Dines Bjørner Manfred Broy Igor V. Pottosin (Eds.)

eco1-735

Formal Methods in Programming and Their Applications

International Conference Academgorodok, Novosibirsk, Russia June 28 - July 2, 1993 Proceedings

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Series Editors

Gerhard Goos Universität Karlsruhe Postfach 69 80 Vincenz-Priessnitz-Straße 1 D-76131 Karlsruhe, Germany Juris Hartmanis Cornell University Department of Computer Science 4130 Upson Hall Ithaca, NY 14853, USA

Volume Editors

Dines Bjørner United Nations University, International Institute for Software Technology P. O. Box 3058, Macau

Manfred Broy Institut für Informatik, Technische Universität München Postfach 20 24 20, D-80290 München, Germany

lgor V. Pottosin Institute of Informatics Systems Av. Acad. Lavrentyev 6, Novosibirsk 630090, Russia

CR Subject Classification (1991): F.3-4, D.2-3, I.1-2

6343

ISBN 3-540-57316-X Springer-Verlag Berlin Heidelberg New York ISBN 0-387-57316-X Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1993 Printed in Germany

Typesetting: Camera-ready by author Printing and binding: Druckhaus Beltz, Hemshach/Bergstr. 45/3140-543210 - Printed on acid-free paper

Preface

The volume comprises the papers selected for presentation at the international conference "Formal Methods in Programming and Their Applications", held in Academgorodok (Novosibirsk, Russia), June 28 - July 2, 1993.

The conference was organized by the Institute of Informatics Systems of the Siberian Division of the Russian Academy of Sciences. The Institute is engaged in active research in the field of theoretical programming. The Institute has been an organizer of several international conferences related to programming and formal methods in programming but the latter have been considered together with other problems of programming. The current conference is the first forum organized by the Institute which is entirely dedicated to formal methods.

The main scientific tracks of the conference have been centered around the formal methods of program development and program construction. They include:

specification, synthesis, transformation and verification of programs;

parallel and distributed computations;

semantics and logic of programs;

theory of compilation and optimization;

mixed computation, partial evaluation and abstract interpretation.

One of the main goals of the conference has been to promote formal methods in programming and to present and discuss the most interesting approaches to practical programming. A number of papers delivered at the conference are aimed at such a goal.

Scientists from eleven countries have been participants to the conference (Austria, Brazil, Canada, Denmark, England, France, Germany, the Netherlands, Russia, Turkey, and the USA as well as from the Territory of Macau)!

Also in the opinion of the participants the conference has been a success and similar conferences should be held in the future, perhaps, with a greater focus on the application of formal methods and the problems connected with it.

The organizers of the conference express their dcep gratitude to the colleagues of Russian and international communities who supported actively the conference by rendering assistance and advice, review and participation.

We would also like to thank the Springer-Verlag for excellent co-operation.

Dines Bjørner, Manfred Broy, Igor Pottosin

July 1993

FMP&TA Organization

Programme Committee Co-Chairs:

Dines Bjørner United Nations University Intl.Inst.f.Softw.Techn.. Macau Manfred Broy Technische Universität München Institut für Informatik, Munich, Germany Igor Pottosin Institute of Informatics Systems Novosibirsk, Russia

Programme Committee:

Jan Barzdin, Riga Mikhail Bulyonkov, Novosibirsk Patrick Cousot, Paris Pierre Deransart, Rocquencourt Yuri Ershov, Novosibirsk Yuri Gurevich, Ann Arbor Victor Ivannikov, Moscow Cliff Jones, Manchester Philippe Jorrand, Grenoble Vadim Kotov, Palo Alto

Invited Speakers

ChaoChen Zhou, Macau Patrick Cousot, Paris Yuri Ershov, Novosibirsk Philippe Jorrand, Grenoble

Organizing Committee:

Valery Nepomniaschy, chairman Victor Sabelfeld, publication of proceedings Mikhail Bulyonkov, general organization Alexander Bystrov, treasury Tatiana Churina, scientific sccretary

List of Referees

K. Andrew J. Barzdin Yu. Gurevich P. Deransart Yu. Ershov N. Jones C. Jones P. Jorrand R. Kurki-Suonio A. Letichevsky G. Mints B.Möller T.Mogensen V.Nepomniaschy V.Sazonov V.Sabelfeld N.Shilov M.Taitslin E.Tyugu M.Valiev I.Virbitskaite C.Zhou

Reino Kurki-Suonio, Tampere Alexander Letichevski, Kiev Gregory Mints, Stanford Valery Nepomniaschy, Novosibirsk Anil Nerode, Ithaca Amir Pnueli, Rehovot Mikhail Taitslin, Tver Boris Trachtenbrot, Tel-Aviv Enn Tyugu, Stockholm

Bernhard Möller, Augsburg Peter Popper, Berlin Mikhail Taitslin, Tver Martin Wirsing, Munich

TABLE OF CONTENTS

FORMAL SEMANTICS METHODS

$\frac{\mathrm{Theo}}{Yu.I}$	pry of Domains and Nearby (Invited Paper)1 L.Ershov
$\Pr{J.Gi}$	licative Programming — A Survey
$egin{array}{c} \Lambda & \mathrm{T} \ J.Ga \end{array}$	hree-Valued Logic for Refinement
A C D.S	ompositional Semantics of Combining Forms for Gamma Programs 43 ands
ALGEB	RAIC SPECIFICATION METHODS
$egin{array}{c} { m Alge} \ { m G.F} \end{array}$	ebraic Properties of Loop Invariants
An . Corr W.A	Approach to Parameterized First-Order Specifications: Semantics, rectness, Parameter Passing
Algo $A.V$	braic Modelling of Imperative Languages with Pointers
SEMAN	TIC PROGRAM ANALYSIS AND ABSTRACT INTERPRETATION
Gale Ana P.C	bis Connection Based Abstract Interpretations for Strictness Lysis (Invited Paper)
Effic $F.B$	cient Chaotic Iteration Strategies with Widenings
${ m Sem} F.M$	antic Analysis of Interval Congruences
Poly <i>B.M</i>	morphic Typing for Call-By-Name Semantics
\mathbf{Logi} L, L_{2}	ic Program Testing Based on Abstract Interpretation

Analysis of Some Semantic Properties for Programs of the Applicative	
Language AL 18	31
V.Sabelfeld	

SEMANTICS OF PARALLELISM

Communication as Unification in Process Algebras: Operational Semantics (Invited Paper)
Functional Development of Massively Parallel Programs (Invited Paper)
Observing Some Properties of Event Structures
LOGIC OF PROGRAMS
The Other Linear Logic (Invited Paper)
Duration Calculi: An Overview (Invited Paper)
A Unique Formalism for Specifying and Designing Objects in a Parallel Environment
On the Smooth Calculation of Relational Recursive Expressions out of First-Order Non-Constructive Specifications Involving Quantifiers 281 A.M.Haeberer, G.A.Baum, G.Schmidt
Saturation Replaces Induction for a Miniscoped Linear Temporal Logic
SOFTWARE SPECIFICATION AND VERIFICATION
A Formal Approach to Requirements Engineering (Invited Paper) $\dots 392$ F.Nickl, M.Wirsing

A Two-Phase Approach to Reverse Engineering Using Formal Methods 335 G.C.Gannod, B.H.C.Cheng

Algebraically Provable Specification of Optimized Compilations 349 V.Levin
Formal Derivation of an Error-Detecting Distributed Data Scheduler Using Changeling
REAL92: A Combined Specification Language for Real-Time Concurrent Systems and Properties
TRANSFORMATIONAL DEVELOPMENT AND PROGRAM SYNTHESIS
Algebraic Calculation of Graph and Sorting Algorithms (Invited Paper) 394 $B.M\"oller$
Automatical Synthesis of Programs with Recursions
Parsing in ISBES
AUTHOR INDEX

BIBLIOTHEQUE DU CERIST

Yu. L. Ershov

Novosibirsk State University, RIMIBE Universitetsky pr. 4 Novosibirsk 630090 Russia

Abstract. The author presents a topological approach to the development of the theory of domains.

0. In the present paper we deal with historical, methodological, and mathematical aspects of the theory of domains. A recent book [1] by A. Jung demonstrates a noticeable progress in the theory.

Theory of domains arose in the late 60s in research that was carried out independently by Prof. D. Scott in Oxford and by the author in Novosibirsk. D. Scott was interested in a natural mathematical model for the type-free λ -calculus, whereas the author developed a theory of partial computable functionals of finite types. Both problems were solved quite satisfactorily. The corresponding results were reported by the author at the International Congress of Mathematicians in Nice, 1970 [2] and by D. Scott at the International Congress for Logic, Methodology, and Philosophy of Science in Bucharest, 1971 [3].

It turned out that there was a great resemblance between the mathematical models developed. The exact relation between these models was established in [4]. In particular, the notion of Scott's domain (S-domain) and the one of complete f_0 -space were proved to be equivalent.

N. Bourbaki in "L'Architecture des mathématiques" distinguishes three basic mathematical structures: algebraic, topological, and that of partial order. All these structures are found in the theory of domains. The approach of D. Scott to the introduction of S-domain by means of (directed-complete) partial orders dominates in the current literature on computer science, though many basic concepts of the theory, e.g., the way-below relation, are rather difficult to comprehend. This was the reason why D. Scott repeatedly returned to the theory of domains, attempting to clarify the foundations. Thus, for this purpose he introduced information systems [5].

In the author opinion, topology should be the basic structure in the development of the theory. The author supposes that the topological approach of [4] is more preferable than the one based on a partial order, both for better reception and for potentially greater generality that is needed if one wants to study domains which contain only constructive points. In the present paper the author will try to substantiate this point of view following the ideas expressed in [4].

^{*} Research supported in part by the Russian Foundation for Fundamental Research (93 011 16014).

1. Let $\langle X, T \rangle$ be a topological space (T is a topology on X, i.e., a family of all open sets). We define a preorder \leq_T on X, related to the topology T, as follows: for $x, y \in X$

 $x \leq_T y \Leftrightarrow$ for every open set $V \subseteq X(V \in T) (x \in V \to y \in V)$.

This relation is a partial order provided that (X, T) is a T_0 -space, i.e., the weakest separation axiom holds: for every $x, y \in X$, if $x \neq y$, then there exists an open set $V \subseteq X$ such that $x \in V$ and $y \notin V$, or $x \notin V$ and $y \in V$.

The subscript T in the notation \leq_T will usually be omitted. We introduce the following notation: $\hat{x} = \{y \mid y \in X, y \leq x\}, \ \check{x} = \{y \mid y \in X, x \leq y\}.$

If $\langle X, T \rangle$ is a T_1 -space (i.e., $\forall x, y \in X$ $(x \neq y \rightarrow \exists V \in T(x \in V \land y \notin V))$), then the preorder \leq degenerates to the identity relation. In the sequel, we will consider only T_0 -spaces.

We introduce one more relation, namely the approximation relation \prec on elements of X as follows: for $x, y \in X$

 $x \prec y \Leftrightarrow$ there exists an open set $V \subseteq X$ such that $(y \in V \text{ and } \forall z \in V(x \leq z))$.

Remark. An equivalent definition may be given as follows: $x \prec y \Leftrightarrow y \in \text{Int } \check{x}$, where Int Y is the interior of Y, i.e., the largest open subset of the set $Y \subseteq X$. Note that $x \prec y$ implies $x \leq y$.

We will use the following notation: $\dot{x} = \{y \mid y \in X, y \prec x\}, \quad \check{x} = \{y \mid y \in X, x \prec y\}.$

We call a topological space (X, T) approximative (or an α -space) if the following condition holds: for any open set $V \subseteq X$ and any element $x \in V$ there exists $y \in V$ such that $y \prec x$.

It is easy to see that the following holds:

1. If (X,T) is an α -space and a set $V \subseteq X$ is open, then

$$V = \bigcup_{x \in V} \check{x}.$$

- 2. If (X,T) is an α -space and $x \in X$, then for every y, z such that $y \prec x$ and $z \prec x$ there exists $u \prec x$ such that $y \prec u, z \prec u$.
- 3. $x = \sup \hat{x}$, i.e., x is the least upper bound (relative to the order \leq) of the set \hat{x} .

Let $\langle X, T \rangle$ be an α -space. A set $X_0 \subseteq X$ is called a *base subset of* X if the following condition holds: for any open set $V \subseteq X$ and any $x \in V$ there exists $y \in V \cap X_0$ such that $y \prec x$.

Remark. X is a base subset of X.

Remark. If X_0 is a base subset of X, then $V = \bigcup_{x \in V \cap X_0} \tilde{x}$ for every open set $V \subseteq X$.

Remark. If X_0 is a base subset of X, then for any $x \in X$ the set $\hat{x} \cap X_0$ is directed and $x = \sup(\hat{x} \cap X_0)$.

Now we proceed to the closure properties of α -spaces. (In the sequel, we will usually omit an explicit indication of the topology.)

Proposition 1. If X and Y are α -spaces, then the Cartesian product $X \times Y$ is an α -space.

Remark. The topology of the product $X \times Y$ is defined in a standard way.

Proposition 1 can be extended to products of arbitrary number of spaces, if we impose an additional quite natural restriction. An α -space X is called an α_0 -space if the partially ordered set $\langle X, \leq_T \rangle$ has a least element.

Proposition 1'. Let X_i , $i \in I$, be a family of α_0 -spaces and $X = \prod_{i \in I} X_i$ be the Cartesian product of the family (equipped with the Tychonoff topology). Then X is an α_0 -space.

Many important constructions in the theory use the notions of retract and project. Remind that a continuous mapping $\rho: X \to X$ of a topological space X into itself is called a *retraction* if $\rho^2 = \rho$. The image $\rho(X)$ considered as a subspace of X is called a *retract of* X. A retraction $\rho: X \to X$ is called a *projection* if $\rho(x) \leq x$ for all $x \in X$. In this case $\rho(X)$ is called a *project of* X.

Proposition 2. If X is an $\alpha(\alpha_0)$ -space and $Y \subseteq X$ is a retract of X, then Y is an $\alpha(\alpha_0)$ -space.

Now we introduce an important notion of a complete α -space.

An α -space X is called *complete* if, given an α -space Y, its base subset Y_0 , and a homeomorphism h of Y_0 into X such that $h(Y_0)$ is a base subset of X, there exists an extension of h to a continuous mapping of Y into X. (This extension will in fact be a homeomorphic embedding of Y into X.)

Proposition 3. For every α -space Y there exists a complete α -space X and a homeomorphic embedding $\pi: Y \to X$ such that $\pi(Y)$ is a base subset of X.

The α -space X in Proposition 3 is called the completion of Y. It is unique in a reasonable sense.

Now we establish a crucial connection between α -spaces and directed-complete partial orders.

Theorem 4. If $\langle X, T \rangle$ is a complete α -space, then $\langle X, \leq T \rangle$ is a continuous directed-complete partial order. If $\langle X, \leq \rangle$ is a continuous directed-complete partial order, then X, equipped with the Scott-topology, is a complete α -space and the approximation relation \prec coincides with the way-below relation \ll .

2. An important subclass of the class of approximative spaces is the class of finitary spaces. An element x in T_0 -space X is called *finitary* if the relation $x \prec x$ holds or, equivalently, if the set \tilde{x} is open. The set of all finitary elements of a space X will be denoted by F(X). An approximative space X is called a *finitary space* (or a φ -space) if F(X) is a base subset of X.

Remark. For an arbitrary base subset X_0 of X we have $F(X) \subseteq X_0$. If X_0 is a base subset of X and $x \in X_0 \setminus F(X)$, then $X_0 \setminus \{x\}$ is a base subset of X. Thus, an α -space X is finitary if and only if it has the least (under set inclusion) base subset.

Theorem 5. If (X,T) is a complete φ -space, then (X, \leq_T) is an algebraic directedcomplete partial order. If (X, \leq) is an algebraic directed-complete partial order, then X, equipped with the Scott-topology, is a complete φ -space.

A φ -space X is called an *f*-space if $\langle F(X), \leqslant \rangle$ is a partial upper semilattice, i.e., a partial order such that, for any $x, y \in F(X)$, a consistency of x and y (i.e., $\exists z \in F(X)(x \leqslant z \land y \leqslant z)$) implies the existence of the least upper bound $x \sqcup y$ in F(X). An *f*-space with a least element is called an f_0 -space (cf. [4]).

Theorem 6. If (X,T) is a complete f_0 -space, then $(X, \leq T)$ is an S-domain. If (X, \leq) is an S-domain, then X, equipped with the Scott-topology, is a complete f_0 -space.

A φ -space X is called a *b*-space if $(F(X), \leq)$ satisfies the condition: every finite subset $F \subseteq F(X)$ is contained in a finite subset $F_0 \subseteq F(X)$ such that

 $\forall F_1 \subseteq F_0 \; \forall x \in F(X) \; (\forall x_0 \in F_1(x_0 \leqslant x) \rightarrow$

 $\rightarrow \exists x_1 \in F_0 \ (\forall x_0 \in F_1(x_0 \leqslant x_1) \land x_1 \leqslant x)).$

Finite sets F_0 satisfying this condition are called *perfect*. A *b*-space with the least element is called a b_0 -space.

Theorem 7. If (X,T) is a complete b_0 -space, then (X, \leq_T) is a B-domain. If (X, \leq) is a B-domain, then X, equipped with the Scott-topology, is a complete b_0 -space.

Remark. Every $f(f_0)$ -space is a $b(b_0)$ -space.

Proposition 8. If X is a b-space and Y is a b₀-space, then the set C(X, Y) of all continuous mappings of X into Y, equipped with the topology of pointwise convergence, is a b₀-space. Moreover, if Y is complete, then C(X, Y) is complete.

We point out the basic elements of the proof.

1. If F_0 is a finite perfect subset of F(X) and $f_0: F_0 \to F(Y)$ is monotone, then we can extend f_0 to a continuous mapping $f_0^*: X \to Y$ as follows. Notice that if $x \in X$, then $\hat{x} \cap F_0$ is empty or contains the greatest element c_x . In the first case we put $f_0^*(x)$ equals \perp_Y , the least element of Y; in the second we put $f_0^*(x) = f_0(c_x)$.

- 2. The finite elements of C(X, Y) are exactly the functions of the form f_0^* .
- 3. Assume that f_0^*, \ldots, f_n^* are obtained from the monotone mappings $f_0: F_0 \to F(Y), \ldots, f_n: F_n \to F(Y)$. We put: $F_{n+1} \subseteq F(X)$ is a finite perfect subset of F(X), containing $F_0 \cup F_1 \cup \ldots \cup F_n$; F_{n+2} is a finite perfect subset of F(Y), containing $\{\perp_Y\} \cup f_0(F_0) \cup \ldots \cup f_n(F_n)$; $G = \{f \mid f \text{ is a monotone mapping of } F_{n+1} \text{ into } F_{n+2}\}$; $G^* = \{f^* \mid f \in G\}$.

Then G^* is a finite perfect subset of F(C(X,Y)) and $\{f_0^*,\ldots, f_n^*\} \subseteq G^*$.

Proposition 9. The category of b_0 -spaces is Cartesian closed.

Remark. A corresponding statement for f_0 -spaces was proved in [6].

Remark. The category of b_0 -spaces is closed under limits of bispectra, i.e., an analog of Theorem 1 [4, §5] holds.

Since retracts of a Cartesian closed category of topological spaces constitute a Cartesian closed category in themselves, it is useful to obtain a description for retracts of f_0 -spaces. It turns out that the following generalization of Theorem 4.1 [1] holds. (We recall that, according to [1], a *deflation* of a topological space X is a continuous mapping $f: X \to X$ of X into itself such that f(X) is finite and $f(x) \leq_T x$ for all $x \in X$.)

Proposition 10. If an α_0 -space X is a retract of a b_0 -space, then there exists a directed family $f_i, i \in I$, of deflations of X such that $\sup f_i = \operatorname{id}_X$. If an α_0 -space X possesses such a family of deflations, then X is a project of a b_0 -space.

The second part of the proposition is stronger than the corresponding assertion of Theorem 4.2 [1] even for complete b_0 -spaces (= B-domains) and answers the question raised in [1, p. 92].

Remark. An explicit description of retracts (or projects) of complete f_0 -spaces as complete Λ_0 -spaces is given in [4].

3. As in [7], we give an effective version of b_0 -spaces. Let X be a b_0 -space. An enumeration $\nu : \omega \to F(X)$ is called a constructivization of the base subset of X if the following conditions hold:

- 1) the set $\{\langle n, m \rangle \mid n, m \in \omega, \nu n \leq \nu m\}$ is recursive;
- 2) there exists a recursive function $g: \omega \to \omega$ such that for every $n \in \omega$

$$\nu D_n (= \{\nu m \mid m \in D_n\}) \subseteq \nu D_{g(n)} (= \{\nu m \mid m \in D_{g(n)}\})$$

and $\nu D_{g(n)}$ is a perfect subset of F(X). (Here D_n is a finite subset of ω with a canonical index n, cf. [6].)

A b_0 -space X has a constructivizible base if there exists a constructivization of the base subset F(X) of X.

Proposition 11. The category of b_0 -spaces with constructivizible base subsets is Cartesian closed.

Let $\nu : \omega \to F(X)$ be a constructivization of the base subset of a b_0 -space X. An element $x \in X$ is called *constructive*, if the set $\{n|\nu(n) \leq x\}$ is recursively enumerable.

A good theory of f_0 -spaces which have constructivizible bases and such that all their elements are constructive is developed in [6]. In particular, the notions of computable enumeration of these spaces, completeness, and principal computable enumerations are defined there. This theory serves as a tool for the construction of partial computable functionals of finite types acting on partial continuous functionals (the model \mathbb{C} , [4, 7]). But the theory of b_0 -spaces in which all points are constructive is not quite satisfactory as the following example shows.

Here T is an infinite recursive binary tree without infinite recursive branches. Notice that every infinite recursively enumerable branch of a recursive tree is recursive. Hence, there is no infinite recursively enumerable branch in T. The existence of such trees is well known (cf. [8]).

Elements of T at a level n are (minimal) upper bounds of the pair a_n, b_n . We add limit points: a_{ω} for a_0, a_1, \ldots ; b_{ω} for b_0, b_1, \ldots ; and limit points corresponding to every infinite branch of the tree T. A topology on the obtained set X_T is defined by a subbasis constituted by open sets of the form \check{c} where $c \in F(X_T) = T \bigcup \{a_0, b_0, \ldots\}$. Then X_T is a complete b_0 -space (or a *B*-domain; moreover, a *BL*-domain in terms of [1]). Obviously, the base subset $F(X_T)$ is constructivizible. The points a_{ω} and b_{ω} are constructive, whereas all other limit points (which are the upper bounds of a_{ω}, b_{ω}) are not. Thus, a_{ω} and b_{ω} , being consistent in X_T , are inconsistent in the subspace $C(X_T)$ of all constructive points of X_T .

The example shows that from the "constructive" point of view f_0 -spaces behave better than b_0 -spaces.

To conclude, we mention that spaces with constructive points can be used to define an effective semantics which, in turn, can serve as a programming language (semantic programming, cf. [9]). Moreover, effective versions of the spaces enable one to obtain generalizations of the theory through the use of arbitrary admissible sets (instead of ω) as it was done in [10] in the case of f_0 -spaces.

References

- 1. Jung, A.: Cartesian Closed Categories of Domains. CWI Tract 66 Stichting Math. Centrum Amsterdam (1989)
- Ershov, Yu. L.: La théorie des énumération. Actes Congr. Intern. Math. 1 Gauthier-Villars Paris (1971) 223-227
- Scott, D.: Models for various type-free calculi. LMPS IV. Studies in Logic No 74 North-Holland Amsterdam (1973) 157-188
- 4. Ershov, Yu. L.: Theory of A-spaces. Algebra i Logika 12 No 4 (1973) 369-416
- Scott, D.: Domains for denotational semantics. ICALP 82. Springer LNCS No 140 (1982) 577-613
- 6. Ershov, Yu. L.: Theory of enumerations [in Russian]. Nauka Moscow (1977)
- Ershov, Yu. L.: Model C of partial continuous functionals. Logic Colloq.'76. Studies in Logic No 87 North-Holland Amsterdam (1977) 455-467
- Peretyat'kin, M. G.: Strongly constructive models and enumerations of the boolean algebra of recursive sets. Algebra i Logika 10 No 5 (1971) 535-557
- 9. Goncharov, S. S., Ershov, Yu. L., and Sviridenko, D. I.: Semantic programming. Information Processing 86. North-Holland Amsterdam (1986) 1993-1100
- 10. Ershov, Yu. L.: On f_A-spaces. Algebra i Logika 25 No 5 (1986) 533-543