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Preface 

Crypto'92 took place on August 16-20, 1992. It was the twelfth in the series of annual 
cryptology conferences held on the beautiful campus of the University of Califomia, Santa 
Barbara. Once again, it was sponsored by the International Association for Cryptologie 
Research, in cooperation with the IEEE Computer Society Technical Committee on 
Security and Privacy. The conference ran smoothly, due to the diligent efforts of the gen
eral chair, Spyros Magliveras of the University of Nebraska. 

One of the measures of the success of this series of conferences is represented by the ever 
increasing number of papers submitted. This year, there were 135 submissions to the con
ference, which represents a new record. Following the practice of recent program commit
tees, the papers received anonymous review. The program committee accepted 38 papers 
for presentation. In addition, there were two invited presentations, one by Miles Smid on 
the Digital Signature Standard, and one by Mike Fellows on presenting the concepts of 
cryptology to elementary-age students. These proceedings contains these 40 papers plus 3 
papers that were presented at the Rump Session. 1 would like to thank all of the authors of 
the submitted papers and aIl of the speakers who presented papers. 

1 would like to express my sincere appreciation to the work of the program committee: Ivan 
Damgard (Aarhus University, Denmark), Oded Goldreich (Technion, Israel), Burt Kaliski 
(RSA Data Security, USA), Joe Kilian (NEC, USA), Neal Koblitz (University of 
Washington, USA), Ueli Maurer (Ern, Switzerland), Chris Mitchell (Royal Holloway, 
UK), Kazuo Ohta (NTT, Japan), Steven Rudich (Carnegie Mellon, USA), and Yacov 
Yacobi (Bellcore, USA). 1 would also Iike to thank Joan Boyar for agreeing to chair one of 
the sessions. 

Ernest Brickell 
Albuquerque, NM 

August, 1993 
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Provably Unforgeable Signatures 
Jurjen N.E. Bos· 
David Chaumt 

Abstract. Very slIong definitions of security for signatuIe schemes have been pro
posed in the literatuIe. Constructions for such schemes have been proposed, but so far 
they have only been of theoretical int=t and have been consideIed far too inefficient 
for practical use. 
Here we pIeSent a new scbeme that salisfies these strongest definitions and uses essen
tially the same amount of computation and memory as the widely applied RSA 
scbeme. 1he scbeme is based on the weil known RSA assumption. 
Our signatures can he thought of as products resulting from a two-dimensional 
LampoIt scbeme, wheIe one dimension consists of a list of public constants, and the 
other is the sequence of odd primes. 

Introduction 

One of the greatest achievements of modern cryptography is the digital signature. A 
digital signature on a message is a special encryption of the message that can easily be 

verified by third parties. Signatures cannot be denied by the signer nor falsified by 
other parties. 

This article introduces a new signature scheme that combines the strength of the 
strongest schemes with the efficiency of RSA. 

Signing a message of 245 bits in our scheme is possible in roughly 910 multiplica
tions, and verifying it costs about 152 multiplications. In comparison, RSA, using the 
ISO/IEC standard 9796 redundancy scheme, takes roughly 768 multiplications (or 610 
using addition chains) for signing, and 3 (or optionally 17) for verification. RSA sig
natures are 512 bits long, while ours requires an additional message counter. Thus, 16 
extra bits give a scheme that allows 65,536 signatures per public key, 

A variation involving pre-computation, signs short messages (64 bits) in 33 multi
plications (not counting precomputation) and verifies in 35 multiplications. 

ACter the introduction, we discuss other signature schemes relevant to this work. 
We discuss the Lamport signature scheme, on which this signature scheme is based, in 
detail. Then, the new scheme is explained, and the possible choices for parameter val
ues are shown. 

$: This article is adapted !rom the dissertation "Practical Privacy" of JUJjen N.E. Bos. WIÎtlen while he was al CWI (the 
Dutch nationally funded centre for Ma1hematics and Computer Science). He is currently affùiated with Irdeto Ca pay TV 
company) in Hoofddorp, Netherland •• 

t David Chaum is affiliated bolh with CWI and DigiCash (innovlllOl'1 in clectronic money systems). 
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Signature scheme 
An overview of signature schemes, comparing securities, can he found in the paper 
mentioned earlier [GMR881. We use their notation. They define a signature scheme 
as consisting of the foliowing components: 

A securily parameler k, that defines the security of the system, and that may also 
influence performance figures such as the length of signatures, running times and 
50 on. 
A message space M, that defines on which messages the signature algorithm may 
be applied. 
A signature bound b, that defines the maximal number of signatures that can be 
generated without reinitialization. Typically, this value depends on k, but it can 
he infinite. 
A key generation algorithm G, that allows a user to generate a pair of 
corresponding public and secret keys for signing. The secret key S is used for 
generating a signature, while the public key P is used to verify the signatllfe. 
A signature algorithm cr, that produces a signature, given the secret key and the 
message to be signed. 
finally, a verification a/gari/hm, that produces true or false on input of a signature 
and a public key. It ouputs true if and only if the signature is valid for the particu
lar public key. 

Sorne of these algorithms may be randomized, which means that they may use 
random numbers. Of course, G must be randomized, because different users must 
produce different signatures. The signing algorithm 0' is sometimes randomized, but 
this tends to produce larger signatures. The verification algorithm is usually not ran
domized. 

A simple example of a signature scheme is a trapdoor one-way function f. The 
function fis used for verification by comparing the function value of the signature 
with the message to he signed, and cr is the trapdoor of f. The main problem with 
such a scheme is that random messagesf(x) can he signed by taking a random signa
ture value x. A simple solution is to let M be a sparse subset of a larger space, so that 
the probability thatf{x) is a vaUd message for random x is low. An example of a 
sparse subset is the set of "meaningful" messages. 

Related work 
The notion "digital signature" was introduced in [DH76l. This paper, which can he 
considered the foundation of modem cryptography, discusses the possibility of digital 
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3 

signatures and the use of a trapdoor one-way function to make them. 
[RSA78] is the original article on the RSA scheme. It introduces the famous RSA 

trapdoor one-way function. This function is still widely in use and is applied fre
quently. A well-known weakness of RSA is that it is multiplicative: the product of 
two signatures is the signature of the product This potential problem can be prevent
ed as above by choosing an appropriate sparse message space. 

Since then, an enormous number of signature schemes have been proposed 
[Rab77, MH78, Sha78, Rab79, Lie8l, DLM82, GMY83, Den84, GMR84, OSS84, 
EIG85, OS85, FS86, BM88, GMR88, CA89, EGL89, EGM89, Mer89, Sch89, 
SQV89, BCDP90, Cha90, CR90, Hay90, CHP9l], applied [Wil80, Cha82, Go186, 
Bet88], and broken [Yuv79, Sha82, Tu84, BD85, EAKMM85, Roo9l]. We will not 
discuss all these schemes here; we only discuss the ones that are interesting to com
pare with the new scheme. 

The schemes [Rab79, GMY83, GMR84, GMR88] are steps towards a provably 
secure signature scheme. The scheme described in the last article is secure in a very 
strong way: it is "existentially unforgeable under an adaptive chosen-message attack" 
with probability smaller than l/Q(k) for every polynomial Q. This means that ge
nerating a new signature is polynomially hard if signatures on old messages are 
known, even if the old signatures are on messages chosen by the attacker. 

The scheme in [GMR88] is based on factoring. While our scheme is based on the 
slightly stronger RSA assumption, it is much more efficient The signature scheme of 
[GMR88] uses a large amount of memory for the signer, and quite a lot of computa
tion. Our scheme uses no memory at all, except for a counter and the public values, 
and signing and verifying takes about as much computation as RSA does, depending 
on the parameters. 

The Lamport Scheme 

Our scheme can be thought of an optimization for both security and efficiency of 
[GMY83]. To explain the new system, we compare it to the earlier Lampon scheme 
(explained already in [DH76, page 650]). To make a signature in this scheme, the 
signer makes a secret list of 2k random numbers 

A = a,.,O,a,.,l'~O'~.l, ... ,ak,O,ak.l' 

applies a one-way Cunctionfto all elements, and publishes the result B: 

B = {f(al,o)./(~,o), ... ,f(ak,O) 

f(al,l)' f(~.l)'·· ., f(ak,l) 

The signature consists of the numbers a,.,,,,, ,~,"'2 , ... ,ak''''t from the list A (one 
from each "column"),where ml> m2'"'' mk are the bits of the message to be signed. 
The lists A and B cannat be used again. 
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The properties of Lamport' s scheme are easy te verify: 
Signing a message is only ùie publication of the proper elements of A. 
To forge a signature, one needs ta find certain values from the list A. How nard 
(his is, depends on the security of the one-way functiollf. 
If the values A are only used for one signature, new signatures cannat be made 
from old ones. 
Verification of a signature consists of applying the one-way function ta the signa
ture values, and comparing them ta the public values determined by the signed 
message. 
The new system uses the same idea, with three important differences. first, the Iist 

Bis replaced by another list that can be used for ail signatures. Second, the Iist A is 
consttucted from two lists sa that less memory is needed to define it. Third, the ele
ments of A in the signature can be combined into a single number. 

A smaU optimization 
There is a trivial optimization of Lampon's scheme mat reduces t.'le number of public 
function values ta almost half, that we could not find in the literature. This optimiza
tian is independent of the signature scheme as such. Basically, the signer signs by 
publishing a k-element subset of the 2.1: secret numbers. Lampon's scheme chooses 
a particular set of subsets of the set of 2k elements. as shown above. The necessary 
propeny of this set of subsets is that no subset includes another. 

There are other sets of subsets with the property that no subsets inc!udes another. 
A larges! set of subsets with this property is the set of an k-element subsets (a well
known resul! from lanice theory). For these sets, it is easy ta see that no subset in
cludes another. 

For exarnple, in Larnport's scheme, the list of 6 elements 

A = al.O,al,l,CIz,o.CIz.I'~,O.~,1 
allows us to sign messages of 3 bits. If we renumber A as a!,a2,a3,a4.aS.a6. 

we gel the set of 20 three-element subsets of A: 
{al,t!z,a3l. (aloClz,a4], [al.a2,aS), (al.CIz.a6), (al,a3,a4J. 

(al,t!3,asJ, (aj.a3.a6), (aj,a4,aS), (aj.a4,a6], (al,as.a6l. 

{az.a3,a4). (a2,a3.aS), (az,a3,a6), (az,a4,aS), (az,a4,a6), 

[az.as.ad. (a3.a4.aS), {a3,a4,à6J. (a3,a"a6), (a4,aS,a6); 

[.'lis allows us 1:0 sign one of 20 messages, which is equi valent 10 more than 4 bits. 
In general, ,here are 

(2k'\ 22k 

l k j or about Jfii' 

k-element subsets, sa !hat we can sign messages of about 2.1: - t logz (Iar.) bits. 
The original Lampon scheme allowed messages of only k bits, so tha. we get almast 
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5 

a doubling of the message size for the same size of the list B. This simple improve
ment can also be used in our new signature scheme. 

To encode a signature, a mapping needs ta be defined between messages and these 
subsets: 

s(message) = subset. 
The simplest mapping just enumerates messages (interpreted as numbers from 0 

onwards) to sets (seen as binary strings that denote 1 for presence and 0 for absence) 
in order. Such a mapping is easily and efficiently computed by the algorithm shown in 
figure 1. The binomial coefficients do not need to be computed by repeated multipli
cation and division. The first binomial coefficient is always the same, so it can he pre
computed, and the others can he computed by one multiplication and one division by 
small numbers using the properties: 

(t~I)=(!r~e and (!=i)=(!)+ 
The algorithm outputs ones and zeros corresponding to the elements in the result

ing set. 
Note that the Lamport scheme uses another mapping that maps numbers onto k

element subsets, but that only a small number of these sets are used. 

Let n, the message, be a number in the range 0 ... (2: )-1. 
Put 2k in t and k in e. 

While t > 0: 

Putt-lin t. 

If n ~ G} put n - (!) in n, e-l in e, and output al (this t is in the set). 

Else, output a 0 (this t is not in the set). 
Fig 1. Algorithm for the mapping s. 

The New Signature Scheme 

The new signature scheme replaces the list A of the Lamport scheme by a list of num
bers that can he organized in a matrix. Instead of using a new list 8 for every signa
ture, a fixed list called R is used for all signatures and ail participants. The one-way 
functionj is replaced by a set of trapdoor one-way functions, that changes per signa
ture. For the trapdoor one-way functions, we use the modular root function of 
[RSA78]. 

The construction allows us to sign long messages using only a few numhers ta 

define the set A. In the example of figure 2, the set A of 12 elements is constructed 
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6 

from three primes Pl> P2' P3 (used only for this signature) and fOUf public values 
ri' r 2' r 3' r 4 (that can he used again). This set aHows us ta sign messages of 9 
bits, since there are 924 > 29 possible 6-element subsets of A. Signing messages of 9 
bits in the original Lampon scheme takes 18 public values !hat can he used on!y once. 

PJ[r; PFz P:{i; Pji; 
'V'irvr;~~ 
"{[iï~~~ 

Fig. 2. Example lis! A of the new scheme. 

The numbers ai of A are secret encryptions of the numbers ri of R, and the 
corresponding decryption exponents are public. The multiplicative property of RSA 
allows us to multiply the values of the signature te form one numher. Verification of a 
signature can he done using a simple computation, without having to compute the sep
arate factors. 

The public values of the new system are: 
One modulus per signer; 
The system.wide list R. This list is used by all users, and lhat il does nOI change 
often. 50 that distribution does not require much traffie. The numbers in R are 
sm aller than the smallest modulus used by the signeTs. 
A list of sets of primes that may be used for signiog. For security reasons, the sets 
may not overlap each other, and the signers may ooly use these sets of primes. 

A signature consists of the original message signed, the signature proper (an inte· 
ger smaller than the modulus of the signer), and a description of the prime set. 

In the language of [GMR88]: 
The security parameter determines the size of the RSA modulus. This modulus 
can vary per user. 
The message space M is (equivalent to) the set of subsets of A !hat include half the 
elements. 
The size of the public list of sets of primes determines the signature bound b. 
Key generation is a matter of generating an RSA mOdulus, and computing 
exponents for the modular root extractions. 
Signing and verification are defined below. 
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Signing 
For the list A of a signature, the set of RSA encryptions 

A = {-\tr modnlp E P;r E R} 
is used, where: 

P a set of primes from the public Iist; 
R is the public Iist of verification values; 
n is the RSA modulus of the signer. 
As explained above, a signature is constructed from a subset determined by s (m) 

of half these numbers. The constant k used in the algorithm that maps s is equal to 
l HPiHR J. This allows us ta sign a message of almost #A = #P·#R bits. The product of 
the elements of A in this subset is the signature. Since this is a single number, the sig
nature is much more compact than in Lampon's scheme. 

Thus, signing a message consist of the following steps: 
Choose the set P of primes that is ta he used for this signing from the public list. 
This determines A: 

A = {~modnli,j E {1, ... ,#PJ x (l, ... #RJ}. 

Like the sets A and B in Lampon's scheme, the set P can he used only once. The list 
A need not he computed. 

Determine the message m to sign. This could he a message, or a public hash 
function value of that message, for example. 
Compute the subset M of index pairs from (l, ... ,#PJx{l, ... ,#RJ [rom the 
message m with the algorithm described above: 

M =s(m) 

Compute the signature proper: 

s= I1Pfr} (modn), 
i,jeM 

and send m, P, and S ta the recipient 
There are two ways ta increase the efficiency of signing. If there is time to do a 

precomputation, the entire set A can he computed hefore the value of m is Icnown. 
Although this takes quite a while, signing becomes much faster, since signing consists 
only of multiplying the proper values of A together. If precomputation is not possible, 
the computation of Scan he speeded up with a vector addition chain [Bos92]. 

Verification 
Instead of trying ta compute individual factors of the signature, the number Scan be 
verified in a single computation. To see this, we note that the power of the signature 
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11 Pt 
S,eP . 

should he equal to the following produet that can be computed from public values: 
ITPt/pj 

il'ikEP 1 • 

i,jeM 

The lower product can be computed with a vectar addition chain. Verification of a 
signature consists of checking that these IWO values are the same. The verification can 
be performed with a single vector addition chain, if the inverse of the signature is 
computed fust: 

ITp, ITP'jPj 
rs-1\keP . n,·leP 
'1 , ' 

i,jeM 

which must evaluate ta l (mod n). To increase the efficiency of the verification, the 

signer could send liS instead of S, so that the inversion is performed only once by 
the signer, and not by every verifier. 

If not all prime numbers from P occur as exponents in the set M, il is possible to 
verify a signature using slightly fewer multiplications by raising S to only the OCCUIT

ing primes. Unfortunately, this optimization is only applicable in the less interesting 

cases where verification requires a lot of multiplications. 
The verifier must aIso check whether P occurs in the public list. If P is described 

as an index number in this list, this is of course unnecessary. 

Parameters 
In practice. the following parameter values could be used: 

A modulus size big enough ta make factorization hard (200 digits, or 668 bits). 
R a list of 50 numbers. 
The sets P consisting of the (5n + 1)'" to the (5n + 5)th odd prime number, where 

ne (0 .... ,16404 J is the sequence number of the signature. This uses the primes 
of up ta 20 bits. 

With these parameters, we have sets A of 250 elements. so that :il message of 245 

bits (30 bytes) can be signed. A signature consists of the message, the signature pro

duel (668 bits, or 84 bytes), and the index number of the prime set (15 bits, or 2 bytes). 
Computing a signature takes about 1512 modular multiplications, and verification 

about 2n; bath these numbers are obtained using vector addition chains. 
The lis! of the odd primes up to 20 bits (the highest being 1048557) can easily be 

stored; il would need only 64 K bytes of storage (using a bit table of the odd numbers) 
and contain 82025 primes. Such a list can easily be stored in a ROM chip. When ail 
primes are used up, the user can choose a new modulus and stan again. Another solu-
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9 

tion is to change the list R often enough so that users do not run out of primes. To 
make it possible to verify old signatures, old values of R and the user moduli must be 
saved. 

The Iist Rean be computed from a seed number using a public hash function. This 
way, only one seed number is needed to define R. This allows us one to use a long list 
R while using small amounts of data to distribute il Also, less data is needed to save 
old lists. 

Figure 3 shows the performance of the algorithm for several sizes of Rand P. For 
each of the entries in the table, the modulus is 668 bits (200 decimal digits), and the 
size of the primes in P is 20 bits. The entries are computed by averaging random 
number approximations. The entries marked by * have an estimated standard devia
tion higher than 10, so that the last digits are likely to be inaccurate. 

Powers and products were computed using addition chains and sequences; see 
[Bos92, chapter 4]. The products were computed collecting the base numbers; for 
example, the product 

~1 .~1 .b{z .~z .b:; .~3 
would be computed as 

~'2 . ~1 +<3 . ~1 +<z . b:; 
using a vector addition chain algorithm. In the cases were a single power was to be 
computed, the "window method" of [Bos92] was applied. 

The table shows that in the general case, where verification is done more often than 
signing, it is advantageous to use a small P, possibly of only one element. The length 
of the Iist R is not a problem if it is generated from a seed, as suggested above. 
Another advantage of using a small set P is that the Iist R has to change less often. 

#R #P message sign verify 

250 1 245 910 152 

50 5 245 1512 272 

5 50 245 1451 2048* 

1 250 245 796 7123 * 

500 1 495 1035 278 

50 10 495 2964* 1372* 

68 1 64 819 61 
17 4 64 1317 162 

4 17 64 1301 659* 
Fig. 3. Perfonnance fOT difTerent sizc of R and P. 

The influence of the modulus size and prime size on the performance is shown is 
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Figure 4. In this table, the size of R i5 set ta 50 elements, while the sets P contain 5 
elements each. The number of multiplications for signing depends on the size of the 
modulus only, while the number of multiplications for verifying depends on the size of 
the prime nurnbers only. Although il saves a little lime during the signing ta use a 
shorter modulus, we suggest using a modulus of 668 bits, since the CUITent technology 
alreadyallows factoring nurnbers of up ta 351 bits. 

The size of the primes in the sets P determines the verification time. Choosing 
smaller primes increases the speed of verification, but allows fewer signatures before a 
new list R is needed. 

modulus size i signing 
prime size i verifying 

10 171 
512 1172 

20 272 
668 1512 

30 381 
Fig. 4. Performance for different sizes of modulus and primes. 

If the elements of A are precomputed, signing takes #A/2-1 multiplications. The 

precomputation takes about 796·#A multiplications, so precomputation is only effec
tive if there is plenty of time for doing it 

For extremely fast verification of signatures, we choose a lis! R of 68 elements, 
generated from a seed nurnb~r that is part of the signature, and P '" (3). For these pa
rameters, the message to be signed is 64 bits (8 bytes). This allows verification of a 
signature in only 35 modular multiplications, plus the time to generate the elements of 

R. Signing takes about 819 multiplications. Using precomputation, signing takes 33 
multiplications, but about 55000 multiplications for the precomputation. 

Proof of unforgeability 

We praye that the signature scheme is "existentially unforgeable under an adaptive 

chosen-message attack~. This means that, under the RSA assumptioll, if an attacker 
can infl uence the signer to sign any numher of messages of his liking, he cannot forge 
new signatures in polynomial time, even if the messages depend on the signatures on 
earlier messages. 

The main theorem used to prove unforgeability of the signature system is proved 
by Jan-Hendrik Ever'..se and Eugène van Heijst in [ER90], and is a generalization of a 
theorem by Adi Shamir [Sha83]. The theorem is about computing a product of RSA 
roots with a given modulus if a set of products of signatures is known. Under the RSA 
assumption, the theorem states that if a set of products of roots is known, the only new 
products of foots that can be constructed in polynomial lime are those thal can he 
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computed using multiplication and division. 
On~ assumption we make is that the attacker cannot combine the signatures of 

different participants, because they have different moduli. This is still an open prob
lem. This assumption allows us to use the results of [ER90l. 

In our situation, w~ assume an attacker who knows many signature products S 
from a participant. These products can be written as products of roots of elements of 
R: 

r(1 r{2 '3%3 ••. r:ltR 
where the numbers Xi are rational numbers. The theorem of [ER90l states that if we 
interpret the X as vectors, the only new products that can be computed by th~ attacker 
correspond to lin~ combinations of these vectors. What remains to be proved is that 
linear combinations of these vectors do not give products that the attacker can use for 
new signatures. 

The denominators of the rational numbers Xi are products of primes from the set P 
of the Corresponding signature, since the Xi are sums of the forrn *" +"* + ... , where 
Pi E P. This means that we can speak of "the set of primes in a vector", meaning both 
the set of primes that occur in the denominators of the elements, and the set P used for 
generating the signature. Every signature uses another p, and the sets P do not 
overlap, so the sets of primes in the vectors also do not overlap. A linear combination 
of vectors will contain only primes that occurred in the original vectors. From this we 
see that combining signatures with multiplication and division will not produce a 
signature with a set P that is not used before. 

For a set P that has already been used, the only linear combination of vectors that 
contains the primes of P is a multiple of the corresponding vector, because any other 
linear combination of vectors contains primes not in P. This means that other signa
ture products do not help compute a new signature product witha given set P. From 
the definition of the signature product, we see that a power of a product cannot be a 
signature on another message, so this method also yields no new signatures for the 
attacker. 

Note that if m is a one-way hash function of a message, signatures on other mes
sages can be forged if the hash function is broken. This is of course a separate prob
lem from the security of the signature scheme. 

From the above we conclude that an attacker cannot, under the RSA assumption, 
produce a signature product that is not already computed by the signer. This finishes 
the proof that the signature scheme is secure. 
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Conclusion 

It was already known tha, a signature with provable unforgeability existed !.Inder the 
factoring assumption. Our scheme, based on the modular root assumption, improves 
on the scheme in the literature on several points: signatures are sm aller, while signing 
and verification use much less memory and computation. The new scheme has a large 
degree of fiexibility, allowing the signing of bath long and short messages by varying 
the parameters. 
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