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Preface

Crypto'92 took place on August 16-20, 1992, It was the twelfth in the series of annval
cryptology conferences held on the beautiful campus of the University of California, Santa
Barbara., Once again, it was sponscred by the International Association for Cryptologic
Research, in cooperation with the IEEE Computer Society Technical Committee on
Security and Privacy. The conference ran smoothly, due to the diligent efforts of the gen-
eral chair, Spyros Magliveras of the University of Nebraska.

One of the measures of the success of this series of conferences is represented by the ever
increasing number of papers submitted. This year, there were 135 submissions 1o the con-
ference, which represents a new record. Following the practice of recent program commis-
tees, the papers received anonymous review. The program committee accepted 38 papers
for presentation. In addition, there were two invited presentaticns, one by Miles Smid on
the Digital Signature Standard, and one by Mike Fellows on presenting the concepts of
cryptelogy o elementary-age students. These proceedings contains these 40 papers plus 3
papers that were presented at the Rump Session. [ would like to thank all of the authors of
the submitted papers and all of the speakers who presented papers.

I would like to express my sincere appreciation to the work of the program commmittee: Ivan
Darngard (Aarhus University, Denmark), Oded Goldreich (Technion, Israel), Burt Kaliski
(RSA Data Security, USA), Joe Kilian (NEC, USA), Neal Koblitz (University of
Washington, USA), Ueli Maurer (ETH, Switzerland), Chris Mitchell (Roval Holloway,
UK), Kazuo Ohta (NTT, Japan), Steven Rudich (Camegie Mellon, USA), and Yacov
Yacobi (Belicore, USA). I would also like to thank Joan Boyar for agreeing to chair one of
the sessions,

Emest Brickell
Albuquerque, NM
August, 1993
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Provably Unforgeable Signatures

Jurjen N.E. Bos™
David Chaum?

Abstract. Very strong definitions of security for signature schemes have been pro-
posed in the literature, Constractions for such schemes have been proposed, but so far
they have only been of theoretical interest and have been considered far too inefficient
for practical use.

Here we present a new scheme that satisfies these strongest definitions and nses essen-
tially the same amount of computation and memory as the widely applied RSA
scheme. The scheme is based on the well knowm RSA assumption.

Our signatures can be thought of as products resulting from a two-dimensional
Lamport scheme, where one dimension consists of a list of public constants, and the
other is the sequence of odd primes.

Introduction

One of the greatest achievements of modern cryptography is the digital signature. A
digital signature on a message is a special encryption of the message that can easily be
verified by third parties. Signaiures cannot be denied by the signer nor falsified by
other parties.

This articie introduces a new signature scheme that combines the strength of the
strongest schemes with the efficiency of RSA,

Signing a message of 245 bits in our scheme is possible in roughly 910 multiplica-
tions, and verifying i costs about 152 multiplications. In companison, RSA, asing the
ISO/IEC standard 9796 redundancy scheme, takes roughly 768 multiplications (or 610
using addition chains) for signing, and 3 {or optionally 17) for verification. RSA sig-
natures are 512 bits long, while ours requires an additional message counter, Thus, 16
extra bits give a scheme that allows 65,536 signatures per public key,

A variation involving pre-computation, signs short messages (64 bits) in 33 multi-
plications (not counting precomputation) and verifies in 35 multiplications.

After the introduction, we discuss other signature schemes relevant (o this work,
We discuss the Lampon signature scheme, on which this signature scheme is based, in
detail. Then, the new scheme is explained, and the possible choices for parameter val-
ucs are shown.,

* This article is adapted from the dissatation "Practical Privacy” of Jurjen N.E. Bos, »ritan while he was at CW] {the
Dutch nationally funded centre for Mathematics and Computer Scence). He is currenily affiliated with Irdeto (a pay TV
company} in Hoofddorp, Netherlands,

t David Chaum is affiliated both with CWI and DigiCash (irmovators in electronic money systems).
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[1%]

Signature scheme

An overview of signature schemes, comparing securities, can be found in the paper

mentioned earlier [GMRES). We use their notation. They define a signature scheme

a8 consisting of the following components:

s A security parameter k, that defines the security of the system, and that may also
influence performance figures such as the length of signatures, running times and
SO Ofi.

a A message space M, that defines on which messages the signature ajgorithm may
be applied.

v A signarure bound b, that defines the maximal number of signatures that can be
generated without reinitialization. Typically, this value depends on &, but it can
be infinite.

> A key generation algorithm G, that allowe a user 10 generate a pair of
corresponding public and secret keys for signing, The secret key § is used for
generating a signature, while the public key £ is used to verify the signature,

« A signature algorithm G, that produces a signature, given the secret key and the
message to ba signed.

+ dnaily, a verification algorithm, that produces true or false on input of a signature
and a public key. It ouputs true if and only if the signature is valid for the particu-
lar public key.

Some of these algarithms may be randomized, which means that they may use
random numbers. Of course, G must be randomized, becanse different users must
produce different signatures. The signing algorithm ¢ ig sometimes randomized, but
:his tends to produce larger signatures. The verification algorithm is usually not ran-
domized.

A simple example of & signature scheme is a trapdoor one-way function f. The
function f is used for verification by comparing the {unction value of the signature
with the message to be signed, and ¢ is the wapdoor of £ The main problem with
such a scheme is that random messages f(x) can be signed by taking a random signa-
turs value x. A simple solution is 10 let M be a sparse subset of a larger space, so that
the probability that f{x} is a valid message for random x is low. An example of 3
sparse subset is the set of “meaningful” messages.,

Related work
The notion *digital signamre™ was inwroduced in [DH76), This paper, which can ba
considered the foundation of modem cryptography, discusses the possibility of digitat
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signatures and the use of a trapdoor one-way function to make them.

[RSA78] is the original article on the RSA scheme. It introduces the famous RSA
trapdoor one-way function. This function is still widely in use and is applied fre-
quently. A well-known weakness of RSA is that it is muldplicative: the product of
two signatures is the signature of the product. This potential problem can be prevent-
ed as above by choosing an appropriate sparse message space,

Since then, an enormous number of signature schemes have been proposed
[Rab77, MH78, Sha78, Rab79, Lie81, DLM82, GMY83, Den84, GMRSB4, 05584,
EIG85, OS85, F586, BM88, GMR88, CA8%, EGL89, EGME9, Mer89, Schi9,
SQVE89, BCDP9Q, Cha%0, CR90, Hay90, CHP91}, applied [Wil80, Cha82, Gol86,
Betf8], and broken [Yuv79, Sha82, Tu84, BD85, EAKMMSS, Roo%1]. We will not
discuss all these schemes here; we only discuss the ones that are interesting to com-
pare with the new scheme.

The schemes [Rab79, GMYS83, GMR84, GMRER] are steps towards a provably
secure signature scheme. The scheme described in the last article is secure in a very
strong way: it is “existentially unforgeable under an adaptive chosen-message attack™
with probability smaller than 1/Q(k) for every polynomiat 0. This means that ge-
nerating a new signature is polynomially hard if signatures on old messages are
known, even if the old signatures are on messages chosen by the attacker.

The scheme in {GMR88] is based on factoring. Whiie our scheme is based on the
slightly stronger RSA assumption, it is much more efficient. The signature scheme of
[{GMR388] uses a large amount of memory for the signer, and guite a lot of computa-
tion, Our scheme uses no memory at all, except for a counter and the public values,
and signing and verifying takes about as much computation as RSA does, depending
on the parameters.

The Lamport Scheme

Qur scheme can be thought of an optimization for both security and efficiency of
[GMYB83]. Toexplain the new system, we compare it to the earlier Lamport scheme
{explained already in {DH76, page 650]). To make a signature in this scheme, the
signer makes a secret list of 2k mndom numbers
A= 0.8,8:0:8 1135 081 1
applies a one-way function £ to all ¢lements, and publishes the result B:
{f (31,0).f(a30),.... flax 0}
flay ) flagph.. fla)
The signature consists of the numbers O + B my v B m, frOM the list A (one

from each “column”),where m,, m,,..., m; are the bits of the message to be signed.
The lists A and B cannot be used again,
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The properiies of Lampoit’s scheme arg easy o verify;

« Signing a message is only the publication of the proper clements of 4.

« To forge a signature, one needs to find certain values from the list A, How hard
this is, depends on the security of the one~way function £,

» Ifthe values A are only used for one signature, new signatures cannot be made
from oid ones.

«  Verificarion of a signalure consists of applying the one-way function ta the signa-
ture values, and comparing them (o the public values determined by the signed
message.

The new system uses the same idea, with three important differences, first, the list

B is replaced by another list that can be used for all signamres. Second, the list A is

constrocted from two lists so that less memory is needed to defing it. Third, the cle-

ments of A in the signature canr be combined into a single number.

A small gptimization
There is a trivial optimization of Lampon’s scheme that reduces the number of public
functon values to almost half, that we could not find in the literature. This optimiza-
tion is independent of the signature scheme as such. Basically, the signer signs by
publishing a k-element subset of the 2& secret numbers. Lamport’s scheme chooses
a particular ser of subsets of the set of 2k elements, as shown above. The necessary
property of this set of subsets is that no subset includes another,
There are other sets of subsets with the property that no subsets includes another.
A lergest set of subsets with this property is the set of ali k-element subsets (a well-
known result from lattice theary), For these sels, it is easy to see that no subset in-
cludes another.
For example, in Lamport’s scheme, the list of 6 elements
A=ay5,81,0y0,321.03,0.93y
allows us 0 sign messages of 3 bits, If we renumber A as a;.95.05.4..45 .4,
we get the set of 20 threg-glement subsets of A:
(ay,20.a3}, {84,2.6s 3, {ay.a5.05), (21,8296}, {a),62.a4},
(a1.8a.as}, {a;.81.86}, {ay.aa.as), {a).64.a¢}, £4y.05.a¢).
{@y.a4.04), {83.41.45), (82,833,086}, (G2.04.85}. {23.44.96).
{a;.85.05), {93.4,a5}, {93-04ﬁ(,]. {asﬂs,ﬂe)' {as.a5.46);
this aliows us w0 sign one of 20 messages, which is equivaient 1 more than 4 bits.

In general, there are
2k

7 2.&} 2
! 0 1 .
i\k r abow m’
k-element subsets, so that we can sign messages of abont 25~ %logztkn} bits.
The original Lampart scheme allowed messages of only & bits, so that we get almost
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a doubling of the message size for the same size of the list B. This simple improve-
ment can also be used in our new signature scheme.

To encode a signature, 2 mapping needs to be defined between messages and these
subsets:

s(message) = subset.

The simplest mapping just enumerates messages (interpreted as numbets from 0
onwards) to sets (seen as binary strings that denote 1 for presence and O for absence)
in order. Such a mapping is easily and efficiently computed by the algorithm shown in
figure 1. The binomial coefficienis do not need to be compuied by repeated multipli-
cation and division. The first binomial coefficient is aiways the same, so it can be pre-
computed, and the others can be computed by one maultiplication and one division by
small numbers using the properties:

- {—e -1 ty e
(2=() 52 ma(20)- ()%
The algorithm outputs ones and zeros corresponding to the ¢lements in the result-
ing set.
Note that the Lamport scheme uses anather mapping that maps numbers onto &-
element subsets, but that only a small number of these sets are used.

Let a, the message, be a number in the range O--'[Zf )_ L

Put2kinrand kine.
While ¢ > 0
Putt—1lins,
Ifnz (;). putn— (é) inn, e—1ine, and output a 1 (this ¢ is in the set).

Else, outpur a O (this 7 is not in the set).
Fig §. Algorithm for the mapping s.

The New Signature Scheme

The new signature scheme repiaces the list A of the Lampaort scheme by a list of nam-
bers that can be organized in a matrix. Instead of using a new list B for every signa-
ture, a fixed list called R is used for all signatures and all participants. The one-way
function f is replaced by a set of trapdoor one-way functions, that changes per signa-
ture. For the trapdoor one-way functions, we use the modular root function of
[RSA78L

The constructdon aliows us 10 sign long messages using only a few numbers to
define the set A. In the example of figure 2, the set A of 12 elements is constructed
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from three primes py, pa. 71 {used only for this signature) and four public values
71. F3, 73, Fe (that can be used again). This sat allows us 1o sign messages of 9
bits, since there are 924 > 29 possible 6-elemnent subsets of A, Signing messages of 9
hits in the original Lamport scheme takes 18 public values that can be used only once.

A A W
RO O e

Fig. 2. Example list A of the new scheme.

:
H
P
i
|

The numbers & of A are secret encryptions of the numbers i of R, and ihe
corresponding decrypiion exponents are public. The multiplicative property of RSA
allows us to multiply the values of the signature 0 form one number, Verification of a
signature can be done using a simple computation, without having to compuic the sep-
arate factors.

The public values of the new system are:
> (One modulus per signer;

» The system-wide Hst R. This list is used by all users, and that it does not change
often, so that distribution does not require much traffc. The numbers in R are
smaller than the smallest moduius wsed by the signers,

« A list of sets of primes that may be used for signing. For security reasons, the sets
miay not overlap each other, and the signers may only use these sets of primes,

A signature consists of the original message signed, the signaiure proper {an inte-

ger smaller than the modulus of the signer), and a description of the prime seL
In the language of [GMRER):

» The security paramelter determines the size of the RSA modules, This modulus
Can vary per user.

»  The message space M is (equivalent to) the set of subsets of A that include half the
clements.

«  The size of the public list of sets of primes determines the signature bound &.

« Key generation is a maiter of generating an RSA modulus, and computing
sxponents for the modular root extractions.

» Signing and verification are defined below.
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Signing
For the list A of a signature, the set of RSA encryptions
A= {‘V;modnlp eP;r ER}

is used, where:

+ P aset of primes from the public list;

+ R is the public list of verification values;
» nis the RSA modulus of the signer.,

As explained above, a signature is constructed from a subset determined by s(m)
of half these numbers. The constant k used in the algorithm that maps s is equal to
| #EAR | This allows us to sign a message of almost #A = #P#R bits. The product of
the clements of A in this subset is the signature. Since this is a single number, the sig-
nature is much more compact than in Lamport’s scheme.

Thus, signing a message consist of the following steps:
= Choeose the set P of primes that is to be used for this signing from the public list.

This determines A:

A= {q-]amodnp,je {1....,#P}x{1....#R}}.

Like the sets A and B in Lamport’s scheme, the set P can be used only once. The list
A need not be computed.
»  Determine the message m {0 sign. This could be a message, or a8 public hash
function vatoe of that message, for example.
» Compute the subset M of index pairs from {I,....#P)x(1,....#R} from the
message m with the algorithm described above:
M = s(m)
« Compute the signature proper:

§= HP,-‘E (mod ),

i jeM

and send m, P, and § 1o the recipient.

There are two ways Lo increase the efficiency of signing. If there is time 10 do a
precomputation, the entire set A can be computed before the value of m is known.
Although this takes guite a while, signing becomes much faster, since signing consists
only of multiplying the proper values of A together. If precomputation is not possible,
the compatation of S can be speeded up with a vector addition chain [Bos92}.

Verification

Instead of wying to compute individual factors of the signature, the number S can be
verified in a single computation. To see this, we note that the power of the signature
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i_f Fk

§keP

should be equal to the following product that can be computed from public values:

Fm /P,

'.- keF
i :eM

The lower product can be computed with a vector addition chain. Verification of a
signature ¢consists of checking that these two values are the same. The verification can
be performed with a single vector addition chain, if the inverse of the signature is
computed first:

5l fllm T I"m/m
i jeM
which must evaluate to 1 {mod »). To increase the efficiency of the verification, the
signer could send 1/3 instead of 3, so that the inversion is performed oniy once by
the signer, and not by every verifier.

If noi all prime numbers from P occur as exponents in the set M, it ic possible to
verify a signature using slightly fewer multiplications by raising § 10 only the occurr-
ing primes. Unfortunately, this optimization is only applicable in the less interesting
cases where verification requires a lot of multiplications,

The verifier must also check whether P ocouss in the public list. If P is described
as an index number in this Hst, this is of course unnecessary.

Paramaeaters

In practice. the foilowing parameter vaines could be uysed:

» A modulus size big enough (0 make factorization hard (200 digits, or 668 bits).

» R alist of 50 numbers.

»  The sets P consisting of the (5n+1)® to the (57 + 5)® odd prime number, where
ae {0,...16404} is the sequence number of the signature. This uses the primes
of up to 20 bits,

With these parameters, we have sets A of 250 elements, so that a message of 245
his (30 bytes) can be signed. A signature consists of the message, the signature pro-
duct {668 hits, or 84 bytes), and the index number of the prime st (15 bits, or 2 bytes).
Computing 2 signature takes about 1512 modular muitiplications, and verification
about 272; both these numbers are obtained using vector addition chains,

The list of the odd primes up to 20 bits {the highest being 1048557) can easily be
stored; it would need onty 64 K bytes of storage (using a bit table of the odd numbers)
and contain 82023 primes. Such a list can easily be stored in a ROM chip. When all
primes are wsed up, the user can choose a new modulus and start again, Another solu-
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tion is to change the list R often enough so that users do not run out of primes. To
make it possible to verify old signatures, old values of R and the user moduli must be
saved.

The list R can be computed from a seed number using a public hash function. This
way, only one seed number is needed to define R. This allows us one to use a long: list
R while using small amounts of data to distribute it. Also, less data is nesded to save
old lists.

Figure 3 shows the performance of the algorithm for several sizes of R and P. For
each of the entrics in the table, the modulus is 668 bits (200 decimal digits), and the
size of the primes in P is 20 bits. The entries are computed by averaging random
number approximations. The entries marked by * have an estimated standard devia-
tion higher than 10, so that the last digits are likely to be inaccurate.

Powers and products were computed using addition chains and sequences; see
[(Bos92, chapter 4], The products were computed collecting the base numbers; for
example, the product _

bzl -b;i -bf’ .g,;z -b:‘ -b2'3
would be computed as
bf’ _bz‘i""'i -b;‘“’ .b:z
using a vector addition ¢hain algorithm. In the cases were a single power was to be
computed, the “window method” of {Bos92] was applied.

The tabie shows that in the peneral case, where verification is done more often than
signing, it is advantageous to use a small P, possibly of only one element. The length
of the list R is not a problem if it is generated from a seed, as suggested above.
Another advantage of using a small set P is that the list R has to change less often.

#R  #P | message sign verify
250 1 245 910 152
50 5 245 1512 272
5 30 245 1451 2048*
1 250 245 796 7123+
500 1 495 1035 278
50 10 495  2964* 1312+
68 1 64 819 61
17 4 64 1317 162
4 17 64 1301 659+

Fig. 3. Performance for different size of R and P.

The influence of the modulus size and prime size on the performance is shown is
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Figure 4. [n ths table, the size of R s set 10 30 elements, wiile the sets P contain 5
elements each, The number of muitiplications for signing depends on the size of the
modulus only, while the number of multiplications for verifying depends on the size of
the prime numbers only. Although if saves a little time during the signing to use a
shorter modulus, we suggest using a2 modulas of 668 bits, since the current technology
already allows factoring numbers of up to 351 bits.

The size of the primes in the sets P determines the verification time. Choosing
smaller primes increases the speed of verification, but atlows fewer signatures before a
new list R is needed.

prime size | verifying

modulus size | signing

12 1172 10 7l
268 1512 20 272
30 381

Fig. 4. Performance for different sizes of modulus and primes.

If the elemenis of A are precomputed, signing takes #A/2-1 multiplications, The
precomputarion takes aboul 796-#A multiplications, 50 precomputation is only effec-
tive if there is plenty of time for doing it.

For extremely fast verification of signatures, we choose 3 list B of 68 clements,
generated from a seed number that is part of the signature, and P =(3}. For these pa-
rameters, the message to be signed is 64 bits (8 bytes). This allows verification of a
signature in only 35 modular multiplications, plus the time o0 generate the elements of
R. Signing takes about 8§19 multiplicatiens. Using precompatation, signing takes 33
maultiplications, but about 55000 multiplications for the precomputation.

Proof of unforgeability

We prove that the signature scheme (s “existentially unforgeable under an adaptive
chosen-message attack™. This means that, under the RS A assumpticn, if an attacker
can influence the signer to sign any number of messages of his tiking, he cannot {orge
new signatures in polynorial time, even if the messages depend on the signatures on
sarlier mesgsages.

The main theerem used to prove unforgeability of the signature gysteni is proved
by Jan-Hendrik Evertse and Eugéne van Heijst in [EH90], and 15 a generalization of a
theorem by Adi Shamir [Sha83). The theorcm is about computing a prodict of RSA
roots with a given madulus if a set of products of signatures is known., Under the RSA
assumption, the theorem states that if a set of products of roots is known, the only new
products of roots that can be construsted in polynomial ime are those that can be
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computed using multiplication and division.

One assumption we make is that the attacker cannot combing the signatures of
different participants, because they have different moduli. This is still an open prob-
lermm, This assumption allows us to use the results of [EHS0].

In our situation, we assume an attacker who knows many signature products §
from a participant. These products can be written as products of roots of elements of
R:

nirtetng®,
where the numbers x: are rational numbers. The theorem of [EH90] states that if we
interpret the x as vectors, the only new products that can be computed by the attacker
correspond to linear combinations of these vectors. What remains to be proved is that
linear combinations of these vectors do not give products that the attacker can use for
TiCW signatures.

The denominators of the ratonal numbers x; are products of primes from the set P
of the corresponding signature, since the x; are sums of the form -P%+ -mL+»--, where
p; € P. This means that we can speak of "the set of primes in a vector”, meaning both
Lhe set of primes that occur in the denominators of the elements, and the set P used for
generating the signature. Every signature uses another P, and the sets P do not
averlap, so the sets of primes in the vectors also do not overlap. A linear combination
of vectors will contain only primes that occurred in the original vectors. From this we
see that combining signatures with multiplication and division will not produce a
signature with a set P that is not used before.

For a set P that has alrcady been used, the only linear combination of vectors that
contains the primes of P is a multiple of the corresponding vector, because any other
lingar combination of vectors contains primes not in P . This means that other signa-
ture products do not help compute a new signature product with a given set P. From
the definition of the signature product, we see that a power of a product cannot be a
signature on another message, so this method also yields no new signatures for the
attacker.

Note that if m is a one-way hash function of a message, signatures on other mes-
sages can be forged if the hash function is broken. This is of course a separate prob-
lem from she security of the signature scheme.

From the above we conclude that an attacker cannot, under the RSA assumption,
produce a signature product that is not already computed by the signer. This finishes
the proof that the signature scheme is secure.
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Conclusion

it was aiready known that a signature with provable unforgeability existed ander the
factoring assumption, Jur scheme, based on the medular root assumptcn, improves
on the scheme in the literature on several points: signatures are smaller, while signing
and verification use much less memory and computation. The new scheme has a large
degree of flexibility, allowing the signing of both long and short messages by varying
the parameters,
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