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| Preface to the Second Edition

In the three years between the publication of the first edition of this book
and the writing of this edition, important advances in computer architec-
ture have occurred. These advances were motivated by a number of
factors, including the arrival of VLSI (very-large-scale integration) design
and manufacturing capabilities, renewed interest in programming-
language improvements (e.g., Lisp, Ada), and increasing agreement with
the issues and concepts discussed in the first edition of this book (e.g.,
tackling the software-development problem through improved computer
architectures). These advances have appeared in such systems as Intel’s
1APX 432 microprocessor and IBM’s System/38, and in the implementa-
tion of the SWARD machine (an early version of which was described in
the first edition).

I was motivated to write this second edition by the development of
these new systems, new work in such other areas as data-flow and
database machines, a desire to broaden and elaborate upon the ideas put
forth in the first edition, and my personal experiences in the hardware and
software implementation of the SWARD system.

The organization of the second edition parallels that of the first. Part I
(Chapters 1—4) has been largely rewritten, and now contains more
quantitative information and, 1 hope, more cogent arguments. Examples
from the Motorola 68000 and IBM System /38 are used in Chapter 4. The
case studies in Parts Ii, I, and IV have been retained from the first
edition, although a number of inaccuracies were corrected. Part V, the
case study of the SWARD machine, was completely rewritten to reflect the
current state of this architecture. Part VI is a new case study, the Intel
1APX 432, g revolutionary microprocessor architecture. Part VII is an
expansion of the material in the first edition on database machines. Also
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i PREFACE TO THE SECOND EDITION
added was a chapter on data-flow machines. Finally, Part VIII contains
some general information on the process of computer architecture.

I thank several individuals whose efforts contributed to this second
edition, namely, George Cox, Justin Ratiner, and Ken Aupperle of Intel

and Dave Ditzel of Bell Laboratories.
GLENFORD J. MYERS

Santa Clara, Californic
October 1981
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I Preface to the First Edition

Since the 1950s, we have witnessed many advances in computing
systems. The software field has advanced tremendously; for instance, we
now have better tools, methodologies, and programming languages,
software applications are mare sophisticated, new algorithms have been
invented, and the construction of such programs as operating systems and
compilers is fairly well understood. The construction of physical comput-
ing devices has also advanced significantly; for example, circuit speeds
and densities have increased by orders of magnitude, new storage
technologies have been invented, better algorithms have been devised,
and the microprogramming concept has been exploited. However, we
have seen almost no advances at the hardware /software interface, the
level of a system usually referred to as the computer architecture. To be
fair, there have been some significant advances, but they have not
received widespread attention and have not found their way into most
conventional systems. For instance, if the instruction sets of most current
large-scale systems, minicomputers, and microcomputers are examined,
they will be found to be strikingly similar to those of machines designed
in the 1950s,

The similarity of the architecture of today’s systems to earlier systems
can cause us to become complacent about the subject; we look around us
and see tremendous software and hardware advances, but see that the
architectures of current systems are virtually the same as those of earlier
systems, so we might be inclined to assume that people in the 1940s and
1950s invented all there was to he invented in the area of computer
architecture, The result would be that the architecture of future systems
would remain the same. This attitude is my motivation for writing this
book: to destroy this complacency by showing that there are serious
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X PREFACE TO THE FIRST EDITION

problems in current computer architectures and discussing advanced
architectural concepts that will solve these problems.

The intent of this book can also be expressed by examining two
possible alternative titles that were considered. One title was Fifth-
Generation Computer Architectures. The term “fifth”” was selected be-
cause of the feeling that the fourth generation is already on the drawing
board and that these systems would undoubtedly retain the architecture
of earlier systems. This title was discarded, however, because it looked
too “flashy.” Also it would be misleading because some of the concepts
discussed in the book arose in certain second-generation systems.
Another possible title was Second-Era Computer Architectures, but this
title was discarded because of the feeling that prospective readers would
confuse “era” for “generation” and form the impression that the book is a
historical survey of the IBM 1401, Burroughs 200, and other “second-
generation” (discrete transistor) machines.

The chapters within this book are organized into six parts. Part I defines
computer architecture, takes a critical look at current architectures, and
discusses a set of properties needed in future computer architectures.
Parts I, TII, IV, and V are case studies; they discuss four advanced
architectures having many or all of the desirable properties discussed in
Part 1. Part VI discusses other aspects of computer architecture, such as
input/output considerations and the optimization or “tuning” of an
architecture.

The book is intended for two audiences: for use as a text in a “second
course” on computer architecture (where the “first course” would pre-
sumably cover conventional architectural concepts), and to spread some
of these ideas to computer professionals in general. The reader is expected
to have a good grasp of computer system fundamentals. In particular the
reader should be knowledgeable of programming language concepts (€.8.,
the phrase “‘scope of names in a block-structured language” should be
meaningful to the reader), have an understanding of the machine or
assembly language of a conventional machine (e.g., S/370, PDP-10, COC
5600), be familiar with operating system and compiler concepts (e.8.; the
term “reverse Polish notation” should be a familiar one), and have a grasp
of the concept of microprogramming. A basic premise of this book is that
this knowledge is prerequisite to the development of computer architec-
tures.

I have found that the most effective way to understand an architecture
is to do a mental compilation of a high-level language prograi to the
architecture; many of the examples in the book were developed along this
line. If the book is being used as a text, the student should be assigned 2
aumber of small PL /T, Cobol, or Fortran programs to be mentally compiled
to each architecture.
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Lastly, the opinions in the book are those of the author and do not

necessarily represent the o
IBM Corporation.

January 1978

pinions, or future product directions, of the

GLENFORD J. MYERS
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