COLLECTION LE COURS DE MATHEMATIQUE

ET DE RECHERCHES **EN INFORMATIQUE** 

CENTRE D'ETUDES

P. QUITTARD PINON F. LIGNELET

## ELEMENTS DE STATISTIQUES SERIES CHRONOLOGIQUES SCALAIRES



OFFICE DES PUBLICATIONS UNIVERSITAIRES

1, Place Centrale de Ben Aknoun (Alger) 1983

cos x,

+ '

Δyi,

4

sin x

Φ

 $\frac{\pi}{2}$ 

0 (x)

cos x,

+ Δyi,

4

 $\sin x$ 

Φ

## ELEMENT DE STATISTIQUE SERIE CHRONOLOGIE SALAIRE

P. QUTTARD PINON

CENTRE D'ETUDES ET DE RECHERCHES EN INFORMATIQUE

Office des Publication Universitaires
L'Algerie
1983

CAST.

## I N T R O D U C T I O N

Ce polycopié reprend un cours que nous enseignons depuis 19771978 à des élèves ingénieurs de 4ème année du Centre d'Etudes et de Recherche
en Informatique (C.E.R.I.). On a dit et ceci a été repris par un mathématicien illustre \* qu'il n'y avait pas de mathématiques sans larmes. A voir
parfois plus d'un découragement se faire jour, nous serions tentés de
croire qu'il en va de même de l'étude statistique des chroniques et pourtant
en lui même le sujet ne manque pas d'attrait car son objet ultime, la
prévision, est au coeur de bien des interrogations.

Au delà de cette évocation et de façon plus prosaïque, la recherche de bonnes prévisions est indispensable dans de nombreux domaines. Citons cà et là : la gestion des stocks, la stratégie des ventes, la régulation de la production. Mais enfin de ne pas égarrer le lecteur disons tout de suite que ce cours n'est pas axé sur la prévision en général, tout au plus peut-il fournir des techniques mathématiques permettant dans certains cas et sous certaines conditions une prédiction, quasi automatique, de valeurs futures sur un horizon relativement court, encore faudra-t-il s'informer du contexte de la série et tenir compte éventuellement d'éléments non quantifiables.

N'oublions pas que pour importante qu'elle soit la prévision n'est pas l'unique but de l'analyse des séries temporelles ; la recherche d'éventuelles périodicités, l'obtention de bonnes techniques de desaison-nalisation, outil indispensable dans les études de conjoncture sont également des objectifs importants que se fixe le statisticien.

Nous nous intéressons essentiellement à des séries scalaires c'est à dire des suites de valeurs numériques unidimensionnelles indicées par le temps. Nous admettons véritable acte de foi, que ces valeurs passées contiennent suffisamment d'information pour nous renseigner sur le comportement profond de cette série en dégageant l'essentiel du contingent, que cette information est aussi suffisamment riche pour permettre l'extrapot lation: "Le passé est une incantation de la chose à venir, sa nécessaire différence génératrice, la somme sans cesse croissante des conditions du futur" disait Paul Claudel.

Pour aborder l'étude des chroniques deux approches sont concevables : ou bien l'on effectue une étude descriptive détaillée, souvent commode dans le cas des séries à effets saisonniers, cette description suggère souvent des modèles simples, ou bien l'on adopte un point de vue dynamique, on essaye alors de comprendre comment on passe d'une observation à la suivante. La première approche est très traditionnelle, nous lui avons consacré le chapitre III, la seconde approche est plus récente, nous lui avons consacrée les chapitres IV à IX en suivant la théorie de BOX et JENKINS qui, à l'heure actuelle, nous parait être la plus solidement fondée, nous attirons à cette occasion l'attention du lecteur sur l'absence d'ouvrage en français sur cette méthode.

<sup>\*</sup> Laurent SCHWARTZ, avant propos de son cours de mathématiques à l'Ecole Polytechnique.

Ces deux approches trouvent cependant une certaine unité par l'utilisation d'outils communs : opérateurs et surtout équations aux différences auxquels nous avons consacré un chapitre préliminaire.

Mathématiquement la seule représentation cohérente des chroniques est fournie par les processus stochastiques, malheureusement leur étude rigoureuse pose des problèmes mathématiques très difficiles et les connaissances nécessaires pour les résoudre exigent, pour les acquérir, un investissement intellectuel considérable sans commune mesure avec les résultats pratiques qu'ils fournissent et qui seuls nous intéressent ici. Aussi avons nous préféré sacrifier un peu de mathématique rigueur au profit des idées et des méthodes. Le chapitre II n'est qu'une simple introduction à l'étude des fonctions aléatoires ou processus.

Malgré tout, ce cours exige l'effort mais nous sommes convaincus qu'ayec un minimum de travail le lecteur obtiendra un maximum de récompense aussi nous lui souhaitons le courage nécessaire et nous lui serions reconnaissants de nous signaler les points qu'il jugera difficiles ou obscurs ainsi que toute erreur qu'il pourrait déceler.

Enfin terminons cette introduction en proposant quelques guides de lecture ainsi que quelques indications sur les notations utilisées.

Pour une bonne assimilation de ce cours, nous engageons vivement le lecteur à nous suivre avec stylo et feuilles de papier. Nous lui déconseillons ensuite de se livrer à une lecture séquentielle, trop linéaire pour être profitable. Le premier chapitre, par exemple, ne devrait être lu qu'au fur et à mesure des besoins. Certains passages peuvent être sautés sans inconvénient en première lecture, c'est notamment le cas : de la démonstration p. 16 (chapitre II), des pages 33 à 34 ainsi que de la section d) du chapitre III, des paragraphes 5 et 6 du chapitre VI, 3 et 4 du chapitre VIII.

Les notations et symbôles utilisés sont ceux que l'on rencontre habituellement en calcul des probabilités, sujet supposé connu du lecteur, nous avons noté par le signe  $^{\circ}$  (sauf mention contraire) l'opération de transposition des matrices, le signe  $|\cdot|$  || indique la norme, <, > le produit scalaire. Généralement les lettres grecques minuscules sont réservées aux paramètres réels, N (a, b) désigne une loi normale de moyenne a et d'écart type b.

## TABLE DES MATIERES

|                                                                 | Pages |
|-----------------------------------------------------------------|-------|
| CH. I ELEMENTS FONDAMENTAUX DE L'ETUDE DES CHRONIQUES DISCRETES | 1     |
| I/I LES OPERATEURS DISCRETS                                     |       |
| (I,a) L'opérateur de retard B                                   | 1     |
| (I,b) L'opérateur d'avance F                                    | 2     |
| (I,c) L'opérateur de différence V                               | 2     |
| (I,d) L'opérateur de Sommation S                                | 3     |
| I/II EQUATIONS LINEAIRES AUX DIFFERENCES                        |       |
| (II,a) Forme des solutions                                      | 5     |
| (II,b) Calcul de la fonction complémentaire                     | 6     |
| (II,c) Exemple                                                  | 7     |
| (II,d) Forme de l'intégrale particulière                        | 8     |
| I/III TRANSFORMEE EN Z D'UNE SUITE                              | 8     |
| (III,a) Définition                                              | 8     |
| (III,b) Propriétés de la transformée en Z                       | 9     |
| (III,c) Originale d'une transformée en Z                        | 10    |
| (III,d) Transformée en Z et équations aux différences           | 11    |
| CH. II NOTIONS DE PROCESSUS STOCHASTIQUES                       | 13    |
| II/I GENERALITES SUR LES PROCESSUS                              | 13    |
| (I,a) Recherche d'un cadre théorique                            | 13    |
| (I,b) Loi temporelle et moments                                 | 14    |
| (I,c) Exemples de Processus                                     | 15    |
| (I,d) Etude de la fonction d'autocovariance                     | 16    |
| II/II REPRESENTATION SPECTRALE DES PROCESSUS                    | 17    |
| (II,a) Approche utilisant le théorème de Bochner                | 17    |
| (II,b) Définition d'un bruit blanc                              | 18    |
| (II,c) Approche par le périodogramme                            | 18    |

|     | II/III   | PROBLEMES D'ESTIMATION                       | 20         |
|-----|----------|----------------------------------------------|------------|
|     |          | (III,a) Estimation des deux premiers moments | 21         |
|     |          | (III,b) Estimation spectrale                 | 21         |
| CH. | III L'E  | TUDE TRADITIONNELLE DES CHRONIQUES           | 24         |
|     | III/I    | DESCRIPTION DES SERIES CHRONOLOGIQUES        | 24         |
|     |          | (I,a) L'ajustement par moindre carrés        | 24         |
|     |          | (I,b) Décomposition traditionnelle           | 25         |
|     | III/II   | LA REGRESSION PAR LA METHODE DE BUYS-BALLOT  | 26         |
|     | III/III  | LE LISSAGE DES CHRONIQUES                    | 28         |
|     |          | (III,a) Définition                           | 28         |
|     |          | (III,b) Les moyennes mobiles                 | 28         |
|     |          | (III,c) Le lissage exponentiel               | 34         |
|     | III/IV   | LA DESAISONNALISATION                        | 35         |
|     |          | (IV,a) Généralités                           | 35         |
|     |          | (IV,b) Utilisation des moyennes mobiles      | <b>3</b> 6 |
|     | III/V    | LA PREVISION                                 | 37         |
|     |          | (V,a) Utilisation du filtre de Buys-Ballot   | 37         |
|     |          | (V,b) Utilisation des moyennes mobiles       | 37         |
|     |          | (V,c) Utilisation du lissage exponentiel     | 37         |
|     |          | (V,d) Utilisation de filtrage optimal        | 37         |
|     | III/VI   |                                              | 39         |
|     |          | (VI,a) Les sommes cumulées                   | 39         |
|     |          | (VI,b) Le clignotant de Trigg                | 40         |
|     | ANNEXE   | : PROGRAMMES DE DESAISONNALISATIONS          | 41         |
|     | ANNIE YE | · LE PROGRAMME CHRONO                        | 43         |

| CH. | IV LES       | PROCESSUS LINEAIRES STATIONNAIRES                    | 41 |
|-----|--------------|------------------------------------------------------|----|
|     | IV/I         | PROCESSUS LINEAIRE GENERAL                           | 44 |
|     |              | (I,a) Définition                                     | 44 |
|     |              | (I,b) Autocovariance d'un processus linéaire         | 45 |
|     |              | (I,c) Fonction génératrice d'autocovariance          | 45 |
|     |              | (I,d) Conditions de stationnarité et d'inversibilité | 46 |
|     | IV/II        | LES PROCESSUS AUTO-REGRESSIFS D'ORDRE p              | 47 |
|     |              | (II,a) Définition                                    | 47 |
|     |              | (II,b) Fonction d'autocorrelation                    | 47 |
|     |              | (II,c) Fonction d'autocorrelation partielle          | 49 |
|     |              | (II,d) Le spectre                                    | 50 |
|     |              | (II,e) Le processus AR(1)                            | 50 |
|     |              | (II,f) Le processus AR(2)                            | 51 |
|     | IV/III       | LES PROCESSUS EN MOYENNE MOBILE                      | 53 |
|     |              | (III,a) Définition                                   | 53 |
|     |              | (III,b) Fonction d'autocorrelation                   | 53 |
|     |              | (III,c) Le spectre                                   | 54 |
|     |              | (III,d) Le processus MM(1)                           | 54 |
|     |              | (III,e) Le processus MM(2)                           | 55 |
|     | IV/IV        | LES PROCESSUS MIXTES                                 | 56 |
|     |              | (IV,a) Definition                                    | 56 |
|     |              | (IV,b) Fonction d'autocorrelation                    | 56 |
|     |              | (IV,c) Le processus ARMMI(1,1)                       | 57 |
| CH. | V <u>IES</u> | PROCESSUS MIXTES INTEGRES                            | 58 |
|     | V/I DE       | FINITION ET GENERALITES                              | 58 |
|     |              | (I,a) Forme inverse                                  | 58 |
|     |              | (I,b) En fonction des $a_{t-j}$                      | 59 |
|     |              | (I,c) Forme d'équations aux différences              | 59 |
|     |              | (I,d) Exemple                                        | 60 |

| V/II     | LES PROCESSUS INTEGRE EN MOYENNE MOBILE                                                                 | 61                               |
|----------|---------------------------------------------------------------------------------------------------------|----------------------------------|
|          | (II,a) Forme inverse                                                                                    | 61<br>61<br>62<br>62             |
|          | (II,e) Le processus MMI(0,2,2)                                                                          | 63                               |
| CH.VI LA | PREVISION DES SERIES NON SAISONNIERES                                                                   | 66                               |
| VI/I     | MEILLEURE PREVISION EN MOYENNE QUADRATIQUE                                                              | 66                               |
|          | (I,a) Recherche de la meilleure prevision                                                               | 66<br>67<br>68                   |
| VI/II    | CALCULS ET MISE A JOUR DES PREVISIONS                                                                   | 68                               |
|          | <ul><li>(II,a) Calcul des Ψ</li><li>(II,b) Mise à jour</li><li>(II,c) Intervalle de confiance</li></ul> | 68<br>69<br>69                   |
| VI/III   | LE PREDICTEUR ET LES COEFFICIENTS DE PREVISION                                                          | 70                               |
|          | (III,a) Opérateur d'autoregression                                                                      | 70<br>70<br>71                   |
| VI/IV    | EXEMPLES                                                                                                | 72                               |
|          | (IV,a) Le processus MMI(0,1,1)                                                                          | 72<br>73<br>74<br>74<br>74<br>75 |
| VI/V     | CORRELATIONS ENTRE ERREURS DE PREVISION                                                                 | 76                               |
|          | (V,a) Origine distinctes                                                                                | 76<br>77                         |
| VI/VI    | DETERMINATION DES COEFFICIENTS DE PREVISIONS                                                            | 77                               |

| CH. VII L'  | IDENTIFICATION DES PROCESSUS LINEAIRES NON SAISONNIERS                                                                                                                                                     | 79                   |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| VII/I       | TECHNIQUES D'IDENTIFICATION                                                                                                                                                                                | 80                   |
|             | <ul> <li>(I,a) Ordre de l'opérateur de différence</li> <li>(I,b) Détermination de p et q</li> <li>(I,c) Estimation des fonctions d'autocorrelations</li> <li>(I,d) Ecarts-type de ces fonctions</li> </ul> | 80<br>80<br>82<br>82 |
| VII/II      | VALEURS INITIALES : LES CAS SIMPLES                                                                                                                                                                        | 82                   |
|             | (II,a) Processus en moyenne mobile                                                                                                                                                                         | 82<br>83             |
| VII/III     | VALEURS INITIALES : METHODE GENERALE                                                                                                                                                                       | 83                   |
| VII/IV      | LA MULTIPLICITE DES MODELES                                                                                                                                                                                | 85                   |
|             | (IV,a) Etude générale                                                                                                                                                                                      | 85<br>86<br>87       |
| CH.VIII L'E | STIMATION DES PROCESSUS LINEAIRES NON SAISONNIERS                                                                                                                                                          | 88                   |
| VIII/I      | ESTIMATION PAR LE MAXIMUM DE VRAISEMBLANCE                                                                                                                                                                 | 88                   |
|             | (I,a) Fonction de vraisemblance pour un MM(q)                                                                                                                                                              | 88<br>91             |
| VIII/II     | LA RESOLUTION NUMERIQUE                                                                                                                                                                                    | 91                   |
|             | (II,a) Calculs conditionnels                                                                                                                                                                               | 92<br>92             |
| VIII/III    | ESTIMATION NON LINEAIRE                                                                                                                                                                                    | 94                   |
|             | (III,a) Le problème                                                                                                                                                                                        | 94<br>97 <b>-</b> 98 |
| VIII/IV     | LA PRECISION DE L'ESTIMATION                                                                                                                                                                               | 97-98                |

| CH. | IX LA VERIFICATION                                   |                       |
|-----|------------------------------------------------------|-----------------------|
|     | IX/I L'ANALYSE DES RESIDUS                           | 101                   |
|     | (I,a) Test de Box et Pierce                          | 101                   |
|     | (I,b) Test du périodogramme                          | 102                   |
|     | IX/II LA MODIFICATION DU MODELE                      | 103                   |
|     | (II,a) Le sur-ajustement                             | 103                   |
|     | (II,b) Utilisation des résidus                       | 103                   |
| CH. | X LES MODELES SAISONNIERS                            | 105                   |
|     | X/I LE MODELE (p,d,q)(P,D,Q)S                        | 105                   |
|     | X/II ETUDE DU MODELE (0,1,1) x (0,1,1) <sub>12</sub> | 106                   |
|     | (II,a) Définition                                    | 106                   |
|     | (II,b) La prévision                                  | 106                   |
|     | (II,c) Identification et estimation préliminaire     | 107                   |
|     | (II,d) L'estimation                                  | 108                   |
|     | (II,e) La vérification                               | 109                   |
|     | ANNEXE : TABLES POUR DIFFERENTS PROCESSUS            | 110 à 11 <sup>4</sup> |
| CH. | XI LA METHODE DE HOLT ET WINTERS                     | 115                   |
|     | XI/I TRAITEMENT DES SERIES SAISONNIERES              | 1 <b>1</b> 5          |
|     | (I,a) Les formules                                   | 115                   |
|     | (I,b) Le modèle de Holt et Winters                   | 115                   |
|     | XI/II TRAITEMENT DES SERIES SAISONNIERES             | 116                   |
|     | (II,a) Avec effets additifs                          | 116                   |
|     | (II,b) Avec effets multiplicatifs                    | 117                   |
|     | XI/III LA MISE EN OEUVRE                             | 117                   |
|     | (III,a) Valeurs de départ                            | 117                   |
|     | (III,b) Choix des constantes de lissage              | 117                   |
|     | (III,c) Exemple                                      | 119                   |