BIBLIOTHEQUE DV CERIST

ADM%#CES
COMPUTER |
ARCHITECTURE

Second
Edition

GLENFORD J. MYERS



BIBLIOTHEQUE DU CEB48T

| Advances in
Computer Architecture

Second Edition



BIBLIOTHEQUE DU CERIST

OTHER BOOKS BY GLENFORD J. MYERS

Reliable Software Through Composite Design, 1975
Software Reliability: Principles and Practices, 1977
Composite /Structured Design, 1978

Advances in Computer Architecture, First Edition, 1978
The Art of Software Testing, 1979

Digital System Design with LSI Bit-Slice Logic, 1880



BIBLIOTHEQUE DU CERIST

Advances in
Computer
Architecture

Second Edition

GLENFORD J. MYERS
Intel Corporation
Santa Clara, California

a YEAR,

1807\ &1982

o
CBITsE

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS

New York Chichester Brisbane Toronto

Singapore



BIBLIOTHEQUE DU CERIST

Copyright © 1978 by Tohn Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

Myers, Glenford J., 1946— . ?f
i

Advances in computer architecture.

A Wiley-Interscience publication.”

1zeludes bibliographical references and index.

1. Computeér architecture. L Title.
QA76.9.A73M93 1981 621.3819'52
ISBN 0-471-07878-6 AACR2

81-11374

Printed in the United States of America

10 9



TO MY PARENTS

1S90 Nd INO3IHLOIT4dIg



1S1430 Nd 3INO3HLO0I19lg



BIBLIOTHEQUE DU CERIST

| Preface to the Second Edition

In the three years between the publication of the first edition of this book
and the writing of this edition, important advances in computer architec-
ture have occurred. These advances were motivated by a number of
factors, including the arrival of VLSI (very-large-scale integration) design
and manufacturing capabilities, renewed interest in programming-
language improvements (e.g., Lisp, Ada), and increasing agreement with
the issues and concepts discussed in the first edition of this book (e.g.,
tackling the software-development problem through improved computer
architectures). These advances have appeared in such systems as Intel’s
1APX 432 microprocessor and IBM’s System/38, and in the implementa-
tion of the SWARD machine (an early version of which was described in
the first edition).

I was motivated to write this second edition by the development of
these new systems, new work in such other areas as data-flow and
database machines, a desire to broaden and elaborate upon the ideas put
forth in the first edition, and my personal experiences in the hardware and
software implementation of the SWARD system.

The organization of the second edition parallels that of the first. Part I
(Chapters 1—4) has been largely rewritten, and now contains more
quantitative information and, 1 hope, more cogent arguments. Examples
from the Motorola 68000 and IBM System /38 are used in Chapter 4. The
case studies in Parts Ii, I, and IV have been retained from the first
edition, although a number of inaccuracies were corrected. Part V, the
case study of the SWARD machine, was completely rewritten to reflect the
current state of this architecture. Part VI is a new case study, the Intel
1APX 432, g revolutionary microprocessor architecture. Part VII is an
expansion of the material in the first edition on database machines. Also

vii



BIBLIOTHEQUE DU CERIST

i PREFACE TO THE SECOND EDITION
added was a chapter on data-flow machines. Finally, Part VIII contains
some general information on the process of computer architecture.

I thank several individuals whose efforts contributed to this second
edition, namely, George Cox, Justin Ratiner, and Ken Aupperle of Intel

and Dave Ditzel of Bell Laboratories.
GLENFORD J. MYERS

Santa Clara, Californic
October 1981



BIBLIOTHEQUE DU CERIST

I Preface to the First Edition

Since the 1950s, we have witnessed many advances in computing
systems. The software field has advanced tremendously; for instance, we
now have better tools, methodologies, and programming languages,
software applications are mare sophisticated, new algorithms have been
invented, and the construction of such programs as operating systems and
compilers is fairly well understood. The construction of physical comput-
ing devices has also advanced significantly; for example, circuit speeds
and densities have increased by orders of magnitude, new storage
technologies have been invented, better algorithms have been devised,
and the microprogramming concept has been exploited. However, we
have seen almost no advances at the hardware /software interface, the
level of a system usually referred to as the computer architecture. To be
fair, there have been some significant advances, but they have not
received widespread attention and have not found their way into most
conventional systems. For instance, if the instruction sets of most current
large-scale systems, minicomputers, and microcomputers are examined,
they will be found to be strikingly similar to those of machines designed
in the 1950s,

The similarity of the architecture of today’s systems to earlier systems
can cause us to become complacent about the subject; we look around us
and see tremendous software and hardware advances, but see that the
architectures of current systems are virtually the same as those of earlier
systems, so we might be inclined to assume that people in the 1940s and
1950s invented all there was to he invented in the area of computer
architecture, The result would be that the architecture of future systems
would remain the same. This attitude is my motivation for writing this
book: to destroy this complacency by showing that there are serious

ix



BIBLIOTHEQUE DU CERIST

X PREFACE TO THE FIRST EDITION

problems in current computer architectures and discussing advanced
architectural concepts that will solve these problems.

The intent of this book can also be expressed by examining two
possible alternative titles that were considered. One title was Fifth-
Generation Computer Architectures. The term “fifth”” was selected be-
cause of the feeling that the fourth generation is already on the drawing
board and that these systems would undoubtedly retain the architecture
of earlier systems. This title was discarded, however, because it looked
too “flashy.” Also it would be misleading because some of the concepts
discussed in the book arose in certain second-generation systems.
Another possible title was Second-Era Computer Architectures, but this
title was discarded because of the feeling that prospective readers would
confuse “era” for “generation” and form the impression that the book is a
historical survey of the IBM 1401, Burroughs 200, and other “second-
generation” (discrete transistor) machines.

The chapters within this book are organized into six parts. Part I defines
computer architecture, takes a critical look at current architectures, and
discusses a set of properties needed in future computer architectures.
Parts I, TII, IV, and V are case studies; they discuss four advanced
architectures having many or all of the desirable properties discussed in
Part 1. Part VI discusses other aspects of computer architecture, such as
input/output considerations and the optimization or “tuning” of an
architecture.

The book is intended for two audiences: for use as a text in a “second
course” on computer architecture (where the “first course” would pre-
sumably cover conventional architectural concepts), and to spread some
of these ideas to computer professionals in general. The reader is expected
to have a good grasp of computer system fundamentals. In particular the
reader should be knowledgeable of programming language concepts (€.8.,
the phrase “‘scope of names in a block-structured language” should be
meaningful to the reader), have an understanding of the machine or
assembly language of a conventional machine (e.g., S/370, PDP-10, COC
5600), be familiar with operating system and compiler concepts (e.8.; the
term “reverse Polish notation” should be a familiar one), and have a grasp
of the concept of microprogramming. A basic premise of this book is that
this knowledge is prerequisite to the development of computer architec-
tures.

I have found that the most effective way to understand an architecture
is to do a mental compilation of a high-level language prograi to the
architecture; many of the examples in the book were developed along this
line. If the book is being used as a text, the student should be assigned 2
aumber of small PL /T, Cobol, or Fortran programs to be mentally compiled
to each architecture.



BIBLIOTHEQUE DU CERIST

PREFACE TO THE FIRST EDITIO

N Xi

Lastly, the opinions in the book are those of the author and do not

necessarily represent the o
IBM Corporation.

January 1978

pinions, or future product directions, of the

GLENFORD J. MYERS



1S1430 Nd 3INO3HLO0I19lg



BIBLIOTHEQUE DU CERIST

| Contents

PART | THE NEED FOR ARCHITECTURAL ADVANCES

1.

A Definition of Computer Architecture

The Role of the Computer Architect, 7
Analyzing Architecture Performance, 9
References, 13

Exercises, 14

A Critique of the Conventional von Neumann Architecture

The Semantic Gap, 17

Consequences of the Semantic Gap, 22
The von Neumann Architecture, 29
Other Undesirables, 32

References, 37

Exercises, 39

The Binding of Programs to Machines

Language-Directed Architectures, 43

Type A High-Level-Language Architectures, 45
Type B High-Level-Language Architectures, 46
Hardware /Software Cost Trade-Offs, 47

Type C High-Level-Language Architectures, 49
Architectures and Compilers, 51

References, 52

Exercises, 57

Requisites for Improved Architectures

Self-Defining Data, 58
Self-Defining Data Collections, 68

15

40

58

xiii



BIBLIOTHEQUE DU CERIST

xiv

CONTENTS

Small Protection Domains, 74
Subroutine Management, 76
Capability-Based Addressing, 81
Single-Leve] Storage, 91
Process Management, 98
Instruction Forms, 106

Higher Level Operations, 117
Lexical-Level Addressing. 118
References, 120

Exercises, 123

PART I A LANGUAGE-DIRECTED ARCHITECTURE

The Student-PL Machine 127
The Student-PL Language, 127
SPLM Storage Structure, 129

Reference, 133
Exercises, 133

Program Compilation and Executiocn on SPLM 134

Program Segments for IF Statements and DO Loops, 138
Subroutine-Call Example, 141

Significance of SPLM, 143

Exercises, 145

SPLM instruction Set 146

Data-Access and Addressing Instructions, 147
Data-Operation Instructions, 149

Control Instructions, 151

Procedure Instructions, 153

Array-Storage Instructions, 135

PART i A HIGH-LEVEL-LANGUAGE ARCHITECTURE

8. System Architeciure of the SYMBOL System 159

System Configuration, 160
Job Flow Through the System, 183



BIBLIOTHEQUE DU CERIST

CONTENTS

—h
o

PART IV A MULTIPLE-LANGUAGE-DIRECTED ARCHITECTURE

11.

12.

The SYMBOL Programming Language, 164
References, 168
Exercises, 170

Computer Architecture of the SYMBOL System

Representation of Data, 171
The Name Table, 173

The Object-Code String, 178
Exercises, 184

SYMBOL Processor and Configuration Architecture

The Main Bus, 186

Memory Management, 188

The System Supervisor, 196

The Central Processor, 200

The Translator, 203

The Remaining Processors, 203

System Software, 204

Significance of the SYMBOL System, 205
Exercises, 207

The Burroughs B1700 System

B1700 System Architecture, 212
Implementation Considerations, 213
Storage and Performance, 214
References, 215

Burroughs B1700 Cobol/RPG Architecture

Data Types, 216

Program Parameters, 217
Storage Structure, 218
Instruction Formats, 220
Machine Instructions, 222
Reference, 233

Exercises, 233

171

186

211

216



BIBLIOTHEQUE DU CERIST

xvi

DART V A SOFTWARE-ORIENTED ARCHITECTURE

13. The Rationaie for SWARD

The Design Goals, 238
Error-Detection Comparison, 241
Overview of SWARD, 243
References, 249

i4. The SWARD Machine

Data Types, 251

Objects, 263

Instriction Formats and Addressing, 287
Fault Handling, 271

Instruction Summary, 275

A One-Module Example, 279
Significance of SWARD, 284

The System Environment, 289
Exercises, 291

i5. SWARD instruction Specifications

General Instructions, 293
Arithmetic Instructions, 296
Comparison-and-Branch Instructions, 298
Boolean Instructions, 301
String-and-Search Instructions, 301
Control Instructions, 303
Addressing Instructions, 306
Drocess-Machine Insiructions, 311
Debugging Instructions, 318
Implementation Notes, 320

Process Machines and Storage, 322
Performance in the Small, 323

PART VI AN OBJECT-ORIENTED MICROPROCESSOR

16. Overview of the Intel 1APX 432 Microprocessor

The Design Goals, 335
Overview of the Architecture, 336

CONTENTS

237

251

292

335



BIBLIOTHEQUE DU CERIST

CONTENTS

Components and Configurations, 343
References, 344

17. iAPX 432 GDP Architecture

Segments and Data Types, 345
Segments and Objects, 348
Addressing, 350

Protection, 361

Program Structure, 363
Processors and Processes, 366
Interprocess Communication and Synchronization, 374
Software-Defined Objects, 377
Storage Management, 380
Fault Handling, 382
Significance of the 432, 386
References, 388

Exercises, 388

18. iAPX 432 GDP Instruction Specifications

Instruction Formats, 390

General Instructions, 396

Arithmetic Instructions, 398

Comparison Instructions, 401

Boolean Instructions, 403

Control Instructions, 405

Addressing Instructions, 407

Process /Processor-Related Instructions, 411
Synchronizing Instructions, 414

Use of the Operand Stack, 414

On-Chip Associative Address Translation, 415
Exercises, 417

PART VIl ARCHITECTURES FOR DATABASES

19. Associative Memories

Addressing by Content, 422

Partial Associativity, 424

Associative Memories as Database Processors, 426
References, 427

xvii

345

390

421



BIBLIOTHEQUE DU CERIST

xvili

20.

21.

22,

The Relational Associative Processor (RAF)

The Cell, 430

Data Representation, 431
Instruction Format, 433
Instruction Set, 434
Program Examples, 439
Performance, 441

RAP.3, 442

RAP in a Storage Hierarchy, 443
Significance of RAP, 444
References, 445
Fxercises, 446

Other Database Machines

CASSM, 447
The Database Computer {DBC), 453
References, 461

Data-Fiow Archiiectures

The Data-Flow Concept, 465

A Data-Flow Language, 467

A Data-Flow Machine, 475

Packet Communication Networks, 482
Congestion and Deadlock, 486
Structure Processing, 489

References, 492

Exercises, 494

PART Vil RELATED TOPICS

23.

Architecture Optimization and Tuning

Instruction-Set Optimizations, 498
Operation-Code Optimization, 505
Address Optimization, 512
References, 516

Exercises, 517

CONTENTS

4282

447

497



BIBLIOTHEQUE DU CERIST

CONTENTS Xix

24. The Practice of Computer Architecture 519

References, 525

Answers to Exercises 527

Index 541





