Quality
Assurance

Van Nostrand Reinhold Electrical/Computer Science and Engineering Series



BIBLIOTHEQUE DU CERIST

AND
QUALITY ASSURANCE

Boris Beizer

Data Systems Analysts, Inc.
Pennsauken, New Jersey

Van Nostrand Reinhold Electrical/Computer Science and Engineering Series

VAN NOSTRAND REINHOLD COMPANY
New York




BIBLIOTHEQUE DU CERIST

PREFACE

This book concerns system software testing and quality assurance methods.
The companion volume, Software Testing Techniques (BEIZ82), is concerned
with structural and functional test techniques that are basic to all testing. The
sum is not equal to the whole of its parts: the best designed, implemented, and
tested individual units can come together in hopeless chaos in the absence of
system-wide test plans, quality assurance, and integration testing. Unit testing,
no matter how well done, just isn’t enough.

I set out to write a single book that would cover the gamut from testing to
quality assurance—from unit to system—and from individual test and quality
assurance methods to system testing and quality assurance. [t would have been
a big, cumbersome book, and holding it to a publishable size would have
required unfortunate compromises. The book would have been unsatisfying to
me and to most readers. Accordingly, with Van Nostrand Reinhold’s concur-
rence, I declared a book split, which yielded some unexpected dividends. It was
no longer necessary to compromise between unit-level and system-level issues
or between the programmer’s and manager’s points of views.

Software Testing Techniques focuses on what the individual programmer
can and should do to create reliable software units. It is written for the pro-
grammer from a programmer’s point of view. I thought at first that fhis book
would have a single point of view, but soon found that there were four distinct
voices with contradictory demands vying for my attention. The subject of sys-
tem testing and quality assurance can be seen from the project manager’s or
the quality assurance manager’s point of view and can be addressed to the
project manager or to the quality assurance manager—for four voices in all. I
quickly put the idea of a four-way split out of my mind—it would have yielded
four thin books. I have instead used all four voices in this book. When discuss-
ing desk checking, for example, an activity in which I believe quality assurance
has no productive role to play, it is as project manager to project manager. The

xiii



BIBLIOTHEQUE DU CERIST

xiv PREFACE

problems of how to select QA personnel and how to shield them from hostility
are clearly a conversation between QA managers. The inherent conflicts in ays-
tem functional testing lead to the crossed conversations. The voice, therefore,
changes from section to section, and within sections, without warning. There
are so many conflicting goals inherent in system testing and guality assurance
that it’s essential that all parties in the process understand each other’s point
of view, and shifting it is one way to help that understanding.

Actually, while there may be beneficial tensions, there are no real conflicts,
despite appearances io the contrary, just as there should be no real conflict
between the programmer and program manager. In the ideal project, unit test-
ing is well planned, thorough, well documented, and well managed. There is a
hierarchy of testing methods from unit to system. The programmer can work
in confidence that management and guality assurance methods are in place-
that relieve much of the uncertainty of interfacing with other programs. Well-
wrought pieces of software come together because someone has taken the trou-
ble to emplace the methods that assure that that will be the case. The project
manager is not burdened with agonizing over the outcorne of thousands of
microscopic unit tests, because those tests are developed and executed under a
uniform methodology. There is no need o agonize over what might have been
forgotten, because quality assurance keeps track of everything. There is no
need to worry about what surprises may come from a user’s acceptance test,
or from the first few months in the field, because quality assurance has savaged
the system more than any user ever could, ard done it in privacy, where the
consequences are merely extra work rather than litigation,

Boris Beizer
Abington, Pennsylvania



BIBLIOTHEQUE DU CERIST

CONTENTS

PREFACE «xi

1—INTRODUCTION 1

L.

2.

3

1.1. What We Do

1

1.2. Attitudes and Beatitudes

1.3. Productivity and Quality Assurance Goals

2

Testing and Quality Assurance Goals 1

1.4. Test Design and Design for Test 4

Some Dichotomies

5

2.1. Testing Versus Debugging 5
2.2. Units, Subsystems, and Such 6

2.3. Testing Versus Integration 7
2.4. Structure Versus Function 7
2.5. Designer Versus Tester

2.6. Builder Versus Buyer

A Model Project 1

0

4. The Search for El Dorado

4.1. Do Bugs Exist?

11

11

8
9

4.2. Ts Complete Testing Possible?

4.3. Realistic Goals

14

2—BUGS IN PERSPECTIVE 16

1.
2.

3.

Synopsis 16
Bug Measures 16

2.1. Can Bugs Be Measured?

2.2. Can Bugs Be Counted?

2.3. Public and Private Bugs

2.4. Equal Rights for Bugs?

A Taxonomy for Bugs

3.1. General 21

21

16
17
18
19

3.2. Function-Related Bugs 22

3.3, System Bugs

23

12

xvii

2



BIBLIOTHEQUE DU CERIST

uwiii CONTENTS

4.
3,

3.4. Process Errors 26

3.5. Data Errors 27

3.6. Code Errors 32

3.7. Testing and Style 33

Some Bug Statistics 33

Tasks for a Quality Assurance Department 35

3—OVERVIEW OF TEST TECHNIQUES 37

hadi i

Synopsis 37

Is There a Best Method? 37

Path Testing 37

3.1. General 37

3.2. Fundamental Path Selection Criteria 39
3.3. Loop Testing 42

3.4. Test Execution Time 44

3.5. The Rest of Path Test Design 45

3.6. Tasks for a Quality Assurance Department
Transaction Flow Testing 51

4.1. General 51

4.2. Transaction Flows 52

4.3, Transaction-Flow Testing 55

4.4. Tasks for a Quality Assurance Department
Input Validation and Syntax Testing 60

5.1. The Hostile World 60

5.2. Principles 62

5.3, Test Case Generation 64

5.4. Running, Validation, and Ad-lib Tests 68
5.5. Aprplication 70

5.6. Tasks for a Quality Assurance Department
Logic-Based Testing 71

6.1. Definitions and Notation 71

51

7t

6.2. Decision Tables as a Basis for Test Case Design

6.3. Expansion of Immaterial Cases 74
6.4. Test Case Design 75
6.5. Decision Tables and Structure 77

6.6. Logic and Boolean Algebra in Test Design 78

8.7, Tasks for a Quality Assurance Department
State Transition Testing 79

7.1. General 79

7.2. Good State Graphs and Bad 81

7.3. State Testing 87

Tasks for a Quality Assurance Department 89

79

73



'BIBLIOTHEQUE DU CERIST

4—

1.
2.

3.

4.

5.

6.
5__
1.

2.
3.

4.

5.
6.

CONTENTS

UNIT TESTING, ELEMENT TESTING, AND QUALITY ASSURANCE

Synopsis 91

Software Sociology 91

2.1. Unit Testing 91

2.2. Subjective Goals 93

2.3. Objective Goals 95

Software Anthropology 98

3.1. Prerequisites 98

3.2. Mores and Taboos 103

3.3, Environment 108

Unit Testing Procedures and Execution 113
4.1. General 113

4.2. Mechanical Analysis 113

4.3. Desk Checking 119

4.4. Reviews and Audits 124

4.5. Execution, Correction, and Refinement 131
4.6. Implementation 132

Higher Level Element Testing 133

5.1. General 133

5.2. Decision Nodes and Path Testing 133
5.3. Syntax-Directed Testing 134

5.4. Logic-Based Testing 134

5.5. State Testing 135

5.6. The Question of Stratification 135

5.7. Stratified Designs 138

Tasks for a Quality Assurance Department 139

INTEGRATION 141

Synopsis 141

Objectives 141

Integration Tactics 143

3.1. Graphs and Standards 143

3.2. What to Test 147

3.3. Data Corruption and Residues 152

3.4. Special Problems 154

Integration Strategy 156

4.1. Objectives 156

4.2. Top-Down Integration and Testing 137
4.3. Bottom-Up Testing and Integration 159
4.4. Big-Bang Testing 160

4.5. An Integration Strategy 161

Who Integrates? 162

Tasks for a Quality Assurance Department 163

xix

2



BIBLIOTHEQUE DU CERIST

xx CONTENTS

6—SYSTEM TESTING 1635

I. Syrnopsis 165
2. What’s Left to Test? 165
3. Cross-Reference Construction 1606
3.1. Objectives 166
3.2. Specification Cross-Reference 167
3.3. Design Documentation Cross-Reference 170
3.4. The Data-Base Cross-Reference 171
3.5. Expanding and Editing the File 171
3.6. Interviews and Confrontations 173
4. System Functional Testing and Acceptance Testing 179
4.1. Perspective 179
4.2. The Test Plan 182
4.3. The Tests 185
4.4. Execution 192
5. Tasks for a Quality Assurance Departmsnt 198

7—CONFIGURATION, RECOVERY, AND SECURITY TESTING 200

I. Synopsis 200
2. Configuration Testing 200
2.1. What Is It? 200
2.2. System States 202
2.3. Configuration Command Tests 203
2.4, Rotation and Permutation Tests 207
2.5. Degradation and Restoration Tests 209
3. Recovery Testing 211
3.1. What Is It? 211
3.2. Restart and Recovery 213
3.3. Switchover 214
3.4. Transaction Fidelity and Accountability Loss 216
4. Security Testing 218
4.1. The Problem 218
4.2. Frontal Attack Methods 222
4.3. Indirect Attacks and Data Attacks 226
4.4. Tiger Teams 230
3. Retrospective on Testing Costs 230
6. Tasks for a Quality Assurance Department 232

8 —BACKGROUND, STRESS, AND PERFORMANCE TESTING 234

1. Synopsis 234

2. Transaction Generators 234
2.1. General 234
2.2. Real Loads 233



BIBLIOTHEQUE DU CERIST

3.

4.

5.

6.

9 .

1.
2.

3.

a.

5.

6.

2.3. Load Generators and Simulators 236
2.4. Cogeneration 240

2.5. Self-Generation 241

Loops and Snakes 242

3.1. What Are They? 242

3.2, Simple Snakes and Loops 243

3.3. Linear and Exponential Loops 245
3.4. Duplexed Loops 246

3.5. Loop Control 247

Background and Stress Testing 247

4.1, Background Testing 247

4.2. Stress Testing 250

Performance Testing 256

5.1. Objectives and Prerequisites 256
5.2. Performance Objectives 258

5.3. Instrumentation Issues 262

5.4. Software Instrumentation 263

5.5. Hardware Instrumentation 266

5.6. The Experimental Process 268
Tasks for a Quality Assurance Department 275

QUANTITATIVE METHODS 276

Synopsis 276

Quantitative Measures and Metrics 276
2.1. Philosophy 276

2.2. A Historical Perspective 277

2.3. Objectives 278

Complexity Measures 278

3.1. General 278

3.2. The Simplest Metric: Lines-of-Code 279
3.3. McCabe’s and Related Metrics 280
3.4. Halstead’s Metrics 282

3.5. Other Metrics 288

3.6. A Plan for Action 288

Software Reliability 289

4.1. General 289

4.2. The State of the Art 292

4.3. What’s Missing? 293

4.4. Where Does That Leave Us? 294
When Will It Be Done? 295

5.1. Retrospective 295

5.2. Hitachi’s Method 295

5.3. Other Methods of Tracking 304
Tasks for a Quality Assurance Department 306

CONTENTS xxi



BIBLIOTHEQUE DU CERIST

xxii CONTENTS

10— ACHIEVING QUALITY SOFTWARE 308

L.

7.

Synopsis 308

Testable Designs 308

2.1. Changing the Perspective 308

2.2. Technigues for Testable Designs 309

2.3, Tools 311

2.4, Performance Impact 312

Who Wants QA? 313

3.1. Motives, Ulterior and Otherwise 313

3.2. Up-Front Understanding 315

3.3. Independence 315

Staffing and Management 317

4.1, The Halt, the Lame, and the Blind 317
4.2. The QA Worker 317

4.3, Dealing with Hostility 319

4.4. A Tour of Duty 320

Quality Assurance Squared 321

5.1, The Problem 32!

5.2. Programming and QA Test Design Compared 321
3.3, Test-Testing and Debugging 323

5.4. The QA Manager’s Role 325

5.5. Be-Bugging 325

5.6. Tit-for-Tat 326

Who Deserves the Credit, Who Deserves the Blame? 327
6.1. A Charm Against Tigers 327

6.2. Keeping Records and Public Relations 328
6.3. Reasonable Expectations and Claims 329
6.4. Internal and External Comparisons 329
Where to From Here? 329

REFERENCES 331

INDEX 349





