BIBLIOTHEQUE DU CERIST

Shojiro Nishio Akinori Yonezawa (Eds.)

Object Technologies
for Advanced Software

First JSSST International Symposium
Kanazawa, Japan, Novembcr 4-6, 1993
Proceedings

A

- - .
. SN
- et 5

B

-ty
-

Springer-Verlag
Berlin Heidelberg New York
fondon Paris Tokyo

Hong Kong Barcelona
Budapest

BIBLIOTHEQUE DU CERIST

Series Edilcrs

Gerhard Goos suris Haromanis

Universitit Karlsruhe Cornell University

Postfach 69 80 Department of Computer Sciesce
Vincenz-Priessnitz-Stralie : 413¢ Upson Hall

D-76131 Karlstuhe, Germany ithaca, NY 14853, USA

Voiume BEdilors

Shojire Nishio
Department of Information Engineering, Osaka Liniversity
Suita, Osaka 563, Japan

Alcinori Yonczawa
Departmaent of Information Science, University of lTokyo
Honge Bunkyo-Ku, Tokyo 113, Japan

L G
2030

R Subject Classiiication (1991 D.i-4, 1.2

ISBN 3-540-37342-9 Springer-Verlag Berfin Heidelberg New York
tSBN 0-387-57342-9 Springer-Verlag Mew York Berlin Heidelberg

This work is subject to copyright. Ailrights arc reserved, whether the whole or pait
of the material is concerned, specifically the rights of translation, reprinting, re-use
of iftustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks, Duplication of this publication or parts thereof is
permifted only under the provisions of the German Copyright Law of September 9,
1963, in ils current version, and permission for ase must always be obtaiued from
Springer-Verlag. Violations are liable for prasecution under the German Copyright

Law.

& Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

T}?pese[ting: Camera-ready by author
45/3140-543210 - Printed on acid-free paper

BIBLIOTHEQUE DU CERIST

Preface

This volume is the Proceedings of the International Symposiumn on Object Technologies for
Advanced Software (ISOTAS). Currently object technologles are attracting much atten-
tion in diverse areas of research and development for advanced software. Object-orienied
programming holds great promise in reducing the complexity of large scale software de-
velopment, and recent research in this field opens up new paradigms for parallel and
reflective compnting. Object-oriented databases are expected to serve as a model for
next-generation database systems, by overcoming the Hmitations of conventional dala
models. Furthermore, recent research in software object bases is aimed at developing
a uniform approach to the management of software artifacts produced in the software
development process. such as specifications, manuals, programs, and iest data, which
traditionally were managed in a very ad hoc and arbitrary manner.

Active ressarch and experimentation on cbject technologies in these diverse areas
suggest that there are some underlving, fundamental principles comnmen to a wide range
of software development activities. The first of the JSS5T {Japanese Society for Software
Scicnce and Technology) iniernational series of symposia focuses on this topic. The aim
of this symposium is to bring together leading researchers in the areas of object-oriented
programming, object-oriented databases, and software object bases. We hope to promote
an understanding of object technologics in a wider context and te make propress towards
the goal ol {inding betier frameworks lor future advanced software development.

The Program Commitiee received 92 submissions from 18 different countries in Eu-
rope, America, Asia, and Australia {including 31 domestic submissions}. Each submission
was reviewed by at least three members of the Program Committee and sometimes by
external referees. This volume contains 25 contributed papers and 6 invited papers pre-
sented at ibe syruposium. The contributed papers were selected by a highly competitive
process, hased on referee reporis and painstaking deliberations by members of the Pro-
gram Comrnitiee.

We would like to thank all the people who made the symposium possible, including
the object techuology researchers who submit their works te this symposium and all those
who contributed their expertise and time in reviewing the submissions.

Augnst 1993 Sheijiro Nishio, Akineri Yonezawa
Co-Chairs, Program Committee

BIBLIOTHEQUE DU CERIST

An Object-Oriented Query Model Supporiing Views

Suk I Yoo, Hai Jin Chang 251
{Irvited Paper) Refactoring and Aggregation

Ralph E. Johnson, William F. Opdyke 204
Transverse Activities: Abstractions in Object-Oriented Programming

Bent Bruun Eristensen e e 278

Dynamic Extensibility in a Statically-Compiled Object-Oriented Language
Jawshar Malhotra . . ., P 297

(Invited Paper} Managing Change in Persistent Object Systems

Malcolm P. Atkinson, D.4.K. Sjgberg, R. Movrison 315
An Object-Oriented Pattern Matching Lanpuage

Mare Gemis, Jan Paredaens 339
CLOG: A Class-Based Logic Language lor Object-Oriented Databases

Siu Cheung Hui, Angela Goh, Jose Rolencheril Raphel 336

{invited Paper} Name Management and Object Technology for Advanced
Software :
Alan Kaplan, Jack ©. Wileden 371

Constraints in Object-Oriented Analysis
Stefan Ven Baelen, Johan Lewi, Evic Stecgmans, Barl Swennen 303

Integration of the Tool (AWB} Supporting the 0* Method in the PCTE-
Based Software Enginesring Environmeut

Sai Peck Lee, Collefte Rolland 408
Minimizing Dependency on Class Structures with Adaptive Programs

Karl F. Liebevherr, Cun'Xigo oo 424
First Class Messages as First Class Continuations

Ken Wakita e e I 442

A Typing Systemn for a Caleulus of Objects

Vasco T. Vasconcelos, Marioc Tokoro 4€0
A Type Mechanism Based on Restricted CCS for Distributed Active

Ohjects

Ya;uno-ﬁHamda‘.._......,,.A_.H.H..._ 475

(Invited Paper) Adding Implicit Invocation to Languages: Three Approaches
David Notkin, David Gartan, William G. Griswold, Kevin Sullivan. . . . | 489

Requirements and Farly Expericnees in the Implementation of the SPADE
Repository using Object-Oriented Technology

Sergio Bandineill, Luciano Baresi, Alfonso Fuggetla, Luigi Levazze 511
Ohject-Oriented Formal Specification Development using VDM

Amarit Laorakpong, Motoshi Seeki L. 528

BIBLIOTHEQUE DU CERIST

(Invited Paper)
Uniting Functional and Object-Oriented Programming,

John Sargecant®

Department of Computer Science
University of Manchester
Manchester M13 9PL
Tel: +44 61 275 6202
Fax: 444 61 275 6236
jsBcs.mwan.ac.uk

Abstract

United Functions and Objects (UFO) is a general-purposc, implicitly parallel
langnage designed to allow a wide range of applications to be efficienily implemented
on a wide range of parallel machines while minimising the conceptual difficulties for
the programmecr. To achieve this, it draws on the experience gained in the Tnnctional
and object-oriented “worlds® and attempts to bring these worlds together m a
harmoenious fashion,

Mozt of this paper concentrates on examples which fllustrate how functions and
objects can indecd work together effectively. At the end, a number of issues raised
by early expericnce with the language are discussed.

1 Introduction

Modern computers arc paralle). Maost programming languages assume they are serial
Thereis an obvicus need to advance beyond data parallelisin and threads packages (useful
though those are). However, the various forms of implicit parallelism explored during
the 80s (functional, and/or parallel logic, concurrent object-oriented etc, [MeG+85,
Nik88, Agha86, Yon%0, Am87, UeCh90]) have, by and large, made little impact on real
use of parallel machines. One problem has been lack of convincing demonstrations of
perforance (although this is changing - see below). An equally important reason, in
the aulhor’s view, is thal many such languages have becen too narrowly focussed, and
have not incorporated the best of medern programming language technology.

UFQ is not a narrow “single paradigm” language. It has been influenced by a num-
ber of disparate language styles, leading to an interesting, and potentially very uscful,
synthesis. The main influences are as follows:

1.1 Dataflow languages, especially SISAL

SISAL [McG+85] is a pure functional language with strict semantics, primarily geared
towards numerical computation. It can be classed as a dataflow language, in that the

*During the eatly work on UFQ, the author was supported directly by the Department of Computer
Science. Recent work has been funded by Science and iingineering Research Conncil grant GR/J 11089,

BIBLIOTHEQUE DU CERIST

underlying computational model is a parailel dataflow one. Sequencing is by data de-
pendence only; parallelism is the default.

A great deal of work has been done on optimising SISAL for conventional super-
somputers, and recently substantial numeric SISAT: programs have been shown to run
Taster on muliiprocessor Crays than Foriran versions [Cann$2]. Functicnal languages
need not be inefficient, at least for such applications. However, SISAL is quite a limited
tanguage {e.g. it has no polymorphism. data abstraction, or higher-order features; multi-
dimensional arrays have to be represented as arrays of arrays). An update, SESALZ, has
been defined [Bo+91] which addresses some, but by no means all, of these Bmitations,

The original idea behind UFQ was to create a language based on SISAL which could
be used for a wider range of parallel applications, by #dding objects to encapsulate
updateable state. In fact, UFO has gone well beyond this original idea, but siill has a
suhset which (apart from syntactic differences) is very similar to SISAL.

1.2 Object-oriented languages, especially Eiffel

Issues of software reliability, reuse ete. are even more critical in parallel programming
than in the old sequential world. Tt rapidly became clear. thzt UFO must bave good
encapsulation and abstraclion mechanisms, and a flexible static type system, A survey of
ohject-oriented languages rapidly showed that Eiffel [Mey88, Mey92] was closest to what
we were looking for. In particular, the Eiffel type systemn, with its aegant conbination
of genericity and inheritance lonked like & good starting point.!

The UFG type system is therefore heavily influenced by Eiffel, although currently the
rules for redcfinition on inheritance are more resirictive, in order to aveid complex global
validity checking. Unfortunately, lo someone brought up in the functional/daiaflow
world, Eiffel looks extremely imperative and serizl, and so the runtime semantics of UFO
are very different.

1.3 Pure lazy functional languages, notably Haskell

{odern pure funciional langnages, for whicit Haskell [Hud+-81] is now the standard, are
characterised by higher-order functions, lazy evaluation, and strong static type systems
with marked similarities to that of Eifel.

Initially, UFO allowed constant function values, hut not full higher-order functions,
ag it was feared that the latter would over-complicate the type systern. Early expetience
showed that a partial parameterisation mechanism was useful, and gave no particular
problerna. Examples appear below.

Lazy evaluation, howevar, was never an eption. Although it improves the expres-
siveness of & pure functional language, lazy evaluation is incompatible with the presence
of updateable variables, as the execution order is almost impossible to visuvalizge. Fur-
thermore, the semantics require normal order ¢vahiation, which is sequential. To exploit
parallelism in a lazy language, it is uecessary to do strictness analysis, in much the same
way as it is necessary to do datafiow analysis to extract parallelism from an impera-
tive language. [l is atill unclear how successfully this can be done. The effect of lazy
svaluation can be simulated in UFO for those applications which really benefit from it,

1The author is firmly of the cpinicn thai static Lyping is a Good Thing, except for a few specialised
applications. By definition, the end user pever sées static type ervors, but may well see rantime ones!
Tkie prejudice has been strengthencd by early experience with UF(}, as explained in section 6.2,

BIBLIOTHEQUE DU CERIST

A further difficulty with laziness, at lcast in its most general form, is that it conflicts
with dynamic binding. In order to dynamically bind on an object (i.e. the first argu-
ment to a funclion), it is necessary o evaluate it. Few programmers outside the pure
FP community are likely to regard laziness as a higher priority than dynamic binding.
Compromise solutions are possible, such as using lenient, rather than lazy evaluation,
or restticling laziness to certain data structures, although such compromises are rather
against the spirii of pure lazy FP.

Another interesting aspect of Haskell is its type classes, which are a systematic way
of dealing with overleading, and a first step towards “proper” classes and inheritance.
For instance, there is a type class Eqg which includes al] types with equality defined, and
it has a subclass Ord of types which also define ordering. Type classes can be used to
impose constraints on geperic lypes.? For instance, the type of a sorling function is:

sort :: Ord a =» [al ->» [a]

“sort is of type list of a to list of a provided a is an instance of 0rd”. The ordering
operators (< ete.) can then be used within sort in the knowledge that any actual type
provided will have implementations of them.

However, the actual implementation of the operations is concentrated in the instances
{actual types) at the leaves of the class hicrarchy. It is not possible to wherit from an
instance, and so the normal OO practice of incrementally adding implementation down
the hierarchy is not possible. This is very restrictive and UF(O has a mere conventional
inheritance mechanism.

1.4 Concurrent object-based languages, particularly ABCL

In concurrent objeci-based languages, snch as early actor langnages [Agha86], POOL
[Am87], ABCL [Yon90], and HAL[HoAg92], a computation is expressed as a nctwork of
communicating objects, each of which manages its own local state. The design of UFO
was particularly influenced by ABCL.

There are considerable simnilaritics between UFO (stateful) objects and ABCL objects;
they provide mutual exclusion on method accesses, so ensuring coherent updating of the
instance variables. Incoming messages/method calls are queued if necessary. An object
may continue to exccute a method after i has returned a resnlt, and may in some
circumstances accept anoiher nessage before it has returned a result, An object may
selectively accept some messages and not others.

However, the differences are subslantial; the model underlying ABCL is one of com-
municating sequential threads. As a result there is a distinction between different sorts of
message passing (“past”, “present” and “future”) which is unnecessary in UFO. ABCL
also has a notion of pre-emption (“express messages”) which relies on the existence of
such threads, and secms inappropriate {and hard to implement} for UFQ.

More recently, it has become clear that Lhere are interesling similarities belween
AT [HoAg92] and UFO. Unlike earlier actor languages, HAL does have inheritance, and
it also has a single-assignment update scheme very similar to that of UFO 3

2Readers familiar with Eiffel will notice a similarily to constrained generics.
3The traditional actors’ primitive “become” is rather different from that described below, as it updates
the whole state at ance.

