
K. P. Jantke S. Kobayashi 
E. Tomita T. Yokomori (Eds.) 

Algorithmic 
Leaming Theory 

4th International Workshop, ALT '93 
Tokyo, Japan, November 8-10,1993 
Proceedings 

Springer-Verlag 
Berlin Heidelberg New York 
London Paris Tokyo 
Hong Kong BarccJona 
Budapest 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



Series Editm 

.Jjjrg Siekmann 
university uf Suarlan.ct 
German Research Center for Artlficial intelligence (DFKI) 
Sruhlsatzenhausweg 3 
D-66123 Saarbrücken, Germany 

Volume Editors 

Klaus P. Jantke 
Fachbcreich Informatik, MatJlcmatik und ~alUrwisseîlschaften 
Hochschll!e fUr Technik, Wimchaft und Kultur Leipzig 
Poslfach 66, D-042:'i1 Lcîp7ig, Gcr:nany 

Shigenobu Kobayashi 
Interdisciplinary Graduate School of Science and Engineering 
Tokyo Instilute of Technology 
4159 Nagatsuta, Midori-ku, Yokohama, 227 Japan 

Etsuji Tomita 
~epartment of Communications and SySiem Engineering 
Univers!1y of Eleerro-Communications 
1-5-J Chofugaoka, Chofu. Tokyo, 182 Japan 

Takashi Yokomori 
Department of Computer Science and Infonn. Math. 
Univcr~ity of Ekctro-Communicatjon~ 
1-5-1 Chofugaoka, Chofu. Tokyo, 182 Japan 

CR SubjCCl Cla~sifIeation (1991); L2.6, 1.2.3, El.l 

ISBN 3-540-57370-4 Springer-Vcrlag Berlin Heidelberg New YorK 
rSB~ 0-387-57370-4 Springe.--Verlag New York Berlin Heidelberg 

This work is subject ta copyright. Al! rights are rescrvcd, whcther the whole or fla.., o~ 
thc materi1l1 is conr:erneo, specificaUy the right~ of translation. Tcprinting, re-use of 
illustrations. recitation, broadcasling. reproduction on microfilms or in any other \\>ay, 
and srorage in data banks. Duplication of Ihis puhlication or parts thcreof î& pennittcd 
only llnder the provisions of the German Copyright Law of Septembel 9, 1965. in its 
currcnt version, and pcnnis~ion for use must always be obtained fmm Springer-Vcriag. 
Vi{,lation~ are liable for prosecution under the German Copyright Law. 

t: Springer-Verlag Berlin Heide1berg 1993 
Printed in Germany 

TypeBelting: Camera rcady by author 
Printing and binrling: Druckhall~ Beltz, Hemsbach/Bergstr. 
45/3140-543210- Printed on acid-frec paper 

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T



PREFACE 

This volume contains aU the papers tha,t wcre presented at the Fourth \Vorksbop on 
Algorithmic Leanling Theory (ALT '93), which was held at University of Electro­
Communications in Tokyo from November 8th to lOth, 1993. In addition la 3 invited 
papers, 29 papers weIe seleded from among 47 submitted extended abstracts, which 
rcprcsent the highest llllmber of papers submitted to an ALT workshop, exceeding 
46 which wcre rccorded in 1990. 

This workshop was the fourth in a series of ALT workshops, whose foeus is on 
t.heories of machine leaming and the application of such theories to real wadd lcarn­
ing probleITls. The AI,T workshops have becn he}d annually since 1990, sponsored 
by the Japanese Society for Artificial Intelligence. In the past, ALT alternated 
between an English-language international conference and a Japancse-langllage do­
mestic workshop. (ALT'90 was international whereas ALT'91 and ALT'92 were 
more or less domestic.) Starting wit.h ALT'93, aJl the future ALT workshops will 
be English-Ianguage international conferences, and rescarchers from throughout the 
world will be invited to present papers and to attend the conference. 

This year, we are fortunatc to înc1ude three invited papcrs by distinguished re­
searchers: "Identifying and Using Patterns in Sequential Data" by Dr. P. Laird, 
KASA Ames Research Center, "Learning Theory Toward Genome Informatics" by 
Prof. S. :<'1iyano, Kyushu University, and "Optimal Layered Learning : A PAC Ap­
proach ta IncrementaI Sampling" by Prof. S. 11ugglet.on, Oxford "Cniversity. It goes 
without saying that the three researchers are distinguished theoreticians, but at the 
same tîme the issues they a.ddres~ed were highly pra.ctically relevant.. lt is our hope 
that the future ALT workshops will continue to bring together researchers from 
both thcorctiçaJ and pradical sicles of macmne leaming to provide a forum for truly 
worthwhile research interactions. 

We would lîkc to cxtcnd our sinccre gratitude to the many individuaJs who made 
this workshop possible. These indude the invited speakers, al! the presenters and 
participants at the workshop, t.he members of the steering committee, the members 
of the pTOgTaIll commiitee, many referees wbo helped ensure the qllalîty of the ac­
cepted papers, and many oihers. 

Last but not least, we gratefully acknowledge the support of the Telecommuni­
cations Advancement Foundation. 

Tokyo, No\'ember 1993 

K.P, Jantke 
s. Kobayashi 
E. Tomita 
T. Yokomori 
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Identifying and Using Patterns in Sequential 
Data 

Philip Laird 

NASA Ames Research Center, Moffett Field, CA 94035-1000, U.S.A. 

Abstract. Whereas basic machine learning research has mostly viewed 
input data as an unordered random sample from a population, researchers 
have also studied learning from data whose input sequence follows a reg­
ular sequence. To do so requires that we regard the input dàta as a 
stream and identify regularities in the data values as they occur. In this 
brief survey l review three sequential-learning problems, examine sorne 
new, and not-so-new, algorithms for learning from sequences, and give 
applications for these methods. The three generic problems l discuss are: 

Predicting sequences of discrete symbols generated by stochastic pro­
cesses. 
Learning streams by extrapolation from a general mIe. 
Learning to predict time series. 

1 Introduction 

Algorithmic Learning Theory treats both the theory oflearning and the design of 
practical algorithms. Over the years many useful and interesting algorithms have 
derived from the assumption of data independence, that is, that the observations 
be considered an unordered set of examples. lndeed, we consider an algorithm 
that learns successfully regardless of the presentation order of the examples to 
be more robust than one that depends on assumptions about the sequence of 
examples. For example, given an algorithm that infers the grammatical structure 
of a language from examples of sentences and non-sentences, we would prefer that 
the examples not have to be given in order of size or in sorne· order depending 
on the structure of the grammar. 

In practice, however, the requirement of order independence is a strong 
one: much information can be conveyed by carefully choosing the sequence of 
examples-too much information for sorne theoretical models, where the learning 
problem becomes trivial if the presenter is free to choose the presentationorder. 
More significantly, many algorithms depend on the assumption that the exam­
pIes come from random sampling of a fixed population; such algorithms usually 
turn in poor results when this assumption fails to hold. 

In sorne applications the real problem is to learn the pattern responsible for 
generating the sequence, rather than to learn to attach a label to the individual 
examples. And in situations where examples arrive as a continuaI stream of 
symbols without any natural divisions or termination, we have little choice, at 
least initially, but to treat the incoming values as a sequence until enough is 
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known ta segment lt into its parts. In the next section l relate sorne situations l 
have encountered where sequential effects cannot be Qverlooked in the learning 
problem. 

This paper briefly surveys Iearning probiems and algorithms for sequential 
data. l distinguish among three kinds of learning prablems: stochastic sequence 
prediction, sequence extrapolation, and modeling time series. For each l review 
the characteristics of the problem, discuss sorne learning algorithms, and note 
several applications. In the conclusion l summarize sorne common features of 
these problems and the challenges for continuing research. 

2 Sorne Sequential-Learning Applications 

The descriptions below abstract sorne learning applications l have encountered 
where the sequential nature of the data js important to the problem. 

Events in Telemetry Streams 

Let {/(t), t ~ 1} be a stream of numbers obtained by sampling a physical process 
at regular time intervaIs. This stream is our only way of observing the pro cess 
since it is at a remote site. Most of the time this telemetry data conveys nothing 
of interest, but now and then an important event occurs. We recognize this fact 
by the pattern (or signature of successive values of I(t) over sorne fixed time 
interval. 

Rumans learn quickly to recognize and identify these significant events vi­
sually by looking at aplot of J(t). Suppose, however, we want to automate the 
process of signalingtheseinteresting events. We obtain samples of I(t) with la­
bels by an expert of the interesting events. Thereupon the process of training a 
program to recognize and label interesting events is apparently straightforward: 
any number of ~tatic classification algorithms can be used-Bayesian discrimi­
nants, neural networks, decision trees, etc. After training, the system is turned 
on, and as expected, it performs quite weil identifying these events. 

As time continues, however, we discover that it reports successively fewer 
events ofinterest. Tofind out why, we examine the telemetry stream and discover 
a smaH but significant trend in the signatures, due perhaps to physical wear 
or sorne hysteresis effect. Unless this trend can be identified and corrected, no 
amount of random sampling will make our classifier work for more than a short 
time. 

Engineering Monitoring and Maintenance 

Replacing parts of a complex piece of machinery can be done by scheduleor by 
need. Scheduled maintenance means that the part is replaced after a fixedtime 
period, regardless of its actualcondition. Other parts, especially expe.llsive ones, 
are removed and examined frequently and replaced as soon as they show signs of 
deterioration. Sometimes for very critica! parts, or for parts that are expensive 
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to remove, sensors are attached to the part to indicate its condition without the 
need to remove it. 

In practice, scheduled maintenance is expensive, and sensors are failure­
prone. As a result the true condition of a critical part must often be inferred 
indirectly from a combination of sen.sors and observations. To automate the 
process of monitoring critical components, we need to be able to learn from 
sequences of multiple noisy observations {Xt , t ::::: 1} when to replace the part. 

Clustering 

Clustering programs examine datasets and try to group the data into "mean­
ingful" classes from which useful conclusions can be drawn. For example, in an 
attempt to discover sorne of the structure hidden in a huge database of spectral 
measurements from stars and galaxies, a clustering program groups the many 
thousands of observations into about fifty distinct classes. Astronomers then 
study these classes, looking for common physical properties of the objects in the 
classes. 

The clustering program treats the observations as a set, and the time of 
the observation is not normally inc!uded as an attribute. But in actuality the 
observations occurred in time, and unexpected correlations between the mea­
surement times of the objects in a class need to be explained. In the case of 
spectral imaging, temporal correlations could result from the fact that consec­
utive observations tend to be directed at objects physically proximate to each 
other and hence closely related. The correlations could, however, be a conse­
quence of temporal effects in the use or adjustment of the apparatus rather than 
ofany astrophysical phenomena. 

Operator Training 

Drivers, pilots, and other operators of machinery are often trained on simulators. 
By presenting a realistic set of scenarios on a model of the machine, the trainee 
can develops the motor and judgment skills to operate safely without any risk 
that a serious accident will result from his errors. 

Often, however, the trainee also learns to predict the simulator. In one case 
a pilot learned that he could al ways avoid a collision in a simulated near-miss 
by reducing his altitude and banking to the right. This strategy might not be 
effective in a real encounter, so the designers of the simulator were worried that 
the pilots were learning the simulator rather than good piloting skills. They 
warned the trainee of the risk of relying on apparently consistent patterns in the 
simulator, and then reinforced this warning by "training" the pilot to expect a 
certain predictable response from the simulator-only to change this response 
suddenly after the pilot's expectations (and responses) had been conditioned. 
This tactic, however, does little to mitigate the human ability to learn sequential 
patterns, and this ability seriously limits the usefulness of simulators in training. 
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3 Models of Sequential Effeds 

The three models given below, while related, differ in the nature of the models 
and the learning objectives and hene;; call for different kinds of algorithms. 

Stochastic Sequence Prediction 

In the most basic form, the input sequence is an infinite stream of individual 
symbols with no meaning or internai structure. By assumption the symbols are 
produced by sorne unknown stochastic process that may or may not produce 
each symbol independently of its predecessors. The learning task is to construct 
a model of the process and to predict as accurately as possible each symbol in 
the stream. 

For example, consider the stream fragment, 

• 0' T + + + $ r. T + $ % T + + + + $ % 

After reading this sequence from left to right, most people would agree that 
the mostlikely symbol to follow is T.The basis for this opinion is the heuristic 
that the future tends to follow the past, and in both previous occurrences the 
character %has been succeeded by T. The confidence in this prediction may he 
low sinee the evidenee is meager, but in the absence of any knowledge about the 
process generating this stream, humans seem to default to this kind of statistical 
prediction. 

Tryingto predict beyond the next two or three symbols degenerates quickly 
iuto a simple frequency analysis~what one would predict with the assumption 
that al! symbols were selected indepeudently at random. Evidently thesequential 
information decays quite rapidly with time, something characteristic of state­
based stochastic models. In general we can model the observed sequence as a 
deterministic or. probabilistic function of sorne unobservable random state or 
"context". If the state were known, the prediction task would reduce to one 
where the symbols stream is a sequence of independent random variables. The 
task, then, is to model Goth the underlying state structure and the random 
process generating the symbols in each state. 

Discrete-state Markov models are à popular way of modeling state dependen­
cies. Hidden Markov models [31J consist of a discrete-state, discrete-time Markov 
process in which a multinol1ÙaI prOCeSS is attached to eachstate. Fair!y efficiellt 
offiine algorithms, known as reestimafion algorithms, (e.g, [39]) are known for 
finding models from observations. 

Markov trees are a different representation for Markov chaÎns. Ipstead of 
representing the individual states of the process, the tree represents transitions 
from the steadystate. (See Figure 1.) Each level of the tree represents a con­
text: theroot nodeignores ail previous input, nodes at the first level represent 
changes based on the single previous input symbol, and so forth. At any time 
a prediction canbe based on any of these contexts, and clifferent algorithms 
choose the appropriate context differently (e.g., [53J).Currently the best known 
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Fig. 1. A two-level Markov tree. The nodes are labeled by the inpnt symbols, the arcs 
by probabilities. The root represents the steady-state or empty context. 

general-purpose text compression algorithms are based on Markov trees ([5] sur­
veys these algorithms), but exactly why they consistently outperform Markov 
models and other techniques is not cléar. 

Finding an optimal Markov process is in general an intractable problem, but 
when the underlying dynamics of the state-transition pro cess are known, Kalman 
filters are an optimal procedure for estimating the state and making predictions 
([9]). When the input observations are numeric, one canestimate the parameters 
of and quantify the effects of noise quite precisely. 

We can point to a few of the many applications of stochastic sequence predic­
tion. Sorne are based on the dual relationship between learning and compression. 
Learning algorithms become compression algorithms by forming a model of the 
sequence, predicting the next input, and encoding the difference between what 
is predicted and what actually occurs. Only these differences need be retained: 
there is no need to encode the model if the uncompression process is determin­
istic and undergoes exactly the same learning, forming the same models at the 
same point in the stream. 

Conversely, a text-compression utility can be "taken from the box" and used 
as a learning algorithm Vitter and Krishnan [47, 48] used the Lempel-Ziv algo­
rithm for data compression as the learning element in a database module that 
predicts record requests during queries. If they predict a request for a record 
that is not online, a prefetch is issued in anticipation thereof. 

My colleague Ronald Saul and 1 [24] analyzed and generalized the Markov 
tree PPM algorithm for text compression [5]. Our variant, known as TDAG, is 
weil suited to a variety of tasks, such as managing the cache memory of a mass 
storage system and dynamically optimizing Prolog programs [23]). Others have 
since applied TDAG to trend analysis and protein sequence prediction. 

Hidden Markov models are widely used for speech recognition, and the care-
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fully engineered system due to Kai-fu Lee andhis colleagues [30] is one of the 
most successful examples. By drastically reducing the number of possibilities for 
the next input item, the learning element enabled themto advance substantially 
the state of the art in real-time speech recognition. 

When the input stream is naturally segmented into "sentences", formal­
language methods can also he used to predict shorter segments of the input 
stream. For example, Hermens and Schlimmer [19] used zero-reversible finite au­
tomata and a learning algorithm- due to Angluin [2] to help predict the user's 
keyhoard input in an electronic forms assistant; Stochastic context-free gram­
mars are a more powerful model, and with new algorithms for inferring such 
grammars from the sequences they generate, they are finding applications in 
predicting the secondary structure of proteins [12J. 

Let us note sorne of the distinctive features of stochastic sequence prediction 
algorithms. First, we can usuaUy characterize the number of degrees of freedom 
in the models by two numbers: the number of distinct symbols and the number of 
"states" (or the arder) of the mode!. The models are usually not aware of "noise" 
(random disturbances of the input sYlI!bols) because the noise.is incorporated 
lnto the model as modifications of the probabilities. On the other hand, the lack 
of a distinct noise model makes it hard to separate the signal from the noise, 
as sometimes can be done with other !earning methods, e.g:, the Kalman filter, 
where Gaussian white noise is assumed to affect both the dynamics and the 
observations. The ability of a model to compress the input stream serves as a 
useful comparative measure its predictive success. Finally, as for most forms of 
learning from examples, tbere i8 usually a tradeoff between the expressiveness of 
the mocle! and the number of observations required to converge to a mode!. 

Structured Sequence Extrapolation 

When the symbols in an incomingstream are not atomic but instead have known 
relationships among them, we can make stronger models than statistical ones. 
For example, consider the following sequence of strings: S = *, ! **?, ! !,.! **??, 
! ! ! *! ! *! **771, .... Although we can ignore the string boundaries and predict 
symbol by symbo!, we can al80 use what we know about the algehra of strings 
to look for regular substrudure in the sequence. Observe, for example, that the 
simple sequence R == *1°, *11, *?2, *73 , ••• forms a suffix of S. Hence we can 
write S = L· R, and then focus on the subsequence L. Aftera few moments, most 
people find a reasonab!y simple rule for Land then are able to make a reasonable 
prediction for the next string in this sequence: !!!! *! ! ! *! ! *! **??1? 

The knowledge that the elements of this sequence are strings, and thatstrings 
can he decomposed into substrings by the non-commutative concatenation oper­
ation, Îs the key to this approach. Other data types besides strings have similar 
properties: the sequence of integers 8, 9, 11, 15, 23, ... can be written as the sum 
of two simpler sequences 7, 7, " . and 1, 2, 4, 8, ... ; and the sequence of hinary 
lists 

S = (a, [a, al, [[a, al, a], [[[a, al, aJ, a] .. . ), 
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(where [,] is the ordered-pair operation) can be represented by the recurrence 
expression Sn+1 = [Sn, a]. The idea, then, is to extrapolate a sequence using 
prior knowledge about the data type of the elements in the sequence. 

Humans exhibit remarkable skil! at this task. "Tests of intelligence" often in­
clude integer extrapolation problems. Curiously, while there is usually no unique 
way to extrapolate a sequence (e.g., 1, 2, 3, 4, ... can continue with 5 or 97 or 
any other value depending on one's assumptions), there is typically a simplest 
or "most elegant" rule that most people will agree upon, or that, when shown to 
someorie unable to find it, results in expressions of "Oh, of course!" In the case 
of integer sequences, the underlying assumptions are that each element Sn+1 of 
the stream can be obtained from "a few" (one or two) of its predecessors (Sn, 
Sn-1) by means of only a "few" additions or multiplications, involving perhaps 
sorne small constants (0, ±1, ±2). 

Moreover, when more than one rule of roughly equal complexity can account 
for the values seen so far, humans often hedge their prediction by offering more 
than one, along with a rough confidence estimate. As the number of possible 
explanations diminish, the confidence in the remaining rules increases corre­
spondingly. Given that the input stream is deterministic, not stochastic, one can 
ask how these confidence estimates arise. 

Most of ail, that ail this seems to be a common skil! suggests this learn­
ing/ generalization ability is somehow fundamental. 

The number of principled algorithms for sequence extrapolation is small. 
Kotovsky and Simon [21] explored a model of human sequence extrapolation in 
the case of Thurstone let ter sequences. Pivar and Finkelstein [37] implemented a 
Lisp program that extrapolates integer sequences based on the so-called method 
of differences, which reportedly goes back to Gauss. This idea is based on the fact 
that a polynomial sequence {f(n) 1 n = 1,2, ... } reduces to a constant sequence 
{c, c, c, ... } by computing the successive k'th differences, defined recursively as 

Dkf(n) = Dk-d(n + 1) - Dk-d(n) 
Dof(n) = f(n), 

where k is the degree of the polynomial f. Then the matrix of first, second, ... , 
k 'th differences can be turned directly into a finite-difference representation or 
into a closed-form polynomial. Best of ail, this requires only k + 1 consecutive 
examples (values) of the polynomial. 

This simple method applies only for sequences that are polynomials, but 
sorne have tried to develop algorithms extending the method to incorporate 
factors, constants, and other options along with differences. But the need to 
s,earch through a number of possible ways to decompose the numbers limits the 
approach. With sorne clever heuristics, Feenstra (cited in [10]) used an extended 
differerrce method to achieve an "IQ" of about 160 on a published intelligence 
test. 

Genetic programming [22] has also been used to search for both polynomial 
forms and recurrence relations. While reasonably effective, this method has two 
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drawbacks: Tt requîres many.more examples than necessary, and it comes up 
with rules that are more complex than necessary. 

For otherthan numerical domains, few algorithms have been suggested than 
can be presented formallyand acnalyzed. Many researchers, however, have been 
aware of the need to study sequence extrapolation in a way that is not restricted 
to just one data type (see, for example, [36, 18]). Intuition says that essentially 
the same algorithm should work for strings, integers, lists, queues, etc., with 
speCifie differences that depend on the properties of t,."at. type. Since general 
algorithms are more useful than specialized ones, we are encouraged to look for 
extrapolation algorithms not restricted to a single data type. 

Recently my colleague Ronald SauI and 1 have developed such an algorithm 
[25J. The main features of this algorithm are the use of abstract data types, are-, 
cursive language for representing streams, and the ability to provide a confidence 
measure with each prediction. A data type is a set of expressions containing a 
finite set of generators (atoms) and closed under a finite.set of operators. Con­
gruences group the expressions into equivalence classes (e.g., (2 * 3) = (3 + 3). 
The algorithm depends on an efficient algorithm for factoring elements into 
subelements-e.g., writing the string abc as À • (abc), (a) . (be), (ab)(c), and 
(abc). À. There are a few additional restrictions, but the mode! covers most of 
the commonly used data types, incJuding multisorted ones like pairs of strîngs. 

The representation language is caUed elementary stream descriptions and 
does not depend on the type. Streams are recursively defined in one of three 
forms: 

- An initial-value form, giving the first element in the stream and an elemen­
tary description of its tail; 

- A functional form, expressingthe stream as a funetional combination of two 
or more streams, which are in turn defined by elementary descriptions; 

- A recursiveform, stating that the stream is recursively equar to a stream 
within whose definition it oceurs. 

For example, the Fibonacci stream F = (1,1,2,3,5, ... ) is defined: F = (1 1 F2 ), 

F2 = (1 ! Fs},Ps = (F4+ Fs), F4 = F, Ff; = F2 • 

The algorithm breaks eachincorning example into its parts and uses these 
either to create new descriptions Or to test existing ones. Descriptions that are 
inconsistent with the example are discarded. Hypotheses are stored in such as 
way that the simplest ones, especially the ones with the Jewest initial values, can 
be found efficiently. 

Another feature of the algorithm lS that it provides confidence estimates 
with its prediction of the next value, estimates that agree qualitatively with our 
own. \Ve make the simplifying assumption, that normally is not true, that any 
hypothesis H has a fixed probability PH of incorrectly predicting a symbol in 
the next input example. PH depends on H but not on the symbol or where it 
occurs in the input. The longer the string of correct predictions, the lower our 
estimate of PH, which we can compute explicitly withBayes' rule. 

We have done sorne analysis of the algorithm, including a proof of correctness 
(identification in the limit). For the special case of freely generated types, the 
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algorithm is efficient, running in time bounded by a polynomial in the sizes 
of the input values and revising its hypotheses in polynomial time. For more 
general types the algorithm is not efficient with respect to time or space. We 
have implemented the algorithm and are now experimenting with it. 

Sam pie size analysis for elementary stream descriptions is difficult. Our only 
formai result so far [26] is to show that, for the family of streams whose type 
is dotted pairs (non-associative pair algebra) with at most one initial value, the 
number of input values required in the worst case is exactly h + 3, where h is 
the height of the first example. Thus if the first example is an atomic value, 
say a, then 4 input examples are necessary and sufficient to identify the stream 
uniquely. This tends to confirm our observation that sample sizes required for 
sequence extrapolation is extremely small compared to statistical models. 

Because of the lack of good algorithms, we cannot point to many actual 
applications where sequence extrapolation has played an important role, but we 
can suggest applications where such an algorithm could be of value. 

In the late 1960's and early 1970's there was a flurry of interest in automatic 
programming, including programming by examples [17, 42, 43]., Sorne methods 
looked for patterns in successive examples that could be turned into recurrence 
relations and thence into recursive programs. For example, given the following 
examples of the function f on lists: 

f([al) = a 
f([a, bl) = b 

f([a, b, cl) = c 

Summers's program [43] finds two sequences: the sequence of input forms 
cons(a, nil),cons(a, cons(b, nil»,cons(a, cons(b, cons(c,nil»),and 
the sequence of value forms expressed in terms of the input x: car(x), car(cdr(x», 
car(cdr(cdr(x»). Then, using templates for certain kinds of recurrences, he 
derives the function (recall that nil is an atom in LISP): 

f(cons(X, Y)) =X if Y is an atom 

= f(Y) otherwise 

The ability to generalize from cons(a, b) to cons(X, Y) (where X and Y are 
variables) derives from his (arbitrary) assumption that the functional form f 
depends only on the structure of the input list, not on the specifie values. 

Shapiro's Model Inference System shifted the approach to programming by 
examples away from finding recurrences. His algorithm is based on generalizing 
and specializing formulas by instantiating variables to terms and adding clauses 
to conjunctive-form logical sentences. Since then, most of the research-notably, 
the work on inductive logic programming [38, 32, 35]- has concentrated on 
inductive generalization-generalizing specific formulas until they are general 
enough to cover the examples-instead of looking for patterns and recurrences. 
While inductive generalization by itself is usually a sufficient technique, it does 
not take advantage of informa;tion about the target function or relation that Îs 
revealed by sequential patterns. 
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For example, consider the arithmetic function F(X, Y) denned by the follow­
ing examples: 

IIX 010210321043 ... 
Y 00 1 0 100 12301 '" 
F 222232244225 ... 

. 

The structure of this concept becornes much more discernible if arranged so 
that the sequentia] patterns emerge: 

Iy 012 3 
X 
0 2222 
1 234 5' 
2 246 8 
3 25811 

The patterns F(X, 0) = 2, F(X, 1) = F(X -1,1) + 1, F(X, 2) = F(X -1,2) +2, 
... are al! easy extrapolations. Then by generalizing these· patterns (instead of 
the original examples) we obtain 

F(X, Y) = F(X - 1, Y) + Y, 

with an initial value of F(O, Y) = 2. Inductive programming currently suffers 
frorn the need for a very large sample Bize; by contrast, extrapolation requires 
srnall sample sizes. In the preceding example, fewer than twenty values of F 
sufficed ta infer a simple hypothesis for the concept. Whereas sequence extrap­
olation alone is not sufficient for programming by example, in c<Jhlbination with 
inductive generalization it may enable us to resurrect and incorporate the good 
ideas from sorne of the past research. 

Numerical discovery is the term often used to describe the probJem of find­
ing a simple foqnula to account for nurrierical data. For example, given (noisy) 
measurements of pressure, volume, and temperature, one looks for a "simple" 
relation J( P, V, T) ;;:: k that agrees "adequately" with the data. (Interpreting 
the quûted terms is the hardest part.) Current algorithrns feature regression and 
knowledge-based discovery techniques, such as [27, 14). 

At first glance sequence extrapolation seems not to apply, sinee the observa­
tions need not be in order and since they are noisy. But the formulas one seeks 
are generally rational functions with integer coefficients, and in many cases (e.g., 
economic measurements) one or more of the variables is evenly spaced (e.g., 
t ;;:: 1,2, ... ). Two kinds of noise affects sequence extrapolation: discrete noise, 
where an input symboI is occasionally changed to another, unrelated symbol, and 
continuo us noise, where numerical input values differ from their true values by 
an amount whose probability decreases with its. absolute value. The assumption 
of integral coefficients means, for example, that neither the formula l RI E = 1 
nor 21 RI E ;;:: 1 will fit the data exactly, but as IIlore input values accrue, oue's 
confidence in theone will outstrip that in the other. Mmeover, one can quant if y 
that confidence, as discussed ab ove. 
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As a final potential application, let us mention the large class of formaI 
program transformation techniques wherein a functional or logic program with 
undesirable features is transformed into one with desirable ones. For example, 
the unfold-fold technique suggested by Burstall and Darlington [7, 45] entails 
unfolding (i.e., partially evaluating) a recursive program some number of times, 
applying some equivalence transformations to the expanded form, and folding 
the program into a more efficient recursive form. Automating these transforma­
tions is difficult because a certain amount of insight into which transformatlons 
improve performance seems to be required. But many transformations, when 
applied to a sequence of unfoldings, lead to a sequence of forms that a sequence 
extrapolator can then fold back into a recursive form. Testing this resulting form 
for improved properties (speed, termination, correctness, etc.) is no small task, 
but the refolding pro cess itself can be instantiated as sequence extrapolation. 

Finally, we note some characteristics of the known sequence extrapolation al­
gorithms. Like stochastic sequences, stream descriptions have two ways to char­
acterize their degrees of freedom: the order (also called the delay, or latency), 
and what 1 shall call the breadth (not a standard term). The ord'èr measures how 
many preceding values determine the next value. The breadth depends on the 
representation and counts the number of substreams that are required to define 
the observed stream. (A close analogy would be the number of variables in a 
context-free grammar or the number of predicate symbols in a logic program.) 
As noted, there are two flavors of noise: metric and non-metric. Both are most 
damaging if they occur early in the stream, since then they are most likely to 
cause false hypotheses to be proposed and correct hypotheses to be rejected. 

As with stochastic sequences the effectiveness of an extrapolation algorithm 
can again be measured by how well it compresses a data stream. Note that a 
perfect extrapolator can compress an infinite stream into a finite number of bits, 
but with noise or a weak representation language, the infinite stream can only 
be compressed into a smaller, but still infinite, stream. 

Hypotheses are rules rather than descriptions of stochastic processes. Hence it 
is not clear how uniform convergence results can be applied to sequence extrapo­
lation. But just as stochastic models typically exhibit uniform convergence of the 
likelihood of the possible hypotheses to their means, the confidence (Bayesian 
posterior) of our models likewise appears to converge uniformly, although we 
have not done any analysis on this. 

Tirne Series 

A time series is a vector function of time (or other continuous scalar variable), 
X(t). Observations consist of samples of X at regular or irregular intervals, Xt, 
X t +rll X t +r21 •••• The learning task is to construct a model of X(t) so that 
certain predictions can be made about the course of its future values. 

The dream is that one can infer X t and use it to predict stock prices, 
weather patterns, cardiovascular functions, and similarly important series. How­
ever, without strong assumptions about X this problem is hopelessly difficult. 
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Nevertheless a number of Ïairly general and useful algorithme are available for 
inferring the properties of time series. 

Formai analysis of time series began about seventy-five years ago with efforts 
to separate the siationary (uncorrelated) component of the series from the trend 
(non-stationary, deterministiccomponent). An elegant theory developed for a 
familyof linear stationary models, known as ARMA (autoregressive moving­
average) models, that fit the data to the form 

m d 

X n =L:G;En-i + L:bjXn-j. 
i=l j=l 

Here En Îs a white-noise (uncorrelated) process that combines with a finite 
number of recurrent values of the series X to produce successive values. The 
"cleconvolution" problem i8 to infer the coefficients of this process ftom the input 
examples. This turns out to be possible because from the spectrum of the series 
one can estimate the autocorrelation function, and from that one can solve for 
the coefficients. An iterative linear modeling procedure developed by Box and 
J enkins [6J first applies differencing to subtract a polynomial non-stationary 
component of the series and then deconvolves, repeating the process until the 
best fit i8 obtained. 

Despite lts elegance, this "ARIMA" mode! often gives poor results with real 
data. Extensions to higher-order powers of X lead to integral equations that are 
difficult to solve. An analytical theory of inverse problems has arisen to study 
general mathematicalissues of extracting a function f from discrete values of 
Bf, where B isan operatorin a general family of operators [46]. Other nonlinear 
modeling methods such as regressive splines, Padé approximants, and ma.,'Cimum 
entrbpy are effective for specifie problems; [13] con tains good summaries of many 
of these. . 

Recently two research areas-.çhaos and neural networks-have contributed 
new ideas to the learning of time series. Statistical models decompose a station­
ary series into random and deterministic components: 

X =A*R+D, 

where R is a white-noise process and D is adeterministic pro cess (* is the con­
volution operator and A is a constant filter). A theorem due to Wold [54] states 
that,under very general conditions, any stationary sequence can be so decom­
posed. The nove! insight is the "deterministic" and "predictable" are not the 
same: chaos theory has demonstrated that most nonlinear deterministic systems 
exhibit complex behavior that is difficult to predict,in the sense that system 
trajectories diverge exponentially in time no matter how close their initial posi­
tion. Computing the behavior of such a system requires OCt) space and quickly 
exceeds the computational capacity of real machines. In the end such systems 
are as unpredictable as purely random·ones. 

Yet just as random processes have predictable properties (e.g., their mo­
ments), so do chaotic ones. For example, the well-known logistic recurrence, 
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Xn+l = 4Xn(1- X n ), yields a complex, uncorrelated time series. If 0::; Xl ::; 1, 
the values of X n remain between 0 and 1. Given successive values of this se­
quence, how could we detect that it is generated by a simple deterministic pro­
cess rather than a stochastic one? If we graph the return map X n +l versus X n , 

we obtain an extremely simple curve: a parabola. Since no random pro cess would 
exhibit such regularity, we are sure that the pro cess is deterministic. More gen­
erally, to distinguish a chaotic process from a random one, we can look for sorne 
deterministic function of the process. But how do we find such a property, and 
what can we do if the process is a mixture of random and chaotic pro cesses? 

As yet the answers to these questions are not fully known, but sorne intrigu­
ing hints have emerged. For sampled chaotic processes the k-th arder return map, 
Xn+l as a function of X n , ... , Xn-k+l enjoys sorne remarkable topological prop­
erties. Roughly speaking, as k increases from 1, there exists a value ka such that 
for ail k 2: ka the topological dimension of the surface of the return map embed­
ded in the k-dimensional space Rk is much smaller than k. The conditions are (1) 
that the time interval, or lag, between the measurements be large enough that 
the chaos has a chance to eliminate most of the correlations between values, and 
(2) that the values X(t) we observe be derived from those of the underlying pro­
cess Y t by a diffeomorphic coordinate transformation X(Y(t)). This so-called 
embedding dimension can be estimated numerically from the sample entropy of 
the sequence and serves as a measure of the inherent complexity (" degrees of 
freedom")of the underlying process. [44, 40]. Experimentally, graphical proce­
dures are often effective in determining a bound on the embedding dimension for 
chaotic time series [33, 34]. One cannot help being impressed when an apparently 
random process-be it water dripping from a faucet or the planet Pluto moving 
in a gravitational potential-is coaxed into showing us its basic simplicity. 

Scargle [41] has generalized Wold's theorem by further decomposing the de­
terministic component of a stationary time series: 

X = A * R + B * Y + C, 

w here Y is an uncorrelated chaotic series and C is a non-chaotic deterministic 
series. He is developing deconvolution techniques whereby the components of X 
can be estimated from the observations. 

Most algorithms for analyzing time series seek to predict the future course 
of the sequence, if not exactly, at least within specified ranges. Recently re­
searchers have develop a number of new approaches. Their effectiveness evi­
dently depends on the complexity of the underlying process and on whether 
the short-term or long-term behavior of the series is to be modeled. Weather­
prediction methods, for example, are very different depending on whether one 
wants to know the weather a few hours or days hence or whether one is in­
terested in three- to six month temperature trends. For short-term analysis, 
neural network methods have proved relatively successful, especially for high 
dimensional processes. The networks are trained to approximate the embedded 
surface Xt+l = f(Xt , ... , Xt-k+t) in "lag space" with a smooth, non-linear sur­
face. Successful architectures have included sigmoid and radial-basis nets [28, 52] 
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and finiie impulse response (FIR) nets [49], in which simple connections are re­
p!acedby FIR filters and trained using a parallel backpropagation technique. As 
with other connectionist methods, the effectiveness of the algorithms is difficult 
to quantify, and the complexity increases rapidly with the size of the problem. 

Recently a competition to predict the future of time series (51] received a 
numher of conneetionist entries, sorne quite successful and other not. Reportedly 
the successful ones required a lot of experimentation and analysis to determine 
the appropriate embedding delay, network structure, and training procedure for 
the task. In view of this per-problem empirical analysis, it. is still a stretch to 
refer to these procedures as "algorithms." . 

Besides connectionist models, researchers have proposedalgorithms that model 
smal! neighborhoods of the embedded. surface as hyperplanes. These so-called 
local-linear modeÎs are based on the idea that the surface is approximately !inear 
in a sufficiently smal! neighborhood. The hyperplane can be constructed using 
the nearest neighbors in Rk and used to project the vector (X", ... , Xn-k+l) 

to (Xn +!, ... , X n -k+2) [15, 8]. (The ARMA model isa "global" Iinear model in 
that a single hyperplane represents the entire surface.) The larger the approxi­
mating surface, the greater the scale of the prediction: a local model based on 
a very small neighborhood is best for short-term prediCtions, whereas a longer 
time scale requires a coarser neighborhood mode!. 

Let us review briefty sorne orthe characteristics of time-series algorithms. The 
order (delay, etc.) of the series-i.e., the number of immediately preceding values 
upon which the next one depends-seerns a fundamental value to establish. For 
a series obtained by sampling a continuous process, the lag or time between 
observations cau also affect the results: if it is too short, one may overlook 
the effects. of chaos that can eIiminate any apparent predictabilityover short 
timeintervals; if too long, one may not be able to extrapolate on a sufficiently 
short· time scale. Related is the question of overfitting: if we fit the observations 
too closely, our model may incorporate noise and other spurious effects as non­
random components of the series, leading to poor extrapolation results. One 
way that neural network models. avoid overfitting is by halting training when 
cross-validation scores (obtainedby testing the predictions against datawithheld 
from training) stop improving and begin to worsen [50J. Another is to prune 
away elements that contrihute little to reducing the error[29]. Still another 
is to build up the network Incrementally, increasing the size only when doing 
so signifu:antly improves the performance. The true issue here is how much 
generalization can justified by the data for a particular family of hypotheses; and 
while the fundamentals of this question are understood faidy weil for concept­
learning problems [3, 20], it is verymuch an openproblem for time series. 

Decomposition has been a recurring strategy for time-series analysis, whether 
separating the stationary from the non-stationary, the chaotic from the simple 
determini~tic, or one local neighborhood from another. Fiually, although we have 
fiot mentioned compression, the entropy of the underlying source process plays 
an important role in the ergodic theory of time series. Learning reduces the rate 
of increase in the information ptovided by the source process, and this in turn 
translates directly into greater compression of the sample. 
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4 Summary 

Although the three types of sequential learning problems are very different one 
from the other, we should at least pick out sorne common aspects: 

They try in sorne fashion to reduce the sequence to simpler subsequences: 
by identifying common contexts or states, by expressing the sequence as 
a combination of other sequences, or by separating random, chaotic, and 
simple deterministic contributions. 
They predict or represent the next input value based on a finite number of 
its recent predecessors. Determining the number of those predecessors (the 
order of the sequence) seems to be a crucial part of any algorithm. 
The success of the learning algorithm is measured by prediction accuracy, or 
equivalently, by the ability to compress the information in the examples. 
The notion of convergence of random variables applies, but it has not been 
exploited as effectively as in concept learning. For stochastic sequences the 
likelihood of the hypothesis converges to its limit value, so that maximum 
likelihood strategies are effective [4, 1]. For sequence extrapolation-which is 
not a random process-our interpretation of the performance or likelihood of 
a hypothesis depends on our forming sorne probabilistic assumptions about 
the occurrences of prediction errors. To do so may seem rather arbitrary 
since these errors are deterministic rather than probabilistic, but evidently 
we humans do something like that in order to estimate the confidence in 
our hypotheses. For time series problems, Bayesian and maximum entropy 
techniques converge rapidly and as such discriminate with great sensitivity 
among different models when strong models about the underlying pro cess 
are available. See [11], especially the article by G ul! [16]. 

l conclude with these observations. Concept-learning and clustering research 
has had its greatest impact with relatively simple, general-purpose algorithms 
(decision trees, networks, hierarchical clustering, etc.) that apply broadly in the 
absence of strong models about the data. Similarly l expect that the most in­
fluential sequence learning algorithms to be simple even if naive, effective if not 
rigorous, for divers types of data streams. For stochastic sequences we have such, 
but general-purpose algorithms are still lacking for the other two. Also, al! the 
algorithms and procedures described here are first-order algorithms-in effect, 
search optimization algorithms. Aside from obtaining confidence estimates, little 
research is given to learning the properties of the solutions themselves. 
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