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Preface 

The volume comprises the papers selected for presentation at the international 
conference "Formai Methods in Programming and Their Applications", held in 
Academgorodok (Novosibirsk, Russia), June 28 - July 2, 1993. 

The conference was organized by the Institute of Informatics Systems of the 
Siberian Division of the Russian Academy of Sciences. The Institute is engaged in 
active research in the field of theoretical programming. The Institute has been an 
organizer of several international conferences related to programming and formal 
methods in programming but the latter have been considered together with other 
problems of programming. The current conference is the fust forum organized by the 
Institute which is entirely dedicated to formal methods. 

The main scientific tracks of the conference bave been centered around the formal 
methods of program development and program construction. They include: 

- specification, synthesis, transformation and verification of programs; 

- parallel and distributed computations; 

- semantics and logic of programs; 

- theory of compilation and optimization; 

- mixed computation, partial evaluation and abstract interpretation. 

One of the main goals of the conference bas been to promote formal methods in 
programming and to present and discuss the most interesting approaches to practical 
programming. A number of papers delivered at the conference are aimed at such a goal. 

Scientists from eleven countries have been participants to the conference (Austria, 
Brazil, Canada, Denmark, England, France, Germany, the Netherlands, Russia, Turkey, 
and the USA as weil as from the Territory of Macau)! 

Aiso in the opinion of the participants the conference has been a success and 
similar conferences should be held in the future, perhaps, with a greater focus on the 
application offormal methods and the problems connected with it. 

The organizers of the conference express their deep gratitude to the colleagues of 
Russian and international communities who supported actively the conference by 
rendering assistance and advice, review and participation. 

We would also like to thank the Springer-Verlag for excellent co-operation. 

July 1993 Dines Bj~er, Manfred Broy, Igor Pottosin 
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Theory of Domains and N earby * 

Yu. L. Ershov 

Novosibirsk State University, RIMIBE 
U niversitetsky pl. 4 
N ovosibirsk 630090 

Russia 

Abstract. The author presents a topological approach to the develop­
ment of the theory of domains. 

O. In the present paper we deal with historical, methodological, and mathe­
matical aspects of the theory of domains. A recent book [1] by A. Jung demon­
strates a noticeable progress in the theory. 

Theory of domains arose in the late 60s in research that was carried out inde­
pendently by Prof. D. Scott in Oxford and by the author in N ovosibirsk. D. Scott 
was interested in a natural mathematical model for the type-free À-calculus, 
whereas the author developed a theory of partial comput able functionals of fi­
nite types. Both problems were solved quite satisfactorily. The corresponding 
results were reported by the author at the International Congress of Mathemati­
cians in Nice, 1970 [2] and by D. Scott at the International Congress for Logic, 
Methodology, and Philosophy of Science in Bucharest, 1971 [3]. 

It turned out that there was a great resemb!ance between the mathemati­
cal models developed. The exact relation between these models was established 
in [4]. In particular, the notion of Scott's domain (S-domain) and the one of 
complete fo-space were proved to be equivalent. 

N. Bourbaki in "L'Architecture des mathématiques" distinguishes three ba­
sic mathematical structures: algebraic, topological, and that of partial or der . Ali 
these structures are found in the theory of domains. The approach of D. Scott 
to the introduction of S-domain by means of (directed-complete) partial orders 
dominates in the current literature on computer science, though many basic 
concepts of the theory, e.g., the way-below relation, are rather difficult to com­
prehend. This was the reason why D. Scott repeatedly returned to the theory 
of domains, attempting to clarify the foundations. Thus, for this purpose he 
introduced information systems [5]. 

In the author opinion, topology should be the basic structure in the develop­
ment of the theory. The author supposes that the topological approach of [4] is 
more preferable than the one based on a partial order, both for better reception 
and for potentially greater generality that is needed if one wants to study do­
mains which contain only constructive points. In the present paper the author 
will try to substantiate this point of view following the ideas expressed in [4]. 

* Research supported in part by the Russian Foundation for Fundamental Research 
(93-011-16014). 
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1. Let (X, T) be a topological space (T is a topology on X, i.e., a family 
of al! open sets). We define a preorder (T on X, related to the topology T, as 
follows: for x, y EX 

X (T y {:} for every open set V ç XCV E T)(x E V --+ Y E V) . 

This relation is a partial order provided that (X, T) is a To-space, i.e., the weakest 
separation axiom holds: for every x, y E X, if x i- y, then there exists an open 
set V ç X such that x E V and y 1: V, or x 1: V and y E V. 

The subscript T in the notation (T will nsually be omitted. We introduce 
the following notation: ~ == {y 1 y E X, Y ( x}, '5: == {y 1 y E X, x ( y}. 

If (X,T) is a T1-space (i.e., Vx,y EX (xi- y -+:IV ET(x E VAy 1: V))), 
then the preorder ( degenerates to the identity relation. In the sequel, we will 
consider only To-spaces. 

We întroduce one more relation, namely the approximation relation -< on 
elements of X as follows: for x, y E X 

x -< y {:} there exists an open set V ç X such that (y E V and Vz E V(x ( z)). 

Remark. An equivalent definition may be given as follows: x -< y {:} y E Int ±, 
where Int Y is the interior of Y, i.e., the largest open subset of the set Y ç X. 
Note that x -< y implies x ( y. 

We will use the following notation: S: = {y 1 y E X, Y -< x}, ± = {y i y E 
X, x -< y}. 

We call a topological space (X, T) approximative (or an a-space) if the fol­
lowing condition holds: for any open set V ç X and any element x E V there 
exists y E V such that y -< x. 

It ls easy to see that thefollowing. holds: 

1. If (X, T) is an a-space and a set V ç X is open, then 

v = U ±. 
"EV 

2. If (X, T) is an a-space and x E X, then for every y, z such that y -< x and 
z -< x there exists u -< x such that y -< u, z -< u. 

3. x =sup S:, i.e., x is the least upper bound (relative to the order () of the 
A 

set x. 

Let (X, T) be an a-space. A set Xo ç X is called a base subset of X if the 
foIlowing condition holds: for any open set V ç X and any x E V there exists 
y EV nxo such that y -< x. 

Remark. X is a base subset of X. 

Remark. If Xo is a base subset of X, then V 

vÇX. 

U ± for every open set 
xEvnxo 
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Remark. If Xo is a base subset of X, then for any x E X the set S: n X O IS 

directed and x = sup(S: n X o). 

Now we proceed to the dosure properties of Œ-spaces. (In the sequel, we will 
usually omit an explicit indication of the topology.) 

Proposition 1. If X and Y are Œ-spaces, th en the Cartesian product X x Y IS 

an Œ-space. 

Remark. The topology of the product X x Y is defined in a standard way. 

Proposition 1 can be extended to products of arbitrary number of spaces, 
if we impose an addition al quite natural restriction. An Œ-space X is called an 
Œo-space if the partially ordered set (X, (T) has a least element. 

Proposition l'. Let Xi, i E 1, be a family of Œo-spaces and X = TI Xi be the 
iEI 

Cartesian product of the family (equipped with the Tychonoff topology). Then X 
is an Œo-space. 

Many important constructions in the theory use the notions of retract and 
project. Remind that a continuous mapping p : X --7 X of a topolqgicàl space 
X into itself is called a retraction if p2 = p. The image p( X) considered as a 
subspace of X is called a retraet of X. A retraction p : X --7 X is called a 
projection if p(x) ( x for ail x E X. In this case p(X) is called a project of X. 

Proposition 2. If X is an Œ(Œo)-space and Y ç X is a retraet of X, then Y is 
an Œ( Œo)-space. 

Now we introduce an important notion of a complete Œ-space. 
An Œ-space X is called complete if, given an Œ-space Y, its base subset Y o, 

and a homeomorphism h of Yo into X such that h(Yo) is a base subset of X, there 
exists an extension of h to a continuous mapping of Y into X. (This extension 
will in fact be a homeomorphic embedding of Y into X.) 

Proposition 3. For every Œ-space Y there exists a complete Œ-space X and a 
homeomorphic embedding 7r : Y --;. X such that 7r(Y) is a base subset of X. 

The Œ-space X in Proposition 3 is called the completion of Y. It is unique 
in a reasonable sense. 

Now we establish a crucial connection between Œ-spaces and directed-complete 
partial orders. 

Theorern4. If (X, T) is a complete Œ-space, then (X, (T) is a continuous 
directed-complete partial order. If (X, () is a continuous directed-complete par­
tial order, then X, equipped with the Scott-topology, is a complete Œ-space and 
the approximation relation -< coincides with the way-below relation ~. 
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2. An important subclass of the class of approximative spaces ls the dass 
of finitary spaces. An element x in To-space X iB called finitary if the relation 
x -< x holds or, equivalently, if the set ~ is open. The set of aH finitary elements 
of a space X will be denoted by F(X). An approximative space X is called a 
finitary space (or a <p-space) if F(X)is a base subset of X. 

Remark. For an arbitrary base subset Xo of X we have F(X) ç Xa. If Xa is a 
base subset of X and x E Xo\F(X), then Xa\{x} is a base subset of X. Thus, 
an a-space X is finitary if and only if it has the least (under set inclusion) base 
subset. 

Theorem 5. If (X, T) is a complete <p-space, then (X, ~T) is an algebraic directed­
complete partial arder. If (X,~) is an algebraic directed-complete partial order, 
then X, equipped with the Scott-top%gy, is a complete <p-space. 

A <p-space X iB called an f-space if (F(X),~) is a partial upper semilattice, 
L-e., apartial or der such that, for any x,!J E F(X), a consistency ofx and y (i.e., 
3z E F( X)( x ~ z A y ~ z)) implies the existence of the least upper bound x U y 
in F(X). An f-space with a least element is called an fa-space (cf. [4]). 

Theorem 6. If (X, T) is a complete fo-space, then (X, ~T) is an S-domain. If 
(X,~) is an S-domain, then X, equipped with the8cott-topology, is a complete 
fo-space. 

A IO-space X is called a b-space if (F(X),~) satisfies the condition: every 
finite subset F ç F(X) is contained in a finite subset Fo ç F(X) such that 

'IF! ç Fa 'Ix E F(X) (T/xa E F!(xo ~ x)---> 

---> 3x! E Fa (Vxo E F!(xo ~ xIl A Xl ~ x). 

Finite seLs Fo satisfying this condition are called perfeci. A b-space with the least 
element is called a ba-space. 

Theorem 7. If (X, T) is a complete bo-space, then (X, ~T) is a B-domain. If 
(X,~) zs a B-domain, then X, equipped with the Scott-top%gy, is a complele 
bo-space. 

Remark. Every f(fo )-space is a b( bo )-space. 

Proposition 8. If X is a b-space and Y is a bo-space, ihen the set CCX, Y) 
of ail continuous mappings of X inlo Y, equipped with the top%gy ofpoiniwise 
convergence, is a bo-space. Moreover, if Y is complele, then CCX, Y) iscomplete. 

We point out the basic clements of the proof. 

1. If Fa is a finite perfect subset of F(X) and fa : Fa --+ F(Y) is monotone, 
then we can extend Jo to a continuous mapping f~ : X --+ Y as follows. 
Notice that if x EX, then ~ n Fa isempty orcontains the greatest element 
C",. In the first case we put f; (x )equals J..y, the least element of Y; in the 
second we put fü(x) =:: fo(c x ). 
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2. The finite elements of C(X, Y) are exactly the functions of the form fà. 
3. Assume that fâ, . .. , f~ are obtained from the monotone mappings fo : Fo --7 

F(Y), ... , fn : Fn --7 F(Y). We put: 
Fn+1 ç F(X) is afinite perfect subset of F(X), containing FoUF1U .. . UF,,; 
Fn+2 is a finite perfect subset of F(Y), containing {l..y} U fo(Fo) U ... U 
fn(Fn); 
G = {f 1 1 is a monotone mapping of Fn+l into Fn+2}; 
G* = {f* IlE G}. 

Then G* is a fini te perfect subset of F(C(X, Y)) and {là,·.·, i~} ç G*. 

Proposition 9. The category of bo-spaces is Cartesian closed. 

Remark. A corresponding statement for lo-spaces was proved in [6]. 

Remark. The category of bo-spaces is closed un der limits of bispectra, I.e., an 
analog of Theorem 1 [4, §5] holds. 

Since retracts of a Cartesian closed category of topological spaces constitute 
a Cartesian closed category in themselves, it is useful to obtain a description for 
retracts of lo-spaces. It turns out that the following generalization of Theorem 
4.1 [1] holds. (We recall that, according to [1], a deftation of a topological space 
X is a continuous mapping 1 : X --7 X of X into itself such that I( X) is finite 
and I(x) :S;T x for ail x EX.) 

Proposition 10. If an Œo-space X is a retract 01 a bo-space, then there exists a 
directed family li, i E l, of deftations of X such that sup li = idx . If an Œo-space 
X possesses such a family of deftations, th en X is a project of a bo-space. 

The second part of the proposition is stronger th an the corresponding asser­
tion of Theorem 4.2 [1] even for complete bo-spaces (= B-domains) and answers 
the question raised in [1, p. 92]. 

Remark. An explicit description of retracts (or projects) of complete lo-spaces 
as complete Ao-spaces is given in [4]. 

3. As in [7], we give an effective version of bo-spaces. Let X be a bo-space. 
An enumeration v : W --7 F(X) is called a constructivization of the base subset 
of X if the following conditions hold: 

1) the set {(n, m) 1 n, mE w, vn:S; vm} is recursive; 
2) there exists a recursive function 9 : w --+ w su ch that for every n E w 

and vDg(n) is a perfect subset of F(X). (Here Dn is a finite subset of w with a 
canonical index n, cf. [6].) 

A bo-space X has a constructivizible base if there exists a constructivization 
of the base subset F( X) of X. 
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Proposition 11. The caiegory of bo -spa ces with constructivizible base subsets is 
Cartesian closed. 

Let v : w -+ F(X) be a constructivization of the base subse.t of a bo-space X. 
An element x EX is called constFactive, if the set {nlv(n) ,,;; x} is recursively 
enumerable. 

A good theory of fo-spaces which have constructivizible bases and sueh that 
ail their elements are constructive is developed in [6J. In particular, the no­
tions of computable enumeration of these spaces, completeness, and principal 
computable enumerations aredefined there. This theory serves as a tool for 
the construction of partial computable functionals of finite types acting on par­
tial continuous functionals (the model C, [4, 7]). But the theory of bo-spaces 
in which ail points are constructive is not quite satisfactory as the following 
example shows. 

. . 
T 

.L 

Here T is an innnite recursive binary tree without infini te recursive branches. 
Notice that every infinite recursively enumerable branch of a recursive tree is 
recursive. Henee, there is no infinite recursively enumerable branch in T. The 
existence of sueh trees is weil known (cf. [8]). 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



7 

Elements of T at a level n are (minimal) upper bounds of the pair an, bn . 
We add limit points: aw for ao, al, ... ; bw for bo, h, ... ; and limit points cor­
responding to every infinite branch of the tree T. A topology on the obtained 
set XT is defined by a subbasis constituted by open sets of the form ;{ where 
cE F(XT) = TU{ao, bo,·· .}. Then XT is a complete bo-space (or a B-domain; 
moreover, a BL-domain in terms of [1]). Obviously, the base subset F(XT) is 
constructivizible. The points aw and bw are constructive, whereas ail other limit 
points (which are the upper bounds of aw,bw) are not. Thus, aw and bw, being 
consistent in X T , are in consistent in the subspace C(XT ) of ail constructive 
points of XT. 

The example shows that from the "constructive" point of view fo-spaces 
behave better than bo-spaces. 

To conclude, we mention that spaces with constructive points can be used 
to define an effective semantics which, in turn, can serve as a programming 
language (semantic programming, cf. [9]). Moreover, effective versions of the 
spaces enable one to obtain generalizations of the theory through the use of 
arbitrary admissible sets (instead of w) as it was done in [10] in the case of 
fo-spaces. 
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