
Matthias Weber Martin Simons
Christine Lafontaine

The
Generic Development
Language Deva
Presentation and Case Studies

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos J uris Hartmanis
Cornell University Universitilt Karlsruhe

Postfach 69 80
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, Germany

Department of Computer Science
4130 Upson Hall

Aurhors

Martin Simons
Matthias Weber

[thaca, NY 14853, USA

Institut für angewarldte Informatik, Techmsche Universitat 3erlm
FranklinstraBe 28-29, D-10587 Berlin, Germany

Christine Lafontaine
Unité d'Informatique, Université Catholique de Louvain Place
Sainte-Barbe 2, 1348 Louvain-La-Neuve, Belgium

CR Subject ClassIfication (l991): D.3, F,3-4, D.l.!

ISBN 3-540-57335-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57335-6 Springer-Verlag New York Berlin Heidelberg

,(, -
b:5'lb

This work ls subject to copyright. Ail rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are Hable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready hy author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Foreword

The Deva endeavor is almost ten years old: the requirements for the Esprit
project ToolUse (1985-1990) were discussed in late 1984. The present preface
offers a nice opportunity to consider the enterprise in the light of experience.
The overall problem tackled in the design of Deva can be outlined as follows;
the word proofs denotes deductions going from hypotheses to theses or from
specifications to programs. On the one hand, we are used to writing and reading
human proofs; these are sometimes unstructured, imprecise, and even incorrect.
On the other hand, sorne of us strive to write formai proofs; such proofs are often
too detailed and hard to understand. It is tempting to bridge the gap between
human and formai proofs by introducing formai hum an proofs, or human formaI
proofs if one prefers, so as to remove the shortcomings of the two modes of
expression without Iosing their respective qualities.

This task is not as hopeless as it seems. Indeed, there is a permanent tendency
to improve the style of human proofs. Sioppiness, for instance, is combatted by
systematic use of consecutive formai expressions separated by careful descrip
tions of the Iaws used at each step. Composition is enhanced by nesting proofs:
sub-proofs correspond to sub-blocks or lemmas, and hypotheses to declarations.
Such improved human proofs could be termed enlightening proofs. In these, the
initial laws, the consecutive propositions, and the overall structure are ail for
malized; only the proof steps and the scope rules remain informaI. The discipline
fostered by such enlightening proofs reduces the temptation to cheat in reason
ing; this has been a sobering personal experience. Other efforts towards formai
human proofs aim at making formai proofs more human. The corresponding
techniques are effective, if not original: they include systematic composition,
readable notations, and automatic sub-deductions such as pattern-matching. In
spite of these varied efforts from both sides, the gap between human proofs and
formai ones remains a wide one. The Deva enterprise was intended to reduce it
further by humanizing formai proofs a bit more.

Deva is essentially a typed functional language. The primitive functions ex
press proof steps. Each such step is typed by an input and an output type;
this pair of types expresses the propositions connected by the step, and thus
amounts to a deduction rule. This view of functions as proofs and of types as
propositions has been known in logic since the sixties. It differs, however, from
related approaches. Indeed, a fruitful principle in computing is to consider types
as abstract values and type elaboration as an abstract computation. A straight
forward consequence is to view type expressions as abstract function expressions:
the syntax remains the same while the interpretation changes homomorphically.
This identification of type terms and function terms, first formalized in À-typed
À-calculi, has been applied in Deva. Moreover, since the latter is essentially a
programming language, its design, implementation, and use benefit from well
established methods: classical composition operators are introduced, operational
semantics serves as a formai definition, implementation techniques are available,
and teaching material as weil as support tools follow standard principles. The dif
ference with ordinary languages is, of course, the application domaine the types

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

serve here to express propositions suen as specifications or programs, rather than
just data classes.

Model case studies played an important part in design. This has been one of
the benefits of continued cooperation with good industrial partners, A primary
objective was to formalize effective methods of software design. In industry, the
most productive methods use successive refinements from state-based specifica
tions; the first example in the book illustrates this approach for an application in
the field of biology. A promising research direction is the derivation of efficient
programs on the basis of algorithm calculi; this is presented here in another
case study. Such experiments and existing models of enlightening proofs have
continuously influenced the design of Deva. In consequence, its description has
been significantly modified a number of times. The genericity and reusability of
implementation tool8 helped in mastering this necessary evolution, In fact, the
current version of Deva may well be adapted further.

Before formalizing a topic, we must first understand it and design a good
theory for it. In the case of program derivations, this theory-building comprises
three layers: there are basic theories from mathematics and computing, then
theories of design methods and application domains, and finally theories for
specifie program d~rivations. A significant part of formal software development is
thus concerned with classica! mathematics. This appealing blend of mathematics
and programming science could be termed modern applied mathematics, The
elaboration of a theory must not be confused with its formalization. On the
one hand, without an adequate theory, the formalization do es more harm than
good: the better a theory is, tl>" hQ,ppier its formalization. On the other hand,
one should be able to take any good piece of mathematics and formalize it nicely
in a proposed language for formai enlightening proofs. Once a design method has
been given a good theory and has been formalized accordingly, it is possible to
develop formaI proofs of theorems about the method itself. The present book,
for instance, provides a formaI theory of reification, and then a formal proof of
the transitivity of reification.

Various languages for formal enlightening proofs are currently being experi
mented with. The reprogramming of common theories in these languages appears
to be counter-productive; it is reminiscient of the republication of similar mate
rial in several books or the recoding of software libraries in different programming
languages. Happily, the cost of repeated formalizations can be reduced: where
the languages are quite different, at least the contents of the theories can be
communicated using literate formalization, as in the case of the present book;
if the languages are similar, specifie translators can be developed to automate
recoding. The latter solution can be used in the case of successive Deva versions,

The following views may underlie further work. Firstly, to the extent that
proof expressions are homomorphie to proposition expressions, we must be free
to work at the level of functions or àt that of types. This would allow us to
express a proof step not only as the application of a function typed by a rule
to a constant typed by a proposition, but also as the direct application of the
rule to the proposition; this better matches the nature of enlightening proofs,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

vu

Secondly, purely linguistic aspects play a major part: compositional structures,
formaI beauty, and stylized notations prove crucial for successful intellectual
communication. Thirdly, semantics must be understood by minds and not just
by machines: to foster higher-Ievel reasoning on proof schemes, algebraic laws
are more useful than reduction rules. The formalization of enlightening proofs
should add neither semantical nor syntactical difficulties: it must instead clarify
the proofs even better. Fourthly, it should be possible to formalize weil any
component of mathematics: the scientific basis for the design of software systems
tends to include any mathematics of interest in system design. Finally, it is
mandatory to capitalize on existing symbolic algorithms, decision procedures,
and proof schemas; ideally, these should be integrated in specifie libraries so
as to be understood, communicated, and applied. In a word, we must apply,
in the design and use of high-Ievel proof languages, the successful principles
established for existing high-Ievel programming languages. The correspondence
between proofs and programs also results from the similarities between algebras
of proofs and algebras of programs, not only from the embedding of programs
within proofs.

To conclude, Deva can be seen as a tentative step towards a satisfactory
language of formaI enlightening proofs. The authors should be warmly thanked
for presenting this scientific work to the computing community.

Michel Sintzoff

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Acknowledgments

This book would not have been possible without the continuing support of several
people. First of aH, we wish ta thank Michel Sintzoff, who is, so to speak, the
father of the research reported on in this book. His ideas on formaI program
development were the starting-point for the development of Deva. We aregrateful
to him for the stimulating thoughts he shared with us, his constant supervision,
and his kind and inspiring overall support. We hope that he still recognizes sorne
of his ideas when reading the following pages. Next, we wish to thank Stefan
Jahnichen for his guidance and support. His interest in turning theoretical results
into practical applications and his insistence on testing Deva on non-trivial case
studies greatly influenced our work. Our thanks also go to the other members of
the TOOLUSE project, who patiently experimented with the language and who
bore with us, in the early stages, du ring the frequent changes to the language
definition. Their comments and suggestions greatly contributed to the design of
Deva. We acknowledge in particular the contribution of Philippe de Groote, who
invented and investigated a kernel calculus of Deva. Jacques Cazin and Pierre
Michel closely followed the design of Deva and gave helpful comments and advice.
Pierre-Yves Schobbens shared with us his knowledge of VDM. We also thank
the UCL at Louvain, the Belgian project Leibniz (contract SPPS/RFO/IA/15)
and the GMD at Karlsruhe for their financial support beyond the duration of
the TOOLUSE project. The staff of both the DCL and the GMD were also very
supportive and took great interest in our work. We wish to express our gratitude
to al! of these people for their encouragement and friendship. It was this that
made the whole project an enjoyable and worthwhi!e experience.

We had an equal!y stimulating working environment in Berlin. The BKA

group, in particular, provided inspiring insights. Martin Beyer and Thomas San
ten read drafts of the book and made valuable comments. Two implementation
efforts which are underway in Berlin have had a significant impact on the book.
First of aIl, there is Devil (Deva's interactive laboratory), an interactive envi
ronment for developing Deva formalizations, which is being designed and im
plemented by Matthias Anlauff (aka Maffy). We used Devi! to check (almost)
all Deva texts contained in this book. Our very special thanks to Maffy for his
tremendous implementation effort. He worked night and day incorporating new
features to extend the power and usability of the system, and removed the few
bugs we discovered. Secondly, there is the DVlŒB system, a WEB for Deva, which
is being implemented by Maya Biersack and Robert Raschke, and which we used
ta write the whole book. On the one hand, DVWEB enabled us ta work on a single
document for both Devi! and 'TEX, and on the other hand, its macro features
greatly improved the presentation of Deva formalization. Our thanks also go ta
Maya and Robert for this valuable too!. Furthermore, we wish ta express our
gratitude to Phil Bacon for polishing up the final text.

Finally, we wish ta express our gratitude ta the many known and unknown
referees for their helpful criticism and advice.Professor Goos, in particular,
helped us ta state our objectives more clearly by providing a number of critical
comments on the initial draft of the book.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

1 Introduction

2 Informai Introduction to Deva .
2.1 An Algebraic Derivation

2.1.1 The Problem
2.1.2 The Structure of the Formalization
2.1.3 Preliminaries
2.1.4 Parametric Equality
2.1.5 Natural Numbers
2.1.6 Praof of the Binomial Formula

2.2 Elements of Proof Design .
2.2.1 Transitive Calculations
2.2.2 Lemmas and Tactics .
2.2.3 Local Scope
2.2.4 Composition of Inference Rules
2.2.5 Backward Direction ..

2.3 Further Constructs

3 Stepwise Definition of Deva
3.1 Two Examples
3.2 The Explicit Part: Kernel .

3.2.1 Formation
3.2.2 Intended Meaning of the Constructs
3.2.3 Environments
3.2.4 Closed Texts and Closed Contexts
3.2.5 Reduction of Texts and Contexts
3.2.6 Conversion
3.2.7 Type Assignment of Texts
3.2.8 Auxiliary Predicates for Validity
3.2.9 Validity

3.3 The Explicit Part: Extensions.
3.3.1 Product
3.3.2 Sum
3.3.3 Cut
3.3.4 Context Operations.

3.4 The Explicit Part: Illustrations
3.5 The Implicit Part

3.5.1 Formation
3.5.2 Intended Meaning of the Constructs
3.5.3 Environments
3.5.4 Homomorphic Extensions
3.5.5 Closed Expressions
3.5.6 Extension of Reduction and Explicit Validity
3.5.7 Auxiliary Semantic Predicates for Implicit Validity

1

13
13
13
14
16
17
23
28
31
33
33
36
38
41
42

45
45
45
47
47
48
49
50
52
54
56
57
58
58
60
62
64
67
72
72
73
74
75
77
77
77

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

3.5.8 Explicitation ..
3.5.9 Explanation of Expressions

3.5.10 Implicit Validity
3.6 The Implicit Part: Illustrations .
3.7 Mathematical Properties of Deva .

3.7.1 Confluence
3.7.2 Closure Results
3.7.3 Strong Normalization
3.7.4 Decidability of Case-Free Validity
.3.7.5 Recursive Characterization of Valid Normal Forms
3.7.6 Adequacy of Formalizations

3.8 Discussion

4 Formalization of Basic Theories
4.1 Overview
4.2 Logical Basis

4.2.1 Classical Many-Sorted Logic .
4.2.2 Parametric Equality of Terms
4.2.3 Parametric Equality of Functions

4.3 Basic Theories of VDM
4.3.1 Natural Numbers
4.3.2 Finite Sets
4.3.3 Sequences .
4.3.4 Tuples . . .
4.3.5 Finite Maps
4.3.6 Simple Tactics .

4.4 Basic Theories for Algorithm Ca1culation
4.4.1 Extensional Equality of Terms or Functions
4.4.2 Terms Involving Functions
4.4.3 Some Bits of Algebra
4.4.4 lnduced Partial Ordering.

5 Case Study on VDM-Style Developments
5.1 Overview
5.2 The Vienna Development Method
5.3 Formalization of VDM-Reification in Deva

5.3.1 Operations.
5.3.2 Versions
5.3.3 Reification

5.4 The Human Leukocyte Antigen Case Study
5.4.1 Presentation
5.4.2 Development in VDM

5.5 Formalization of the HLA Development in Deva
5.5.1 HLA Primitives
5.5.2 HLA Abstract Specification
5.5.3 HLA Concrete Specification

80
82
83
84
86
86
87
88
89
90
90
91

95
95
97
97

102
104
105
106
107
110
113
115
117
118
119
121
122
125

129
129
130
130
131
132
134
137
137
138
142
143
143
147

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5.5.4 Specification of the Retrieve Function
5.5.5 Proof of a Property of the Retrieve Function .
5.5.6 HLA Developrnent Construction
5.5.7 Proof of an Operation Reification
5.5.8 Proof of another Property of the Retrieve Function

5.6 Proof of Transitivity of Reification in Deva ..
5.6.1 Frequently Used Contexts
5.6.2 Sirnultaneous Induction on Version Triples
5.6.3 Global Proof Scherne
5.6.4 Verification of the Retrieve Condition. .
5.6.5 Transitivity of Operator Reification ...
5.6.6 Transitivity of the Reification Condition
5.6.7 Proof Assernbly

5.7 Discussion

6 Case Study on Algorithm Calculation
6.1 Overview
6.2 Join Lists
6.3 Non-ernpty Join Lists .. .
6.4 Sorne Theory of Join Lists .
6.5 Sorne Theory of Non-Ernpty Join Lists .
6.6 Segment Problerns
6.7 Tree Evaluation Problerns .
6.8 Discussion

7 Conclusion

A Machine-level Definition of the Deva Kernel .

B Index of Deva Constructs

C Crossreferences
C.1 Table of Deva Sections Defined in the Tutorial
C.2 Index of Variables Defined in the Tutorial ...
C.3 Table of Deva Sections Defined in the Case Studies .
C.4 Index of Variables Defined in the Case Studies

D References

XI

149
151
154
159
163
168
168
170
172
173
174
176
179
179

181
181
182
185
187
191
192
199
210

213

221

225

227
227
227
228
233

242

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

1 Introduction

The present book presents Deva, a language designed to express formaI develop
ment of software. This language is generic in the sense that it does not dictate a
fixed style of development, but instead provides mechanisms for its instantiation
by various development methods. By describing in detail two extensive and quite
different case studies, we document the applicability of Deva to a wide range of
problems.

Over the past few years, the interest in formaI methods has steadily grown.
Various conferences, workshops, and sernin ars on this topic have been organized
and even the traditional software engineering conferences have established their
own formaI method sessions. A journal devoted entirely to this subject, entitled
"Formal Aspects of Computing" , has also been started. The association "FormaI
Methods Europe" was founded in 1991, as a successor to "VDM Europe" to
promote the use offormal methods in general by coordinating research activities,
organizing conferences, etc. FormaI methods can thus no longer be viewed as the
exclusive reserve of theoreticians.

However, despite the fact that current research is concerned with the whole
range of activities involved in the software development process, the industrial
application of formaI methods is mostly limited to specification. Languages such
as VDM or Z are enjoying growing acceptance in industry, as is evidenced,
for example, by a number of articles in the September 1990 issue of "IEEE
Transactions on Software Engineering", two special issues of "The Computer
Journal" (October and December '1992) on formai methods , or by ongoing
efforts to standardize both languages. This success is due to the fact that a
formaI specification allows formaI reasoning about. the specified system; in other
words, it enables the question as to whether sorne desired property is true for the
system to be answered by a mathematical proof. This greatly reduces the risk of
errors that would be detected at a much later stage in the development process
or not at ail, thus justifying the allocation of more time and resources to the
specification phase. On the other hand, truly formai methods are rarely used
beyond the specification phase, i.e., during actual development. Even in pure
research environments, completely formai developments remain the exception.

But what exactly is a formai method? According to Webster's Collegiate
Dictionary, a method is "a procedure or pro cess for attaining an object", this
object being, in our case, a piece of software. A method is called formai if it has
a sound mathematical basis. This means essentially that it is based on a formai
system: a formaI language, with precise syntax and semantics, sorne theories
about the underlying structures (theories of data types, theories of refinement,
etc.), and a logical calculus which allows reasoning about the objects of the
language.

The main activity performed during the specification phase is the modeling
of the problem in terms of the language. During the development phase, it is the
refinement of the specification down to efficient code using techniques such as
data refinement, operation decomposition, or transformations. This process is,
again, expressed in terms of the language, and the proof obligations associated

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2 1. Introduction

with each relinement step are carried out within the logical calculus making use
of the method's theories.

The major reason why formaI developments are so rare is that far more proofs
are required during development than during the specification phase. In fact, the
nature of the proofs called for during the specification phase is quite different
from that of the development phase. During specification one usually proves
properties that are desired to hold true for the specified mode!. This is done in
order to convince oneself or the customer of the adequacy of the specification.
During design, however, one is obliged to discharge ail the proof obligations
associated with a refinement or transformation step, so that, in the end, one can
be sure that the product of the design is correct with respect to the specification.
These proof obligations are, in most cases, not profound, but fairly technical.
It frequently happens that a proof obligation which is obvious to the developer
requires a tricky and lengthy proof. Generally speaking, the amount of work
involved in discharging a particular proof obligation is quite disproportionate to
the quality of the new insights gained into the product.

The burdensome requirement of proving every little detail of a proof obliga
tion is therefore relaxed by most methods to the point where the proof obligations
are stated in full without the need to prove all of them. We call methods which
adhere to this paradigm rigorous. Although, with a rigorous development, it is
once again up to the designer to decide whether he is satisfled that the result
meets the specification, it is, in principle, still possible to prove the develop
ment correct. (One might object that this is similar to the situation faced when
verifying a piece of code, but the crucial difference is that, during the develop
ment process, al! the vital design decisions have been recorded together with the
proven and unproven proof obligations.)

Here, it may be asked why it is not possible to give reasons for the cor
rectness of a development in the same way a mathematician gives reasons for
the correctness of a proof in the lirst place. In fact, there is no proof given
in any mathematical text we know of which is forma! in the litera! sense. In
stead, proofs are presented in an informai, descriptive style, conveying ail the
information (the exact amount depends on how much background knowledge is
expected of the reader) necessary to construct a formal proof. However, there
are a vast number of proofs to be carried out during development, and the tra
ditional mathematical procedure of judging proofs to be correct by su bmitting
them to the mathematical community for scrutiny is inadequate in this situa
tion. It must also be remembered that, here, for the first time, aIl engineering
discipiine is faced vlÎth the task of producing, understanding, and managing a
vast number of proofs - a task whose intellectual difficulty is not to be under
estimated. Machine support is therefore needed and this calls for formality. In
this sense, we call a proof formai if its correctness can be checked by a machine.

However, despite the fact that full formality is needed to enable a machine
ultimately to check a proof, this cannot mean that one i8 forced to give every litt!e
detail of a proof. This would definitely prevent formal developments from ever
gaining widespread acceptance. The aim should be to come as close as possible

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

to the informaI way of reasoning (from the point of view of the designer), while
at the same time remaining completely formaI (from the point of view of the
machine).

In this book, we present a generic development language called Deva which
was designed to express formaI developments. Syntax and static semantics can be
checked by a machine, their correctness guaranteeing the correctness of the de
velopment. In order to ensure independence from a specific development method
ology, a major concern during design of the language was to isolate those mech
anisms essential for expressing developments. Accordingly, the language allows
us to construct from these basic mechanisms new mechanisms specifie to a par
ticular method. In this sense, Deva may be said to be a generic development
language, since the formaI language underlying a specific formaI method can be
expressed in terms of Deva.

Ideal requirements for generic development languages

The above discussion yields in several ideal requirements for generic development
languages which we now go on to summarize. We will subsequently show how
and by what means Deva satisfies these requirements.

First of aIl, a development language must provide a medium for talking about
specifications, developments (Le., refinements, transformations, and proofs), and
programs. A generic development language must, in addition, provide means for
expressing mechanisms for the developments themselves.

Good notation is a frequently neglected aspect of languages, and yet it is
one of the most important as regards usability and acceptanee [6]. Good nota
tion should be as concise as possible, but, at the same time, suggestive enough
to convey its intended meaning. In the context of development languages, this
means that the notation should support various different ways of reasoning and
development styles, the notational overhead introduced by formality being kept
as low as possible. The developments expressed in this formai notation should
compare favorably in style and size with those demanded by rigorous methods.
A generic development language must, in addition, provide means for defining a
new notation in a flexible and unrestrictive manner.

The language must provide means for structuring formalizations. The lesson
learned from prograrnming languages is that structural mechanisms are indis
pensable for formalization, even on a small scale. In the context of generic de
velopment languages, this is even more important because of the wide range of
different levels of dis course. Henee, such a language must provide mechanisms
for structuring in-the-Iarge and in the small. For structuring in the large, this
means that the language must have some sort of modularity discipline, which
includes definition of modules, parameterizations and instantiation of modules,
and inheritance among modules. Experiments have shown that, for formaI devel
opments, the following mechanisms are useful for structuring in the small: seriai
and collateral composition of deductions, declaration ofaxioms, abbreviation of
deductions, parameterization and instantiation of deductions.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4 1. Introduction

Since proving is one of the most important activities in formaI development,
it must be possible to expressproofs in the language. The correctness of such
praofs must be checkable with respect to an underlying deduction system. Since
a formal method usually cornes with its own deduction system and underlying
logic, a generic development language must be flexible enough to handle a variety
of logics and deduction systems.

As we have argued above, the amount of detail required to enable a machine
to check the correctness of a proof has a considerable influence on the usability
of the forma! appraach to software development. Ideally, we envisage a situation
where the designer gives a sketch of a praof, just as a mathematician would, and
lets the machine fill in the details. But, this is not yet state-of-the-art, and 80 we
must be a little more modest in our demands. The language should, however, go
as far as possible in allowing incomplete proofs and should also incorporate sorne
basic mechanisms for defining so-called tactics - w hich can be understood as
means for expressing proof sketches. Functionallanguages such as ML have been
used with considerable success to program recurring patterns of proof into tactics
and to design systems supporting semi-automatic proofs based on tactics. It is
certainly a desirable goal to completely automate the task of proof construction.
So far however, this approach has been successful only in very limited areas,
and, all too often, has resulted in systems that obscure rather than clarify the
structure of proofs.

Of course, the language should be sound in the sense that any errors contained
in a formalization must be due to the formalization itself and not to the language.
For example, a correct proof of a faulty proposition must ultimately result from
the (correct) use of a faulty axiom in one of the underlying calculi rather than
from an internai inconsistency in the language.

Finally, the language should be supported by various tools. The most impor
tant tool is certainly a checker, which checks the correctness of a formalization
expressed in the language. Around such a checker, a basic set of support tools
should be available. Vsers should be able to experiment with their formalizations
in an interactive environment; the user should be able to draw on a predefined
set of standard theories containing formalizations of various logics, data types,
etc; likewise, they should be able to store their formalizations for later reuse;
and they should be assisted in preparing written documents containing formal
izations.

Note that al! the above requirements for a generic development language are
intended to guarantee that one can express, or better formalize, the formai sys
tem underlying a formai method. We do not intend to deal with other aspects
of a method such as recommendations, guidelines, and heuristics. Thus, when
we speak, in the sequel, of formalizing a method, we invariably mean the for
malization of the underlying formai system. This im plies that formalization of a
formai method in terms of a generic development language gives no indication
as to how to invent a development; this is left to the pragmatics of the method
and to the intelligence of the designer.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

The Deva Approach

We now wish to describe the con crete approach adopted when developing Deva
with a view to meeting the ab ove requirements.

The most important design decision was the choice of a higher-order typed
À-calculus as a basis for the language. This decision was motivated by several con
siderations. Typed À-calculi have served as the basic formalism for research into
the formalization of mathematics. The languages which grew out of this research
include, for example, the AUTO MATH family of languages [27J, [2SJ, [29J, [SOJ, the
Calculus of Constructions [24], the Edinburgh Logical Framework [50], and the
NuPRL system [22J [70J. These so-called Logical Frameworks were mainly used
for formalization of mathematics, functional programming, and program syn
thesis from praof (cf. [54J and [53]). One of the main results of this research
was that these logical frameworks proved to be an effective approach to the
task of formalization in general, and one which is also amenable to implementa
tion on a machine. The underlying principle here is the so-called Curry-Howard
paradigm of 'propositions-as-types' and 'proofs-as-objects'. We do not wish to
go into greater detail at this point, but the basic idea is that there is a one-to-one
correspondence between the propositions of (constructive) logic and the types
of a typed À-calculus, and between the (constructive) proofs of propositions and
the objects of a type. Given this correspondence, proving amounts to functional
programming, and proof-checking to type-checking, which is what makes the ap
proach so attractive for implementation on a machine. In the next chapter, we
explain this paradigm in more detail and present a number of intuitive examples.

Starting from this design decision, we proceed as follows: we wish to view
specifications, programs, and deductions as formal objects which can be formally
manipulated and reasoned about, and for which we can formulate correctness
properties. For specifications and programs, this is nothing new - they are
considered to be formai objects of study in other contexts as weil. However, in
the case of deduction, it is a somewhat new perspective: deductions are viewed as
formal objects relating specifications to programs. This is the key concept in our
approach to the formalization of formai methods. When formalizing a method,
we do so by stating axiomatically, among other things, which deductions are
allowed by the method. Such an axiom describes how a specification is related
to a program by a particular deduction.

In the context of a typed À-calculus, we realize this aim by representing
specifications, programs, and deductions as À-terms. They can be manipulated
and reasoned about with the usual machinery that cornes with such a calculus.
Correctness and consistency issues are handled by the typing discipline of the
calculus.

A particularly well-suited logical framework was selected as the starting point
for the design of the Deva language: Nederpelt's A, one of the latest members of
the AUTOMATH family [SOJ; see [33J for a recent presentation of A in the spirit of
Barendregt's Pure Type Systems [10J. This calculus was chosen, after a number
of others had been evaluated, because it is comparatively simple and economical,
and because it supports sorne of the major concepts of structuring in the small,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6 1. Introduction

namely parameterization and instantiaüon of deductions. Although A has not
been experimented with in the AUTOMATH project, it do es constitute a major
scientific contribution of that project. However, A remains very mueh like an or
dinary À-calculus: it is based primarily on binding and substitution, and it fails to
provide composition, product, and modules, such as are needed in our approach
to program development. The definition of Deva grafts these concepts on to A.
A second major extension to A concerns the distinction, in Deva, between an ex
plicit and an implicit level. The explicit level includes ail the extensions to A we
have just mentioned. The implicit Ievel adds constructs which are instrumental
in meeting another important requirement: that of allowing incomplete sketches
of deductions, proofs, etc. Parallel to these extensions to A, the normalization
proofs established for A were adapted. These language-theoretical properties are
important for demonstrating the soundness of the language, i.e., that Deva itself
does not introduce errors into a formalization. To summarize: Deva is to A what
a functional language is to the pure À-calculus.

Tool Support

Right from the beginning of the design process, prototypical implementations
of type checkers and other support tools for Deva were built and experimented
with. These prototypes were not, however, intended for use in full-scale Deva
developments, but were rather developed for experimentals purposes. Henee,
they supported only selected features of the language's functionality as presented
in this book. The two case studies examined here provide ample evidence that
medium-scale formaI developments are feasible, provided that the user is assisted
by the machine via a set of tools.

The design and implernentation of such a tools for the full Deva version is
the subjeet of a current Ph.D. thesis [3]. Initial (beta-) versions of this tool
set ~ called "Deva's Interactive Laboratory" or "Devi!" ~ have been available
since late 1992, and they are currently being used for a number of ongoing case
studies (e.g. [12], [89], see below). Since the tools are being continously further
developed, we give only a brief summary. The structure of the tool-set is shown
in Fig.l. This diagram illustrates the current state of the support environment.
Direct user experiences will shape its future development. A syntax-check, a
consistency-check and an explanation (cf. Chap. 3) constitute the central com
ponents of the system. Once a formalization has been checked, it can be stored
in an efficient ("compiled") form for later retrieval. The interactive design of
and experimentation with Deva formalizations is made possible through an in
teractive user interface for which both a plain TTY and an X-Windows-based
realization exist. Through a database, the user may access previously defined or
compiled forrnalizations.

The design of formal specifications, formaI developments or any other for
malizations should go hand in hand with the design of their documentation. In
fact, good documentation of formai specifications or developments is even more
important than documenting or "commenting" programs, because, like any other

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Syntax-Check
Consistency-Check

Expia nation
Database Support .. Deva-document·-

Interactive 1 nterface

Devil

Fig. 1. Structure of the support environment

WEB-document
1

t
Tra nslation

DVWEB

1

t
T EX-docu ment

7

specification or development, formai specifications and developments are primar
ily intended as a means of communicating with other people. Knuth gives the
following motivation for litemte progmmming in [63]: "Instead of imagining that
our main task is to instruct a computer what to do, let us concentrate rather on
explaining to hum an beings what we want a computer to do." A similar state
ment might be applied to formai specifications or formai developments: Instead
of imagining that our main task is to explain to a computer why a specification
or development is correct, let us concentrate rather on explaining to human be
ings why they are correct. To realize his idea of literate programming, Knuth
designed the WEB system of structured documentation. Originally intended for
Pascal programs only, various WEB's are being developed for other languages and
formalisms (cf. Knuth's recent book on literate programming [64]). Such a WEB
tool is also being developed for Deva. The user writes a single WEB document
which combines the documentation and the formai Deva code. The presentation
of the formalization can be given in a natural, web-like, manner, unhindered by
the syntactic restrictions of the formai language (an example being this book!).
The Deva code portions are pasted together in a preprocessing step to pro duce
a formai Deva document which can then be checked by the Devil system. A sec
ond preprocessing step produces a TEX-document which maintains the web-like
structure of the presentation and in which the Deva code portions are typeset
in an esthetical manner. Furthermore, an index of variables is produced. Details
of DVWEB are given in [13].

Since ail of these tools were not available at the time we started writing the
book, ail the formalizations contained in this book were just typed in. The only
"tool" around was a set of Iffi.TEX-macros which made this task a litt le less painful.
But with these tools available, we decided to rewrite ail the chapters containing
Deva formalizations, 80 that Chapsc 2, 4, 5, and 6 are now self-contained WEB
documents which have been checked by the system. It is worth noting that the
Devil system revealed numerous errars in the original document. While most of

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8 1. Introduction

these errors were easy to correct, sorne pointed to serious flaws in the reasoning
and required significant repair efforts.

lntended Readership

The above introduction and overview of the language should have made it clear
- and we will try to demonstrate this in the course of the book - that generic
development languages in general, and Deva in particular, offer a useful frame
work for tackling formaI developments. Four different application areas for Deva
come to mind. Deva can be used to formalize a method in order to

- impart a precise understanding of the method,
- spot shortcomings in the method or its documentation,
- experiment with libraries of basic theories for software developments based

on the method, or
- obtain a prototypical support environment for the method so that formaI

developments may be constructed, documented, and checked for correctness
with respect to the formalization.

The book can be read by anyone with a basic background in formaI approaches
to software development, as, for example, is given in [60J.

Synopsis

The book is divided into two parts. The first part describes the Deva language;
in the second documents two case studies. Part one comprises

- Chapter 2 which gives an introduction to Deva, presenting intuitive examples
of theories and proofs chosen from elementary mathematics and logic. The
goal is to convey an intuitive understanding of the use and properties of the
language.

- Chapter 3 which presents and explains the formaI definition of Deva and
briefly summarizes sorne theoretical results and still open questions. The
goal is to convey a thorough technical understanding of the notation and its
design. The material contained in this chapter is based on [104J and [105J.
On a first reading, this chapter may be skipped.

Part two comprises

- Chapter 4 which presents a selection of basic logical and mathematical the
ories, formalized in Deva. The goal is to demonstrate the principal formal
ization power of Deva on a number of well-known examples.
Chapter 5 which presents a case study on the formalization of VDM-style
developments in Deva. In particular, VDM data reification is formalized.
Then, a data reification step from a VDM development in the context of a
biological case study is formalized in detai!. The material presented in this
chapter is based on [67] and [103J. Finally, the formalized data reification is
formally proven to be transitive.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

Chapter 6 which presents a case study on the formalization of algorithm
calculation. It consists of a formalization of representative parts of Squiggol,
also known as the "Bird-Meertens formalism", an algorithmic calculus for
developing programs from specifications. A selection of the structures and
laws of Squiggol and two complete program developments are described in
Deva. The material presented in this chapter is based on [102J.

The two case studies can be read independently of each other. It is no accident
that they deal with quite different areas; in fact, they have been selected to
illustrate the genericity of Deva and to address a wider readership.

Historical Background

The design of an early precursor of Deva was set out by Michel Sintzoff in a
series of papers ([91], [92], and [93]) in the early '80s. Deva itself, as presented
in this book, was developed mainly between 1987 and 1989 in the context of
the ESPRIT project TOOLUSE ([57], [20], [95]). The objective of the TooLUsE
project was to study a broad spectrum of development methods (e.g. Jackson
System Design, VDM, or Burstall-Darlington's foldjunfold method for program
transformation) and to design a method-driven support environment. Deva was
intended to serve as a notational framework to help promote an understanding
of such methods. The language was developed by the collaborative effort of three
different project subgroups: a group headed by Michel Sintzoff at the Université
Catholique de Louvain (UCL), a group headed by René Jacquart at the French
Research Center for Technology (CERT) in Toulouse, and a group headed by
Stefan Jiihnichen at the German National Research Center for Computer Science
(GMD) in Karlsruhe. A kernel calculus of Deva was proposed by Philippe de
Groote, who also developed its language theory [30J, [31 J, [33J, [32J. In the course
of the project, several prototype support tools for the evolving versions of Deva
have been developed [41J. This book presents the complete language as set out
by one of the authors in [104J.

Related Approaches

Before turning our attention to currently evolving approaches, we would like to
mention a pioneering experiment in the formalization of mathematics conducted
in the context of the AUTO MATH project mentioned above. It consisted of the
translation of Landau's "Grundlagen der Analysis" into one of the AUTO MATH
languages, a translation that was completely checked by machine [99J.

Machine support for formaI development can be roughly divided into specific
support, i.e., support for a single and fixed logic or programming method, and
generic support, i.e., support for a range of logics or methods. While the focus of
this discussion will be on generic systems, we wish to mention first of ail several
currently evolving systems that demonstrate the usability of two key techniques
for making formal program developments more accessible to hamans: The first
technique is to program recurring patterns of proof into tactics [44J; the second

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

10 1. Introduction

is to express domain knowledge in abstraet development schemes. The Karlsruhe
Interactive Verifier KIV [51J uses tacties to implement high-Ievel strategies for
the development of verified imperative programs. Similarly, in the Larch Prover
LP [42], a variety of tactical mechanisms are used to provide interactive proof
support. LP has been experimented with in a variety of case studies, including
the debugging of module interface specifications [48J. The Kestrel Interactive
Development System KIDS [96] uses a hierarchy of algorithm design schemes such
as divide-and-conquer and dynamic programming for schema-driven interactive
development.

Of the generic systems, some are primarily oriented towards formalization
of logics, and others towards program developments, which means a further
sub-division. In fact, a number of generic systems of both kinds are under devel
opment, some having been just recently announced, so that it becomes rather
difficult to discuss all of them in detai!. Instead, we wish to draw attention to
three specific generic approaches. AIl three approaches are characterized by an
early focus on building or improving an interactive support environment for -
a significant portion of - formaI proofs. The design of Deva, which was be
gun at a later date, is characterized rather by the successive approximation of
a notation which could express some representative styles of fOrmal program
development reasonably well. Experiments and comparisons were conducted in
paper-and-pencil fOrill, using quickly constructed Deva prototypes, or with ex
isting systems from related approaches. This may help to explain some of the
differing design choices.

The B-Tool is a rule-based inference engine with rule-rewriting and pattern
matching facilities [lJ. Initially, the B-Tool concentrated rather on automatic
proving; explicit proof mechanisms and tactics were added later. The B-Tool
is generic in the sense that it has no pre-defined encoding of any specifie logic.
It can be configured to support a variety of different logics by specifying them
as so-called "theories". To describe these logics, the B-Tooi offers a number
of built"in proof mechanisms, such as reasoning-under-hypotheses, scoping-for
variables, a notion of quantifiers, metavariables, substitution, equality, etc. Proof
strategies may be described in the B-Tool by tactics. Both forward reasoning
and backward reasoning are supported. The B-Tool has been used and tested
iu a number of formai program developments, each of them typically requiring
sever al hundred mathematical theorems to be proved.

The Isabelle system is an interactive theorem-prover based on intuitionistic
higher-order logic [83]. It allows support of the proof construction in a variety of
logics. Its main orientation is towards the machine support of proof synthesis. To
this end, it offers powerful proof tactics and a concept of backwards proof con
struction. Unlike Deva, Isabelle is not based on propositions-as-types, but uses
Lilstead predicates to formalize the propositions and theorems of various logics.
This ent<ùls a number of - relatively sman - technical complications in the
formalization of logics. Isabelle benefits from the firm foundations of intuition
istic higher-order logic, which allow adequacy Of formalizations to be proven,
and the reuse of well-known techniques such as higher-order unification. A re-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

11

cent article describes the experimentation with Isabelle to prove theorem about
functions in Zermelo-Fraenkel set theory [81]. The overall orientation towards
genericity and sound foundations makes Isabelle similar to Deva. However, the
two approaches do quite differ in practice, perhaps because Deva is oriented
more towards theories and program development, while Isabelle is oriented more
towards interactive proof synthesis. In addition to Isabelle, several similar sys
tems based on higher-order logic are being developed, sorne of them oriented
towards hardware design [4]. The most widely used one among these is probably
the HOL system [45] [46]. A translation of dependent type theory into HOL is
proposed in [56].

The mural system is a formaI development support system consisting of a
generic reasoning environment and a support facility for VDM [61J. The rea
soning component is based on a logic with dependent types. mural can be in
stantiated by a variety of logics. Logical theories are organized in a hierarchical
store, containing declarations, axioms, derived rules, and proofs. The main em
phasis in the design of mural has been on the interface for interactive proof
construction and theory organization. Proofs are constructed interactively in
a natural deduction style. The VDM support component provides support for
the construction of VDM specifications and refinements. It also generates proof
obligations stating the correctness of refinements. The proofs themselves must
then be constructed inside the reasoning environment. In [39], the application of
mural is demonstrated in the the specification and verification of a small VDM
development. The mural system could easily be extended by support facilities
for methodologies other than VDM. The Deva approach shares with mural the
orientation towards genericity and method support. Compared with the B-Tool,
Deva was geared to a more powerful use of logical genericity. For example, the
formalization of VDM presented in this book can be viewed as a formai speci
fication of selected parts of VDM. This VDM specification is then used in the
book not only to reason inside VDM but also to reason about VDM, by proving
the transitivity of VDM data reification.

Furthermore, there are a number of relatively new generic systems imple
menting generalized typed À-calculi; these include LEGO [74], Coq [36], and
ALF [75J. An application of the LEGO system to formalize various logics and
proofs is described in [5]. LEGO has also been used to formalize program speci
fication and data refinement in the extended calculus of constructions [73]. For
an application of the ALF system, we refer to [23J. AIso, we would like to men
tion the logic programming language Elf [85], based on the Edinburgh Logical
Framework [50]; Elf can be used to encode a dependent-type À-calculus [38] or
to directly formalize theories and proofs [86J.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

