
Shojiro Nishio Akinori Yonezawa (Eds.)

Object Technologies
for Advanced Software

First JSSST International Symposium
Kanazawa, Japan, November 4-6, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

'F'" .' , ",", ~/>' --~"~.~ ~~,"\\

~;1-:9-tr~

"., .-< .. ~~,:;~;?;

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitiit Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe :
D-76131 Karlsruhe, Germany

Volume Editors

Shojiro Nishio

Juris Hartmanis
Comell University
Department of Computer Science
4130 Upson Hall
Hhaca, NY 14853, USA

Department of Information Engineering, Osaka University
Suita, Osaka 565, Japan

Akinori Yonezawa
Department of Information Science, University of Tokyo
Hongo Bunkyo-Ku, Tokyo lB, Japan

CR Subject Classification (1991): D.1-4, H.2

ISBN 3-540-57342-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57342-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Al! rights are reserved, whether the whoie Of part
of the material is concemed,specifiçallythe rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its CUITent version, and permission for use must always be obtainedfrom
Springer-Verlag. Violations are liable for prosecution nnder the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

This volume is the Proceedings of the International Symposium on Object Technologies for
Advanced Software (ISOTAS). Currently object technologies are attracting much atten
tion in diverse areas of research and development for aclvancecl software. Object-oriented
programming holds great promise in reducing the complexity of large scale software de
velopment, and recent research in this field opens up new paradigms for parallel and
reflective computing. Object-oriented databases are expected to serve as a model for
next-generation database systems, by overcoming the limitations of conventional data
roodels. Furthermore, recent research in software object bases i8 aimecl at developing
a uniform approach to the management of software artifacts produced in the software
developlnent process, sueh as specifications, manuals, programs, and test data, which
traditionally were managed in a very ad hoc and arbitrary manner.

Active research and experimentation on object technologies in these diverse areas
suggest that there are sonle underlying l fundamental principles common to a wide range
of software development activities. The first of the JSSST (Japanese Society for Software
Science ,and Technology) international series of symposia focuses on this topic. The aim
of this symposium 18 to bring together leading researchers in the areas of object-oriented
programming, object-oriented databases, and software object bases. We hope to promote
an understanding of object technologies in a wider context and to make progress towarcls
the goal of finding better frameworks for future advanced software development.

The Program Committee received 92 submissions from 18 different countries in Eu
rope, America, Asia, and Australia (including 31 domestic submissions). Each submission
was reviewed by at least three members of the Program Commit tee and sometimes by
external referees. Tl.1is volume con tains 25 contributed papers and 6 invited papers pre
sented at the symposium. The contributed papers were selected by a highly competitive
process, based on referee reports and painstaking deliberations by members of the Pro
gram Committee.

We would like to thank ail the people who made the symposium possible, including
the object technology researchers who submit their works to this symposium and ail those
who contributed their expertise and time in reviewing the submissions.

August 1993 Shojiro Nishio, Akinori Yonezawa
Co-Chairs, Program Commit tee B

IB
LI

O
TH

E
Q

U
E

 D
U

 C
E

R
IS

T

An Object-Oriented Query Model Supporting Views
Suk J. YOD, Hai Jin Chang 251

(!nvited Paper) R.efactoringand Aggregation
Ralph E. Johnson, William F. Opdyke 264

Transverse Activities: Abstractions in Object-Oriented Programming
Beni Bmun Krisiensen . 279

Dynamic Extensibility in a Statically-Compiled Object-Oriented Language
Jawahar Malhatra 297

(Invited Paper) Managing Change in Persistent Object Systems
Malcolm P. Atkinson, D.l.K. Sj!ilberg, R. Morrison 315

An Object-Oriented Pattern Matching La.nguage
Marc Gemis, Jan Paredaens 339

CLOG: A Class-Based Logic Language for Object-Oriented Databases
Siu Cheung Hui, Angela Goh, Jose Kolencheri! Raphel 356

(Invited Paper) Name Management and Object Technology for Advanced
Software
Alan Kaplan, Jack C. Wileden

Constraints in Object-Oriented Analysis

371

Stefan Van Baelen, Johan Lewi, E,.;c Steegmans, Bart Swennen 393

Integration of the Tool (AWB) Suppotting the 0* Method in the PCTE
Based Software Engineering Environment
Sai Peck Lee, Collette Rolland . 408

Minimizing Dependency on Class Structures with Adaptive Programs
Karl J;Lieberherr, Oun Xiao 424

First Class Messages as Fil'st Glass Contiauations
[(en Wakita 442

A Typing System for a Calculus of Objects
Vasco T. Vasconcelos, Mario Tokoro460

A Type Mechanism Based on Restricted CCS forDistributed Active
Objects
Yasunori Harada 475

(Invited Paper)Adding Implicit Invocation to Languages: Three Approaches
David Notkin, David Garlan, William G. Griswold, J(evin Sullivan. 489

Requirements and Early Experiences in the Lmplementation of the SPADE
Repository using Object-Oriented Technology
Sergio Bàndinellz~ Luciano Baresi, Alfdnso Fuggetta, Luigi Lavazza 511

Object-Oriented Formai Specification Development using VDM
AmaritLaorakpong, Moioshi Saeki 529

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

(Invited Paper)

Uniting Functional and Object-Oriented Programming

John Sargeant*

Department of Computer Science
University of Manchester

Manchester M13 9PL
Tel: +44 61 275 6292
Fax: +4461 275 6236

jslDcs.man.ac.uk

Abstract
United Functions and Objects (UFO) is a general-purpose, implicitly parallel

language designed ta allow a wide range of applications to be efficiently implemented
on a wide range of parallel machines while minimising the conceptuaJ difficulties for
the programmer. To achieve this, it draws on the experience gained in the functional
and object-oriented "worlds" and attempts to bring these worlds together in a
harmonious fashion.

Most of this paper concentrates on examples which illusbate how functions and
abjects caR indeed work together effectively. At the end, a number of issues raised
by early experience with the language ale discussed.

1 Introduction

Modern computers are paralle!. Most programming languages assume they are seriaI.
There is an obvious need to advance beyond data parallelism and threads packages (useful
though those are). However, the various forms of implicit parallelism explored during
the 80s (functional, and/or parallel logic, concurrent object-oriented etc. [McG+85,
Nik88, Agha.86, Yon90, Am87, UeCh90]) have, by and large, made little impact on real
use of parallel machines. One problem has been lack of convincing demonstrations of
performance (although this is changing - see below). An equally important reason, in
the author's view, is that many such languages have been too narrowly focussed, and
have not incorporated the best of modern programming language technology.

UFO is not a narrow "single paradigm" language. It has been influenced by a num
ber of disparate language styles, leading to an interesting, and potentially very useful,
synthesis. The main influences are as follows:

1.1 Dataflow languages, especially SISAL

SISAL [McG+85] is a pure functional language with strict semantics, primarily geared
towards numerical computation. It can be c\assed as a dataflow language, in that the

*During the early work on UFO, the author was supported directly by the Department of Computer
Science. Recent work has been funded by Science and Engineering Research Council grant GR/ J 11089.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

under/ying computation al model is a parallei dataf10w one. Sequencing is by data de
pendenceonly; paraJ!elism is the default.

A great deal of work has been done on optimising SISAL ior conventiona! super
computer", and recently substantial numeric SISAL programs have been shown to run
faster on multiprocessor Crays than Fortran versions [Cann92]. Functional languages
need not be inefficient, at least for such applications. However, SISAL is quite a limited
language (e.g. it has no polymorphism, data abstraction, or higher-order features; multi
dimensional arrays have to be represented· as arrays of arrays). An update, SISAL2, has
been defined.[Bo+91] which addresses sorne, but by no means al!, of these limitations.

The original irlea behind UFO was to create a language based on SISAL which could
be used for a wider range of paralleI applications, by âdding objects to encapsulate
updateable state. In fact, UFO has gone weil beyond this original idea, but still has a
subset which (apart from syntactic differences) is very similar to SISAL.

1.2 Object-oriented languages, especially Eiffel

Issues of software reliability, reuse etc. are even more criticalin parallel programming
than in the old sequential worId. It rapidly became clear that UFO must have good
encapsulation and abstraction mechanisms, and a flexible static type system. A survey of
object-oriented languages rapidly showed that Eiffel [Mey88, Mey92] was closest to what
"le werelooking for. In particular, the Eiffel type system, with its elegant combination
of genericity and inheritance looked like a good starting point. t

The UFO type systemis therefore heavily influenced byEiffel,although currently the
mIes for redefinition on inheritance are more restrictive, in order to avoid complex global
vaJidity checking. Unfortunately, to someone brought up in the functionalj dataflow
world, Eiffel looks extremely imperative and seriai, and so the runtime semantics of UFO
are very different.

1.3 Pure lazy functional languages, notably HaskeH

Modern pure functional languages, for which Raskel! [Hud+91] is now the standard, are
charaderised by higher-order functions, iazy evalua,tion, and strong static type systems
"lith marked similarities to that of Eiffel.

InitiaIly, UFO aliowed constant function values, but not full higher-order functions,
as it was feared that the latter would over-complicate the type system. Early experience
showed that a partial parameterisation mechanism wasuseful, and gave no particular
problems. Examples appear below.

Lazy evaluation, however, was never an option. Although it improves the expres
sÎveness of a pure functional language, lazy evaiuation is incompatible with the presence
of updateable variables, as the execution order is almost impossible to visualise. Fur
thermore, the semantics require normal order evaluation, which is sequential. To exploit
parallelism in a lazy language, it. is necessary to do strictness analysis, in much the same
way as it is necessary to do dataf10w analysis to extract paraIle!ism from an impera
tive language. It is still unclear how successfully this can be done. The effect of Jazy
evaluation can be simulated in UFO for those applications which really benefit from it.

}The a~thoi is firmly of the opInion that static typing 15 a Good Thing, except fûr a few specialised
applications. By defi..'1.itiou, the end user never sèes static tyPe errors, but may weU see runtime on~s!
This prejudice has b~en strengthened by early expciience with UFO, as expla.med in section 6.2.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

A further difficulty with laziness, at least in its most general form, is that it conflicts
with dynamic binding. In order to dynamically bind on an object (i.e. the first argu
ment to a function), it is necessary to evaluate it. Few programmers outside the pure
FP community are likely to regard laziness as a higher priority than dynamic binding.
Compromise solutions are possible, su ch as using lenient, rather than lazy evaluation,
or restricting laziness to certain data structures, although such compromises are rather
against the spirit of pure lazy FP.

Another interesting aspect of Haskell is its type classes, which are a systematic way
of dealing with overloading, and a first step towards "proper" classes and inheritance.
For instance, there is a type class Eq which includes ail types with equality defined, and
it has a subclass Ord of types which also define ordering. Type classes can be used to
impose constraints on generic types. 2 For instance, the type of a sorting function is:

sort :: Ord a => [a] -> [a]

"sort is of type list of a to list of a provided a is an instance of Ord". The ordering
operators « etc.) can then be used within sort in the knowledge that any actual type
provided will have implementations of them.

However, the actual implementation of the operations is concentrated in the instances
(actual types) at the leaves of the class hierarchy. It is not possible to inherit from an
instance, and so the normal 00 practice of incrementally adding implementation down
the hierarchy is not possible. This is very restrictive and UFO has a more conventional
inheritance mechanism.

1.4 Concurrent object-based languages, particularly ABCL

In concurrent object-based languages, such as early actor languages [Agha86], POOL
[Am87], AB CL [Yon90], and HAL[HoAg92], a computation is expressed as a network of
communicating objects, each of which manages its own local state. The design of UFO
was particularly influenced by ABCL.

There are considerable similarities between UFO (stateful) objects and ABCL objects;
they provide mutual exclusion on method accesses, so ensuring coherent updating of the
instance variables. lncoming messagesjmethod calls are queued if necessary. An object
may continue to execute a method after it has returned a result, and may in sorne
circumstances accept another message before it has returned a result. An object may
selectively accept sorne messages and not others.

However, the differences are substantial; the model underlying ABCL is one of com
municating sequential threads. As a result there is a distinction between different sorts of
message passing ("past", "present" and "future") which is unnecessary in UFO. ABCL
also has a notion of pre-emption ("express messages") which relies on the existence of
such threads, and seems inappropriate (and hard to implement) for UFO.

More recently, it hilS become clear that there are interesting similarities between
HAL[HoAg92] and UFO. Unlike earlier actor languages, HAL does have inheritance, and
it also has a single-assignment update scheme very similar to that of UFO.3

2Readers familiar with Eiffel will notice a similarity to constrained generies.
3The traditional actors' primitive ''become'' is Tather different from that described below, as it updates

the whole state at once.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

