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PREFACE

This volume contains all the papers that were presented at the Fourth Workshop on
Algorithmic Learning Theory (ALT 93), which was held at University of Electro-
Communications in Tokyo from November 8th to 106th, 1993, In addition to 3 invited
papers, 29 papers were selected from among 47 submitted extended abstracts, which
represent the highest number of papers submiited to an ALT workshop, exceeding
46 which were recorded in 1990,

This workshop was the fourth in a series of ALT workshops, whose focus is on
theories of machine learning and the application of such theories to real world learn-
ing problems. The ALT workshops have been held annually since 1990, sponsored
by the Japanese Society for Artificial Intelligence. In the past, ALT alternated
between an English-language international conference and a Japanese-language do-
mestic workshop. (ALT’90 was international whereas ALT’S1 and ALT92 were
more or less domestic.) Starting with ALT’93, all the future ALT workshops will
be English-language international conferences, and researchers from throughout the
world will be invited to present papers and to attend the conference.

This year, we are fortunate to include three invited papers by distinguished re-
searchers: “Identifying and Using Patterns in Sequential Data” by Dr. P. Laird,
NASA Ames Research Center, “Learning Theory Toward Genome Informatics™ by
Prof. 8. Miyano, Kyushu University, and “Optimal Layered Learning : A PAC Ap-
proach to Incremental Sampling” by Prof. S. Muggleton, Oxford University. It goes
without saying that the three researchers are distinguished theoreticians, but at the
same time the issncs they addressed were highly practically relevant. It is our hope
that the future ALT workshops will continue to bring together researchers from
both theoretical and practical sides of machine learning to provide a forum for truly
worthwhile research interactions.

We would like to extend our sineere gratitude to the many individuals whe made
this workshop possible. These include the invited speakers, all 1the presentiers and
participants at the workshop, the members of the steering committee, the members
of the program commiitee, many referees who helped ensure the quality of the ac-
cepted papers, and many others.

Last but not least, we gratefully acknowledge the support of the Telecommuni-
cations Advancement Foundation.

Takyo, November 1993

K.P. Jantke
3. Kobayashi
E. Tomita

T. Yokomori
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Identifying and Using Patterns in Sequential
Data

Philip Laird

NASA Ames Research Center, Maoflett Field, CA 94035-1000, TU.5.A.

Abstract. Whereas basic machine learning research has mostly viewed
input data as an nnordcred random sample from a population, researchers
have also studied learning from data whose input sequence follows a reg-
ular sequence. To do so requires that we regard the input data as a
stream and identify regularities in the data values as they occur. In this
brief survey T review three sequential-learning problems, examine some
new, and not-so-new, glgorithms for learning from sequences, and give
applications for these methods. The three generic problems 1 discuss are:

— Predicting sequences of discrete symbols generated by stochastic pro-

cesses.
— Learning streams by extrapolation from a general rule.
— Learning to predict time series.

1 Introduction

Algorithmic Learning Theory treais both the theory of learning and the design of
practical algorithms, Over the vears many useful and interesting algorithms have
derived from the assumption of data independence, that is, that the observations
be considered an unordered set of examples. Indeed, we consider an algorithm
that learns successfully regardless of the preseniation order of the examples to
be more robust than one that depends on assumpiions about the sequence of
examples. For example, given an algorithin that infers the grammatical structure
of a language from examples of sentences and non-sentences, we would prefer that
the examples nol have to be given in order of size or in some order depending
on the structure of the grammar,

In practice, however, the requirement of order independence is a sirong
one: much information can be conveyed by carefully choosing the scquence of
examples—too much information for some theoretical models, where Lhe learning
problem becomes trivial if the presenter is free to choose the presentation order.
More significantly, many algorithms depend on the assumption that the exam-
ples come from random sanpling of a fixed population; such algorithms usually
turn in poor results when this assumption fails to hold.

In some applications the real problem is to learn the pattern responsible for
generaling the sequence, rather than to learn to attach a label to the individual
examples. And in situations where examples arrive as a continual stream of
symbols without any natural divisions or termination, we have little choice, at
least injtially, but to treat the incoming values as a sequence until enough is
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known to segraent it into ibs paris. In the nexs section I relale sone sivuations !
hiave encountered where sequential effects cannot be overlooked in the learning
problem.

This paper briefly surveys learning probilems and. algerithms for sequential
data. I distinguish among three kinds of learning problems: stochastic sequence
prediction, sequence extrapolation, and modeling time series. For each | review
the characteristics of the problem, discuss some learning algorithms, and note
several applicatiors. In the conclusion I summarize some commeon features of
these problems and the challenges for continuing research,

2 Some Sequential-Learning Applications

The descriptions below abstract some learning applications I have encountered
where the sequential nature of the data is important to the problem.

Events in Telemetry Streams

Let {f(t},¢ > 1} be a stream of numbers obtained by sampling a physical process
at reguiar time intervals. This stream is our only way of observing the process
since it, is at a remote site. Most of the time this telemetry data conveys nothing
of interest, but now and then an important event occurs. We recognize this fact
by the pattern (or signature of successive values of f(t) over some fixed time
interval.

Hurians learn quickly to recognize and identify these significant events vi-
sually by looking at a plot of f(t). Suppose, however, we want to automate the
process of signaling these interesting events. We obtain samples of f(t) with la-
bels by an expert of the interesting events. Thereupon the process of training a
program te recognize and label interesting events is apparently straightforward:
any number of static ciassification algorithms can be wsed—Bayesian diserimi-
uants, neural networks, decision trees, etc. Afser training, the system is turned
on, and as expected, it performs quite well identifying these events.

As time continues, however, we discover that it reports successively fewer
events of interest. 'To find out why, we examine the telemetry stream and discover
a small but siguificant trend in the signatures, due peshaps to physical wear
or some hysteresis effect. Tinless this trend can be identified and corrected, no
amount of random sampling will make our classifier work for more thar a short
time. '

Engineering l‘.‘lonitoring and Maintenance

Replacing parts of a complex piece of machinery can be done by schedule or by
need. Scheduled maintenance means that the part is replaced afier & fixed time
period, regardless of its actual condition. Qther parts, especially expensive ones,
are rermoved and examined frequently and replaced as soon as they show signs of
deterioration. Sometimes for very critical paris, or for parts that are cxpensive
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t0 remove, sensors are attached to the part to indicate its condition without the
need to remove it.

In practice, scheduled maintenance is expensive, and sensors are failure-
prone. As a result the true condition of a critical part must often be inferred
indirectly from a combination of sensors and observations. ‘To automate the
process of monitoring critical components, we need to be able to learn from
sequences ol multiple noisy observations {X;,{ > 1} when to replace the part.

Clustering

Cluslering programs examine datasets and try to group the data into “mean-
ingful” classes from which useful conclusions can be drawn. For example, in an
attermnpt to discover some of the structure hidden in a huge dalabase of spectral
measuremnents from siars and galaxies, a clustering program groups the many
thousands of observations into about {ifty distinct classes. Asironomers then
study these classes, looking for commen physical properlies of the objects in the
elasses.

The clustering pirogram treats the observalions as a set, and the time of
the cbservation is not normally included as an atiribute. But in actuality the
observations occurred in time, and unexpected correlations between the rnea-
surement times of the objects in a class need to be explained, In the case of
spectral imagiog, temporal correlations could result from the fact that consec-
utive observations tend to be directed at objects physically proximate to each
other and hence closely related. L'he corrclations could, however, be a conse-
quence of temporal effects in the use or adjustment of the apparatus rather than
of any astrophysical phenomena.

Operator Training

Drivers, pilots, and olher operators ol machinery are often trained on simulators.
By presenting a realistic set of scenarios on a model of the machine, the trainee
can develops the motor and judgment skills to operate safely without any risk
that a serious accident will result from his crrors.

Often, however, the trainee also learns to predict the simulator. In one case
a pilot learned that he could always avoid a collision in a simuolated near-miiss
by reducing his altitude and banking to the right. This strategy might not be
effective in a real encounier, so the designers of the simulator were worried that
the pilots were learning the simulator rather than good piloting skills. ‘Chey
warned the trainee of the risk of relying on apparently consistent patterns in the
simulator, and then reinforced this warning by “training” the pilot to expect a
certain predictable response from the simulator- only to change this response
suddenly after the pilot’s expectations (and responses) had been conditioned.
This tactic, however, does liltle to mitigate the human ability to learn sequential
patterns, and this ability seriously limits the aselulness of simulators in training.
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2 Models of Sequential Effecis

The three models given below, while relased, differ in the nature of the models
and the leamning objectives and hence call for different kinds of algorithrns.

Stochastic Sequence Prediction

in the most basic form, the input sequence is an infinite stream of individua!
symbols with no meaning or internal structure. By assumption the symbols are
produced by some unknown stochastic process that may or may not produce
sach symbol independently of its predecessors. The learning task is to construct
a model of the process and to predict as accurately as possible sach symbol in
the stream. '

For example, consider the stream fragment,

LT+ + S AT HEY T+ 8%

After reading thiz sequence from left to right, mest people would agrec thai
the most likely symbol to follow is T. The basis for this apinion is the heuristic
that the future tends to follow the past, and in both previous occurrences the
character % has been succeeded by T. The confidence in this prediction may be
low since the evidence is meager, but in the absence of any knowledge about the
process generating this stream, humans seem to default to this kind of statistical
prediction. ' ' '

Trying to predict beyond the next two or three symbols degenerates quickly
into a simple frequency analysis—what one would predict with the assumption
that all symbols were selected independently at random. Evidently the sequential
information decays quite rapidly with time, something characteristic of state-
based stochastic models. In general we can model the ohserved sequence as a
delerninistic or probabilisiic funciion of some unobservable random state or
“context”. If the state were known, the prediction task would reduce to one
where the symbols stream is a sequence of independent random variables. The
task, then, is to model both the underlying state siructure and the random
process generating the symbols in each state.

Discrete-state Markov models are a popular way of modeling state dependen-
cies. Hidden Markov models [31] cousist of a discrete-state, discrete-time Markov
process in which a multinomial process is attached to each state, Fairly eflicient
offfine algorithings, known as resstimation algorithms, (e.g, [39]) are known for
finding models from observations. :

Markov trees are a different represcntation for Markov chains. Instead of
representing the individual states of the process, the tree represents transitions
from the steady state. (See Figure 1.) Each levei of the tree represents a con-
text: the root node ignores all previous input, nodes at the first level represent
changes based on the single previens input symbol, and so forth. At any time
a prediction can be based on any of these contexts, and different algorithms
choose the appropriate contexi differently (e.g., [53]). Currently the best known
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Fig.1. A two-level Markov tree. The nodes ure labeled by the input symbols, the arcs
by probabilities. The root represents the steady-state or empty context.

general-purpose text compression algorithms are based on Markov trees ([5] sur-
veys these algorithms), but exactly why they consistently outperform Markov
models and other techniques is not clear.

Finding an optimal Markov process is in general an intractable problem, but
when the underlying dynamics of the stale-transition process are known, Kalman
filters are an optimal procedure for estimaling Lhe state and making predictions
(19]). When the input observations are numeric, one can estimate the parameters
of and quanlify the effects of naise quite precisely.

We can point to a few of the many applications of stochastic sequence predic-
tion. Some are based on the dual relationship helween learning and compression.
Learning algorithms become compression algorithms by forming a model of the
sequence, predicting the next input, and encoeding the difference between what
is predicted and what actually occurs. Only these differences need be retained:
there is no need to encode the model if the uncompression process is determin-
istic and undergoes exactly the same learning, forming the same models at the
same poini in the slrearn.

Conversely, a fext-compression utility can be “taken from ihe box” and used
as a learning algorithm Vitter and Krishnan [47, 48] used the Lempel-Ziv algo-
rithm for data compression as the learning clement in a database module that
predicts record requests during queries. If they predict a request for a record
that is not online, a prefetch is issued in anticipation thereof.

My colleague Ronald Saul and I [24] analyzed and generalized the Markov
tree PPM algorithm for texi compression [5]. Our variant, known as TDAG, is
well suited to a variety of tasks, such as managing the eache memory of a mass
storage system and dynamically optimizing Prolog programs [23]). Others have
since applicd TDAG to trend analysis and protein sequence prediction.

idden Markov models are widely used for speech recognition., and the care-
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fully engineered system due to Hai-fu Lee and his colleagues 30] is vne of the
rnost, successful exarples. By drastically reducing the number of possibilitics for
the next input item, the learning clement enabled them to advance substantiaily
the state of the art in real-time speech recognition.

When the input stream is naturally segmented into “sentences”, formal-
lazguage methods can also be used to predict shorter segments of the input
stream. For example, Hermens and Schlimmer [19] used zero-reversible finite an-
tomata and a learning algorithm due to Angluin {2] to help predict the user’s
keyboard input in an electrenic forms assistant. Stochastic context-free gram-
mars are a more powerful model, and with new algorithms for inferring such
graminars from the sequences they generate, they are finding applications in
predicting the secondary structure of proteins [12].

Let us nole some of the distinctive features of stochastic sequence prediction
algorithms. First, we can usnally characterize the number of degrees of [reedom
in the models by two numbers: the number of distinct symbols and the number of
“states” (or the order) of the model. The models are usually not aware of “noise”
{random disturbances of the input symbols) becanse the noise,is incorporated
into the model as modifications of the probabilities. On the other hand, the lack
of a disiinct noise model makes ih hard to separate the signal from the noise,
as sometimes can be done with other learning methods, e.g., the Kalman filter,
where Gaussian white noise is assumed to affect both the dynamics and the
observations. The ability of a model to compress the input stream serves as a
usgeful comparative measure its predictive success. Finally, as for most forms of
learning from examples, there is usually a tradeoff between the expressiveness of
the model and the number of observations required to converge to a model.

Ziructured Segquence Exirapolation

When the symbols in an incoming stream are not atomic but instead have known
relationships among them, we can make stronger models than statistical ones.
For example, consider the following sequence of strings: § = *, i4#7, 1% %77,
it txrax®?2 . Although we can ignore the string boundaries and predict
aymbol by symbol, we can also use what we know about the algebra of strings
to look for regular substructure in the sequence. Observe, for examgple, that the
simple sequence B = #79, #71, #7273 forms a suffix of 5. Tence we can
write § = [.- K, and then focus on the subsequence L. After a few moments, most
people find a reasonably sim pIe_ rule for L and then are ahle to make & reasonable
prediction for the next string in this sequencer 111 1k 1 I*1 0 k7277,

The knowledge that the elements of this sequence are strings, and that strings
can be decomposed into substrings by the non-commutative concatenation oper-
ation, is the key to this approach. Other data types besides strings have similar
properties: the sequence of integers 8, 9, 11, 15, 23, .. .can be written as the sum
of two simpler sequences 7, 7, ...and 1, 2. 4, 8, ...; and the sequence of hinary
lists

8 = {a,[a, a];{[a, a], o], [{[o, a], 2], a] - .
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{where [,] is the ordered-pair operation} can be represented by the recurrence
expression S,+1 — [S,.,a]. The idea, then, is to extrapolate a sequence using
prior knowledge about the data type of the elements in the sequence.

Mumans exhibit remarkable skill at this task. “Tests of intelligence” oflen in-
clude integer extrapolation problems. Curiously, while there is usually no unique
way to extrapolate a sequence (e.g., 1, 2, 3, 4, ...can conlinue with 5 or 97 or
any other value depending on one’s assumnptions), there Is typically a simplest
or “most elegant” rule that most people will agree upon, or that, when shown to
someotie unable 1o find it, results in expressions of “Oh, of course!” In the case
of integer sequences, the underlying assumptions are that each clement 5, of
the stream can be obtained from “a few” {one or two) of its predecessors {5,
5,.-1) by means of only a “few” additions or multiplications, involving perhaps
some small constants (0, +1, £2).

Moreover, when motre than one rule of roughly equal complexity can account
for the values seen so far, humans often hedge their prediction by offering more
than one, along with a rough confidence estimate. As the number of possible
explanations diminish, the confidence in the remaining rules increases cotre-
spondingly. Given that the input stream is deterministic, not stochastic, one can
ask how these confidence estimates arise.

Mest of all, that all this seems to be a common skill suggests this learn-
ing/generalization ability is somehow fundamental. '

The number of principled algorithmns [or sequence extrapolation is small.
Kotovsky and Simon [21] explored a model of human sequence extrapolation in
the case of Thurstone letter sequences. Pivar and Finkelstein [37] implemented a
Lisp program that extrapolates integer sequences bagsed on the so-called method
of differenees, which reportedly goes back to Gauss. This idea is based on the fact
that a polynomial sequence {f(n)|n = 1,2,...} reduces to a constant sequence
{e, ¢, ¢, ...} by computing the successive &’th differences, defined recursively as

Def(n) = Deoy fn + 1) = Dy f(n)
Do f(n) = f(n),

where k i3 the degree of the polynomial f. Then the matrix of first, second, ...,
&’th differences can be turned directly into a finite-difference representation or
into a closed-form polynomial. Best of all, this requires only k + 1 consecutive
examples (values) of the polynomial.

This simple method applies only for sequences that are polynomials, but
some have tried to develop algorithms extending the method to incorporate
factors, constants, and other options along with differences. But the need to
search Lthrough a number of possible ways to decompose the nurnbers limits the
approach. With sorme clever heuristics, Feenstra {ciled in [10]) used an extended
difference method to achieve an “IQ” of about 160 on a published intelligence
test.

Genetic programming [22] has also been used to search for both polynomial
forms and recurrence relations. While reasonably effective, this method has two
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drawbacks: i reguires many more examples han necessary, and it comes up
with rules that are more complex than necessary. '

For other than munerical domains, few algorithms have becn suggested than
can be presenied formally and analyzed. Many researchers, however, have heen
aware of the need to study sequence extrapolation in 2 way that is not restricted
to just ome data type {see, for example, [36, 18]). Intuition says that essentially
the same algorithm should work for strings, integers, lists, gueves, ete., with
specific differences that depend on the przoperties of that type. Since general
algorithms are iore useful than specialized ones, we are encouraged to look far
extrapolation algorithms not restricted to a single data type.

Recently my colleague Ronald Saul and I have developed such an algorithm
[25]. The main features of this algorithm are the use of abstracl data types, a re-
cursive language for representing streamns, and the ability to provide a confidence
meastre with each prediction. A data type is a set of expressions containing a
finite set of generators {atoms) and closed under a finite set of aperators. Con-
gruences group the expressions into equivalence classes (e.g., (2% 3) = (3 4 3}
The algorithm depends on an cfficient algorithm for factoring elements into
subelements—e.g., writing the string abe as A - (abe}, (a) - (be), (eb){c), and
{(abe) « A. There are a few additional restrictions, but the model covers most of
the commonly used data types, including multisorted ones like pairs of strings.

The representation language is called elementary stream descriptions and
does not depend on the type. Streams are recursively defined in one of three
forms:

— An initial-value form, giving the first element in the siream and an clemen-
tary description of its tail;

— A functional form, expressing the stream as a functional combination of two
or more streams, which are in turn defined by elementary descriptions;

— A recursive form, stating that the stream is recursively equal to a stream
within whose definition it occurs.

For example, the Fibonacei stream F = {1,1,2,3,5,...) is defined: F' = {1 | ¥u},
= (l l Fg),_ s = (F.;_—}- F5), E,=F, Fs = Fa.

The algorithm breaks edch incoming example inte its paris and uses these
either to create new descriptions or to test existing ones. Descriplions that are
inconsistent with the example are discarded. Hypotheses ave stored in such as
way that the simplest ones, especially the ones with the fewest initial values, can
be found efficiently. '

Another feature of the algorithm is that it provides confidence estimates
with its prediction of the next value, estimates that agree qualitatively with ont
own. We make the simplifying assumption, that normally is not true, that any
hypothesis A has a fixed probability pg of incorrectly predicting a symbol in
the next input example. pr depends on H but not on the symbol or where it
gceurs in the input. The longer the string of correcl predictions, the lower our
estimate of pg, which we can compute explicitly with Bayes® rule.

We have done some analysis of the aigorithm, including a proof of correctness
{identification in the lz'gmit:). For the special case of freely generated types, the
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algorithm is efficient, running in time bounded by a polynomial in the sizes
of the input values and revising its hypotheses in polynomial time. For mare
general types the algorithm is not efficient with respect to time or space. We
have implemenied the algorithm and are now experimenting with it.

Sample size analysis for elementary stream descriptions is difficult. Our only
formal resull, so far [26] is to show that, for the family of streamns whose type
is dotted pairs (non-associative pair algebra) with at most one initial value, the
number of input values required in the worst case is exactly h + 3, where A is
the height of the first example. Thus if the first example is an atomic value,
say a, then 4 input examples arc necessary and sufficient to identify the stream
uniquely. This tends to confirmn our observation that sample sizes required for
sequence extrapolation is extremely small compared to statistical models.

Because of the lack of good algorithins, we cannot point to many actual
applications where sequence extrapolation has played an important role, but we
can suggest applications where such an algorithm could be of value.

In the late 1960°s and early 1970%s there was a flurry of interest in automatic
programming, including programming by examples [17, 42, 43]. Some methods
looked for pallerns in successive examples that could be turned into recurrence
relations and thence into recursive programs. For example, given the following
examples of the function f on lists:

f(la) = a
f([aa b]) =b
f([a, b, ('D =<

Summers’s program [43] finds two scquences: the sequence of input forms
cons{a, nil),cons{a, cons{b, nil)),cons{a, cons(h, cons(c,nil))),and
the sequence of value forms expressed in terms of the input 2: car(z), car(cdr(x) ),
car(cdr(cdr{x))). Then, using templates for certain kinds of recurrences, he
derives the function (recall that nil is an atom in LISP):

fleons(X,Y)) =X ifY isan atom
= f(Y) otherwise

‘T'he ahility to generalize from cons(a, b) to cons(X,Y) (where X and ¥ are
variables) derives from his (arbitrary) assumption that the functional form f
depends only on the structure of the input list, not on the specific values.

Shapiro's Model Inference System shifted the approach to programming by
examples away from finding recurrences. His algorithm is based on generalizing
and specializing formulas by instantiating variables to terms and adding clauses
to conjunciive-form logical sentences. Since then, mesi of the research—notably,
the work on inductive logic programming [38, 32, 35] — has concentrated on
inductive generalization—generalizing specific formulas until they are general
enough to cover the examples— instead of looking for patierns and recurrences,
While inductive gencralization by itself is usually a sufficient technique, it does
not take advantage of information about the target function or relation that is
revealed by sequential patterns.
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For example, consider the arithmetic function (X, ¥} defined by the “ollow-
ing examples: :

1Xj010210221043..,
[Y0010L0012301“;

|£E29?32244205

The structure of this concept becomes much more discernibie i arranged so
that the sequential patterns. emerge:

3123

0222 2
112345
121246 8
2

The patterns F{X,0j =2, (X, } = F{(X-1,1)+1, F(X,2) = F(X—-1,2)+2,
...are all easy extrapolations. Then by generalizing these paiterns (instead of
the original examples) we ebtain

FX,¥)=F(X -1,Y)+7,

with an initial value of #(1,Y) = 2. Inductive programming currently suffers
rom the need for a very large sample size; by contrast, extrapolation requires
small sample sizes. ln the preceding example, fewer Lhan twenty values of F'
safficed to infer a simple hypothesis for the concept. Whereas sequence extrap-
olation alone ie not sufficient for programming by example, ia cornbination with
inductive generalization it may enable us to resurrect and inecorporate the good
idcas from some of the past rescarch. :

Numerical discovery is the term often used to describe the problem of find-
ing a simple formula to eccount for numerical data. For example, given (noisy)
measurements of pressure, volume, and temperature, cne looks for a “simple”
relation f(P,V,T) = % that agrees “adequately” with the data. (Interpreting
the quoted terms is the hardest part.) Current algorithins feature regression and
knowledge-based discovery techriques, such as {27, 14]. '

At first glance sequence extrapolation seems not to apply, since the observa-
tions need nof be in order and since they are noisy. But the formulas one seeks
are generally rational functions with integer coeflicients, and in many cases {c.g.,
econornic measurements) one or more of the variables is evenly spaced (e.g.,
t = 1,2,...). Two kinds of noise affects sequence extrapolation: discrete noise,
where an input symbol is occasionally changed to another, unrelated symbol, and
continuous noise, where numerical input values differ {rom their true vaiues by
an amount whose probability decreases with its absolute value. The assumption
of integral coefficients means, for examyple, that neither the formula TR/E =1
nor 2IR/E = 1 will fit the data exactly, but as more input values accrue, one’s
confidence in the one will outstrip that in the other. Mozeover, one can quantify
thai confidence, as discussed above, '
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As a final potential application, let us mention the large class of formal
program transformation techniques wherein a functional or logic program with
undesirable features is fransformed into one with desirable ones. For example,
the unfold-fold technique suggested by Burstall and Darlington (7, 45] entails
unfolding (i.e., partially evaluating) a recursive program some number of times,
applying some equivalence transformations to the expanded form, and folding
the program into a more eflicient recursive form. Automating these transforma-
tions is difficult because a certain amount of insight into which transformations
improve performance seems to be required. But many transformations, when
applied to a sequence of unfoldings, lead to a sequence of forms that a sequence
extrapolator can then fold back into a recursive form. Testing 1his resulting form
for improved properties (speed, termination, correctness, ete.) is no small task,
but the refolding process itself can be instantiated as sequence extrapolation,

Finally, we note some characteristics of the known sequence extrapolation al-
gorithms. Like stochastic sequences, stream descriptions have two ways to char-
acterize their degrees of freedem: the order (also called the delay, or latency),
and what 1 shall call the breadth (not a standard term). The order measurcs how
many preceding values deterinine the next vahie. The breadth depends on the
representation and counts the number of substrearns that are required to define
the observed stream. (A close analogy would be the number of variakles in a
contexl-free grammar ot the number of predicate symbols in a logic program.)
As noted, there are two flavors of noise: metric and non-metric. Both are most
damaging if they occur early in the stream, since then they are most likely to
cause false hypotheses Lo be proposed and correct hypotheses to be rejected.

As with stochastic sequences the effectiveness of an exirapolation algorithm
can again be measured by how well it compresses a data stream. Note that a
perfect extrapolator can compress an infinite stream into a finite number of bits,
but with noise or a weak representation language, the infinite stream can only
be compressed into a smaller, bui still infinite, stream.

Hypotheses are rules rather than descriptions of stochastic processes. Tence it
is not clear how uniform convergence results can be applied to secquence extrapo-
lation. But just as stochastic models typically exhibit uniform convergence of the
likelihood of the possible hypotheses to their means, the confidence (Bayesian
posterior) of our models likewise appears to converge nniformly, although we
have pol done any analysis on this,

Time Series

A time series is a vector function of time {or other continuous scalar variable),
X(2). Observations consist of samples of X at regular or irregular intervals, X;,
Xigrrs Xidrgy -+-- Lhe learniog task is to construct a model of X(t) so that
certain predictions can be made aboul the course of iis fulure values.

The dream is that one can infer X, and use it to predict stock prices,
weather patterns, cardiovascular functions, and similarly imperiant series. How-
ever, without strong assumptions about X this problem is hopelessly difficult.
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Nevertheless a number of fairly general and useful algorithms are availahle for
inferring the properties of time series,

Formal! analysis of time series began about seventy-five years ago with efforts
to separate the stationary (uncorrelated) component of the series from the trend
{non-stationary, deterministic component). An elegant theory developed for a
family of linear stationary models, known as ARMA (autoregressive moving-
average) wmodels, that fit the data to the form

X, fj n_,+2bxn -

lere i, is a white-noise {uncorrelated) process that combines with a finite
number of recurrent values of the series X to produce successive values. The
“deconvolution” problem is to infer the coefficients of this process from Lhe input
examples. This turns ont to be possible because from the spectrum of the series
one can estimate the autocorrelation function, and from that one can sclve for
the coeflicients. An iterative linear modeling procedure developed by Box and
Jenkins [6] first applies differenting to subtract a polynomial non-stationary
component of the series and then deconvolves, repeating the process untll the
hest fit is obtained.

Despite tts elegance, this “ARTMA” model often gives poor results with real
data. Extensions te higher-order powers of X lead to integral equations thai are
difficult to solve. An analytical thesry of inverse problems has arisen fo study
general mathematical issues of exiracting a function f from discrete values of
B/, where B is an operator in a general family of operators [46]. Other nonlinear
modelirzg methods such as regressive splines, Padé approximants, and maximum
entropy are effective for specific problems; [13] contains good summaries of many
of these.

Recently two research areas—chaos and neural networks—have contributed
new ideas to the learning of time series. Statistical models decompose a station-
ary series inle random and deterministic components:

X=A=«R+ D,

where £ is a while-noise process and I3 is a deterministic process (* is the con-
volution operator and A is a constant filter}. A theorem due to Wold [534] states
that, under very genera! conditions, any stationary sequence can be so decom-
posed. The novel insight is the “deterministic® and “predictable™ are rnot the
same: chaos theory has demonstrated that most nonlinear deterministic systems
exhibit complex behavior that is difficult to predict, in the sense that system
trajectories diverge exponentially in time no matter how close their initial posi-
bion. Compusing the behavior of such a system requires O{f) space and gquickly
¢xceeds the computational capacity of real machines, In the end such systems
are as unpredictable as purely random ones.

Yel just as random processes have predictable properties (e.g., their mo-
meits), so do chaotic ones. For example, the well-known logistic recurrence,
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X,41 = 41X (1= X,,), yields a complex, uncorrelated time serjes. 10 < Xy < 1,
the values of X, remain between 0 and 1. Given successive values of this se-
quenice, how could we detect that it is generated by a simiple deterministic pro-
cess rather than a stochastic one? If we graph the return mep X4 versus X,
we oblain an extremely simple curver a parabola. Since no random process would
exhibit such regularity, we arc sure that the process is deterministic. More gen-
erally, to distinguish a chaotic process from a random one, we can look for some
delerministic function of the process. Bul how do we find such a property, and
what can we do if the process is a mixture of random and chaotic processes?
As yet the answers to these questions are not fully known, but seme intrigu-

ing hints have emerged. F'or sampled chaotic processes the k-th order refurn map,
Xny4i as afunction of X, ..., Xs_r41 enjoys some remarkable topological prop-
erties. Roughly speaking, as & increases from 1, there exists a value kg such that
for all ¥ > kg the topological dimension of the surface of the return map embed-
ded in the k-dimensional space R* is much smaller than k. The conditions are (1)
that the time interval, or lag, between the measurements be large cnough that
the chaos has a chance tc eliminate most of the correlations between values, and
(2) that the values X (t) we observe be derived from those of the underlying pro-
cess Yy by a diffeomorphic coordinate transformation X(Y(t)). This so-called
embedding dimension can he estimated numerically from the sample entropy of
the sequence and serves as a measure of the inherent complexity ("degrees of
freedom”) of the underlying process. {44, 40]. Experimentally, graphical proce-
dores are often effective in determining a bound on the embedding dimension for
chaotic time series [33, 34]. One cannot help being impressed when an apparently
random process—be it water dripping from a fancet or the planet Pluto moving
in a gravitational potential—is coaxed into showing us its basic simplicity.

" Scargle [41] has generalized Wold’s theorem by further decomposing the de-
terministic component of a stationary time series:

X=AxR4+ BxY +C,

where ¥V is an uncorrelated chaotic series and € is a non-chaotic deterministic
series. He is developing deconvolution techniques whereby the components of X
can be estimated from the observations,

Most algorithros for analyzing time series seek to predict the future course
of the sequcnce, if not exactly, at least within specified ranges. Recently re-
searchers have develop a number of new approaches. Their effectiveness evi-
dently depends on the complexity of the underlying process and on whether
the short-term or long-term behavior of the series is to be modeled. Weather-
prediction methods, for example, are very different depending on whether one
wants to know the weather a few hours or days hence or whether one is in-
terested in three- fo six month temperature trends. For short-term analysis,
neural network methods have proved relatively successful, especially for high
dimensional processes. The networks are trained to approximate the embedded
surface X1 = f(X:, ..., Xi—x41) in “lag space” with a smooth, non-linear sur-
face. Successful archilectures have included sigmoid and radial-basis nets [28, 52]
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and finite impulse response (FIR)} nets {49], in which simple connections are re-
placed by FIR filfers and trained using a parallel backpropagation technique. As
with other connectionist methods, the effectiveness of the algorithms is difficult
to quantify, and the complexity increases rapidly with the size of the problem.

Recently a competition fto predict the futere of time series [51] received a
number of connectionist entries, some quite successful and other not. Reportecly
tae successful ones required a lot of experimentation and analysis to determine
the appropriate embedding delay, network structure, and training procedure for
the task. In view of this per-problem empirical analysis, it is still a stretch to
refer to these procedures as “algorithms.”

Besides connectioaist models, researchers have proposed algorithms that model
small neighborhoods of the embedded surface as hyperplanes. These so-called
focal-Tinear models are based on the idea that the surface is approximately linear
in a sufficiently small neighborkood. The hyperpiane can be constructed using
the nearest neighbors in R* and used to project the vector (Xay..., Xnoki1)
t0 (Xny1,e-o Xn_ks2) [15, 8]. (The ARMA model is a "global” Jmear mode] in
that a single hyperplane represents the entire surface.) The larger the approxi-
mating surface, the greater the scale of the prediction: a local model based on
a very small neighborhood is best for short-term predictions, whereas a longer
time scale réquires a coarser neighborheod model.

Let us review briefly some of the characteristics of time-series algorithms. The
order {delay, etc.) of the series—i.e., the number of immediately preceding values
upon which the next one depends-—seems a fundamental value to establish. For
a series obtained by sampling a continuous process, the lag or time hetween
observations can also affect the resulis: if it is Leo shorf, one may overlook
the effects of chaos thal can eliminate any apparent prediciability over short
time intervals: if too long, one may not be able to extrapolate on a sufficiently
short time scale. Related is the question of everfitting: if we fit the observations
too closely, our model may incorporate noise and other spurious effects as non-
random components of the series, leading to poor extrapolation resulis. One
way that neural network models avoid overfitting is by halting training when
cross-validation scores (obta.med by testing the predictions against data withheld
from training) stop improving and begin to worsen [50]. Another is to prune
away elerments that contribute litile to reducing the errcr [29]. Still another
is to build up ihe network 1ncrementally, increasing. the size only when doing
so significantly improves the performance. The true issue here is how much
generalization can justified by the data for a particular family of hypotheses; and
while the fundamentals of this question are nnderstood fairly well for concept-
learning problems |3, 20}, it is very much an open problem for fime series.

Decomposition has been a recurring strategy for time-serics analysis, whether
separating the siationary from the non-stationary, the chaotic from the sunple
deterministic, or one {ocal neighborhoed from another. Finally, although we have
aot mentioned compression, the eniropy of the nnderlying source process plays
an important role in the ergodic theory of time series. Learning reduces the rate
of increase in the information provided hy the source process, and this in turn
translates direetly into greater compression of the sample.
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4 Summary

Although the three types of sequential learning preblems are very different one
from the other, we should at least pick out somne commeon aspects:

— They try in some fashion to reduce the sequence to sirpler subsequences:
by identifying common contexts or states, by exprossing the sequence as
a combination of other sequences, or by separating random, chaotic, and
simple deterministic contributions.

— They predict or represent the nexi input valne based on a finite number of
its recent predecessors. Determining the nwmber of those predecessors (the
order of the sequence) seems to be a crucial part of any algorithm.

— The success of the learning algorithm is measured by prediction accuracy, or
equivalently, by the ability to compress the information in the examples.

— The notion of convergence of random variables applies, but it has not been
exploited as effectively as in concept learning. T'or stochaslic sequences the
likelihood of the hypothesis converges Lo its limit value, so that maximum
likelihood sirategies are eflective [4, 1]. For sequence extrapolation —which is
not a random process- -our interpretation of the performance or likelihood of
a hypothesis depends on our forming some probabilistic assumptions about
the occurrences of prediction ercors. To do so may seem rather arbitrary
since these errors are deterministic rather than probabilistic, but evidently
we humans do something like that in order to estimate the confidence in
our hypotheses. For time serics problerns, Bayesian and maximum entropy
fechniques converge rapidiy and as such discriminate with preat sensitivity
among different models when strong models about the underlying process
are available. See [11], especially the article by Gull [16).

I cenclude with these observations. Concept-learning and clustering research
has had its greatest impact with relatively simple, general-purpose algorithms
(decision trees, networks, hierarchical clustering, etc.) that apply broadly in the
absence of strong models about the data. Similarly I expect that the most in-
fluential sequence learning algorithms to be simple even if naive, effective if not
rigorous, for divers types of dala streams. For stochaslic sequences we have such,
but general-purposc algorithms are still lacking for the other two. Also, all the
algorithms and procedures described here arc first-order algorithms—in effect,
search optimization algorithms. Aside from obtaining confidence estimates, little
research is given to learning the properties of the solutions themseclves,
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