discrete media sucb 
as text and graphies and continuons media such as audio and video [18,19]. Applica
tion domains for multimedia systems are, e.g., multilnedia e-mail.multimedia
supported teaching, vh4.Ual reality simulation systems, and workstation conferencing 
systems. Many of these domains are inherently distributed. A workstation conferenc
ing system, for example, allows sharing of window based applications among partici
pants at different locations supporte<! by multimedia services for audio communication 
as weil as video conferencing. 

Distributed multimedia systems impose new challenges fOi the communication of con
tinuous data. Whereas discrete media have time independent values, the values of con
tinuous media change over time and these changes contribute to the media semantics: 
Eacb single value in an audio or video stream represents stream information for sorne 
fraction of time. Changes in the times at which values are played or recorded result in 
the modification of the original data semantics and must not happen unintentionally. 
The timing demands of continuous media require operating and transport system sup
port for connections with guaranteed quality-of-service (QoS) for the transmission of 
continuous data [20]. This is achieved by allocating sorne fraction of the end-system 
and network resource capacity and scheduling these resources appropriately. Another 
meaningful requirement is the support of multicast since a continuous stream often 
must be transmitted from one source to multiple sinks. 
For the development of distributed multimedia applications il is reasonable to model 
sources Ce.g. a microphone) and sinks (e.g. a loudspeaker) of continuous streams as 
objects. A source object, for example, offeïS operations to connect itself to a sink ob
ject and to star!, stop or suspend the production of a stream. This kind of control op
erations is performed by conventional DCE RPC communication. When control op
erations must be submitted to multiple sinks, a multicall extension ta the RPC is 
convenient. Directory and security infrastructure is crucial ta identify appropriate 
sources and sinks. The establishment work for the respective connections, however, 
that comprises the negotiation of the required QoS, and the transmission of the data 
itseif can be left to the "multimedia" transport system. As a result, sources and sinks 
must be able to cope with the coexistence of dedîcated runtime systems for conven
tional RPC communication as weil as processing of continuous data. 

Special support for prodncing, processing and consuming continuons data is necded, 
when the data get manipulated within the application. Manipulations are, for example, 
encrypting or compressing audio or video information, or mixing and synchronising 
different but related streams. A nseful construction in this context is ta conceive the 
connection between a source and ilS sink as an object in its own right. Snch an object 
exhibits two categories of operations: a lower level category acting on the established 
transport connection and a higher level for controlling it. 

5 Overview of the Technical Contributions 

The technical contributions in Ihis volume are concemed with DCE implementation 
issues, with applications and tools, but also with models and approaches beyond DCE. 
In particular, the following areas are covered: 
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DCE analysis and comparison: DCE is compared with the ANSAware environment 
developed in the UK. Moreover, DCE RPC is compared with SUN RPC and with 
other RPC approaches. Two performance analysis studies evaluate DCE RPC and 
CDS in detai!. This also leads to concrete recommendaùons, for example conceming 
the configuraùon of a CDS name space. This way, the conceptual overview given 
above is augmented with practical DCE analyses and experiences. 

Application support: This part foc uses on DCE applicaùon support tools and on ac
tuai DCE applications. Two different tools for enabling Fortran access to DCE serv
ices are presented. The first tool supports the conversion of existing non-distributed 
Fortran applications to distributed DCE applications. The other approach enables di
rect program-Ievel access from Fortran to C-based DCE functions. One paper presents 
a practical DCE application for stock broker support. This contribution emphasizes 
how DCE is used for real-world applications and reports experiences with DCE appli
cation development. Another application implements print services and a heterogene
ous interface to various mail systems based on DCE RPC, using a generic services ar
chitecture. 

Methods and tools: Severa! other DCE support tools are presented. A formai method 
and tool approach focuses on the problem of converting monolithic, non-distributed 
programs to distributed applications on top of DCE. A similar transition approach is 
presented for DCE Security, helping to incorporate conventional Unix security envi
ronments into a DCE framework. Finally, advanced tools for resource monitoring in 
DCE cells are presented. Altogether, tool examples from aIl three categories of devel
opment, system management and runtime-Ievel are discussed. 

RPC extensions: This part covers direct extensions of DCE RPC. The first example is 
multimedia support based on new media types and quality of service attributes in IDL, 
and on runùme mechanisms for time-constrained RPC and realtime thread scheduling. 
Another paper introduces an integration of RPC and message passing, leading to a 
more flexible set of communication facilities. Moreover, optimized RPC server selec
tion is also addressed in order to relieve the application developer from the selection 
process discussed above. FinaIly, an ambitious distributed object model is imple
mented by an object-oriented RPC extension. It provides the facilities discussed 
above, but also supports dynamic typing of objects. This allows a more natural inte
gration of common generic services in a DCE environment. 

Object-based systems: Several other papers focus on object-based DCE extensions, 
too. An operaùng implementation of CORBA on top of DCE is presented, showing 
that there's a strong practical relaùonship between CORBA and DCE. The design and 
implementation of a distributed object -oriented framework with mobile objects be
yond CORBA, but on top of DCE, is iIIustrated by another contribution. A related pa
per shows how the more conventional DCE functionality can at least be offered via 
higher-Ievel, object-oriented c1ass interfaces. This way, an improved abstracùon is 
provided to the application developer. Finally, an object-based tool for graphical sup
port of DCE applications is presented. This also extends the tool discussion towards 
the early phases of application design. 
In summary, the papers in this volume iIIustrate that DCE is a practical environment 
for building distributed programs. However, they also make the need for higher-Ievel 
tools, models and abstractions obvious. It is hoped that directions for further research 
and development in the context of DCE are pointed out this way, and that such work 
will help to make DCE a success for open distributed environments. 
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