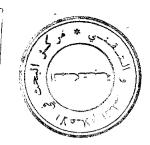

Lucid, the Dataflow Programming Language


William W. Wadge Edward A. Ashcroft

LUCID, THE DATAFLOW PROGRAMMING LANGUAGE

This is volume 22 in A.P.I.C. Studies in Data Processing General Editors: Fraser Duncan and M. J. R. Shave A complete list of titles in this series appears at the end of this volume

LUCID, THE DATAFLOW PROGRAMMING LANGUAGE

William W. Wadge

Department of Computer Science University of Victoria Victoria, British Columbia Canada

Edward A. Ashcroft

SRI International Menlo Park, California United States of America

1985

ACADEMIC PRESS

(Harcourt Brace Jovanovich, Publishers)

London Orlando San Diego New York Toronto Montreal Sydney Tokyo COPYRIGHT © 1985, BY ACADEMIC PRESS INC. (LONDON) LTD. ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT

ACADEMIC PRESS INC. (LONDON) LTD. 24-28 Oval Road

PERMISSION IN WRITING FROM THE PUBLISHER.

LONDON NW1 7DX

ACADEMIC PRESS, INC.
Orlando, Florida 32887

United States Edition published by

British Library Cataloguing in Publication Data

Wadge, William W.

Lucid, the dataflow programming language.—
(APIC studies in data processing)

1. Programming languages (Electronic computers)

2. Electronic digital computers—Programming

I. Title II. Ashcroft, Edward A. III. Series 001.64'24 QA76.7

Library of Congress Cataloging in Publication Data

Wadge, William W.

Lucid, the dataflow programming language.

(A.P.I.C. studies in data processing; no.)

Bibliography: p.

Includes index.

1. Lucid (Computer program language)

2. Electronic

digital computers-Programming, I. Ashcroft, Edward A.

II. Title. III. Series. QA76.73.L83W33 1985 001.64'24 84-15685

ISBN 0-12-729650-6 (alk. paper)

PRINTED IN THE UNITED STATES OF AMERICA

85 86 87 88 9 8 7 6 5 4 3 2 1

CONTENTS

PREI	FACE	ix		
I	INTRODUCTION			
-	1. What Makes Lucid Run?	3		
	2. Imperative Programming	7		
	3. Control Flow versus Dataflow	10		
	4. The Problems with the Imperative Approach	15		
	5. Some Suggested Solutions	19		
	6. Honest, Folks, We Was Just Funnin'	22		
	7. Nonprocedural Languages	24		
	8. Lucid, the Well-Balanced Language	28		
	9. Lucid—The Dataflow Programming Language?	34		
П	ISWIM AND ALGEBRAS			
	1. Algebras	41		
	2. The Syntax of Iswim	44		
	3. The Semantics of Iswim	46		
	4. A Sample Program	48		
	5. The Operational Semantics of Iswim	49		
	6. Calling and Binding in Iswim	51		
	7. Lazy Evaluation	55		
	8. Infinitary Programming	57		
Ш	THE LANGUAGE LUSWIM			
	1. Iteration through Sequences	63		
	2. Luswim: The Abstract Approach to Iteration	66		
	3. Iterative Programs in Luswim	68		
	4. Variables in PASCAL and Luswim	73		
	5. Continuously Operating Programs	78		
	6. Programs with Memory	80		
	7. Functions in Luswim	82		
	8. Continuously Operating Functions	85		

vi

		Filters and Recursion	87
		Programs and Flow Graphs mplementing Luswim	90 92
IV	LUCII	D: LUSWIM WITH NESTED ITERATION	
		The Operation asa	101
		Nesting in HyperpIswim	103
		Nesting with whenever and upon	106
		Going beyond Luswim	106
		The is current Declaration Mixed Clauses	109 114
V		RAMMING IN LUCID	
		Samming's Problem, a Simple Dataflow Example	121
		Jsing Dataflow to Enumerate the Primes	124
		Processing Text as Streams of Characters	130
		A Data Processing Example	132
		Swap Sorting in Lucid	135
		Dataflow Sorting in Lucid	138
		nput/Output in Lucid	144 149
		Debugging Lucid Programs	149
		nterfacing with UNIX, or Lucid Goes Cowboy	154
	10. I	nteractive and Real-Time Programming	134
VI	PROGI	RAM TRANSFORMATION	
. –		he Basis Rule	162
	2. T	he Substitution Rule	165
	3. T	he Calling Rule	170
	4. I	he Renaming Rules	172
	5. T	he Addition and Elimination Rules	173
	6. T	he Amalgamation Rule	175
		The Import and Export Rules	177
		The Parameter Insertion and Deletion Rules	179
		lymbolic Evaluation	182
	4	The Symbolic Evaluation of Iterative Programs	187
		Sinding and Calling Conventions	191
		Proving Assertions about Programs	195 200
	13. V	erification Aiding Transformation: An Example	200
VII	BEYO	ND LUCID	
		Types and Type Checking	207
		Tupling, or Filters with Multiple Outputs	211
		Arrays, or Frozen Streams	217
		Lucid, Lucid with Multidimensional Time	223
		Lambda Lucid, Lucid with Higher-Order Functions	228

CERIST	
SLIOTHEQUE	

	Contents	vii
REFERENCES		235
APPENDIX: THE pLUCID PROGRAMMER'S MANUA. A. Faustini, A. A. G. Yaghi and S. G. Matthews	J AL	239
INDEX		305