
 
 
 

Pseudo-Dynamic 
Resource Allocation 

in distributed 
database 

 

 
 
 
 

IST 659 

B
IB

LI
O

TH
E

Q
U

E
   

 D
U

   
 C

E
R

IS
T



Pseudo-Dynamic Resource Allocation in 
Distributed Databases 

PtLL.I.014-
2132 

G. Le Lann ) . IRIUS 
Institut de Recherche d'Informatique et d'Automatique (lRIA Projet S • 
Rocquencourt 78150 Le Chesnay. France 

ABSTRACT 

Specific problems arise in distributed.processing 7ystems where 
processors share a common database. EX1stence of s1multaneous 
updates and retrievals on the data base may threaten the data
base integrity and the consistency of the computat10ns perfor
med on that database. . . 
In this paper, we present a soluti?n t? the problem of ma~ntal
ning the internaI integrity of a dlstrlbuted database •. Th1s 
problem is shown to be identical.to a resourc7 al~ocatl~n problem in a distributed processlng system wh~ch lS subJect to 
failures. A resilient control structure allowlng for mutual. 
exclusion is used as an underlying mechanism. A protocol bUllt 
upon this mechanism is desbribed in detail. 

1. INTRODUCTION 
In many computing systems, it can be obser
ved that a certain amount of data is shared 
by processing tasks. It can be just a few 
variables or a very large data structure. 
Usually, when the amount of data is large 
and the semantic rules governing the usage 
of data are of some complexity, these data 
structures are referred to as databases. 

In this paper, we consider computer n:tworks 
which include several processors sharlng a 
database. We do not make any assumption 
regarding the individual computing power of 
these processors as we do not make any 
assumption regarding the complexity of the 
semantics associated with the database. 

For our purposes, we assume the datab~se to 
be dispersed over several storage dev~ces. 
Also, specific processors are responslble 
for the physical data handling on these 
devices ; su ch processors will be referred 
to as storage processors. 

External users access the computer network 
simultaneously from different locations. 

, Users can initiate their own tasks and they 
can also invoke system tasks. We assume that 
tasks can be partitioned into processing 

'units called processes. Processes are such 
that, if executed until completion, they . 
meet the database integrity criterion. Specl
fication of the resources they need to get 
initiated is expressed in terms of data 
subsets and predicates. 

The database is thoughtof as a collection of 
items I<hich are lockable individually. 
Examples are file subsets or individual 
records. We do not make any assumption regar
ding the size of these items. Choice of a 
particular size is generally dictated by the 
nature of the applications using the database 

and by the degree of acceptable bookkeeping 
overhead. 

User and system processes are Tun on several 
processors which perform the analysis of 
process needs. On behalf of processes, they 
are allowed to read data items, even those 
which are locked. 

From the analysis of predicates on data sub
sets as provided by a process and from the 
reading of data items, a processor can infer 
which data items are actually necessary for 
a process to be initiated. Let us point out 
that there is no assumption made so far 
regarding the strategy used by proces.ses to. 
request data items. Processes may state thelr 
needs a priori or they may request new data 
while running, i.e. dynamically. 

These processors are also provided with an 
internaI mapping mechanism allowing for th: 
identification of which storage processor lS 
to be accessed to reach a given data item. 
Such processors will be referred to as 
database controllers or controllers. 

As far as users are concerned, the existence 
of several controllers, storage processors 
and devices should be kept invisible. Actual
ly, the whole computer netl<ork is to be 
viewed as a single system. 

Communications are message-based. We will 
assume that interprocess transit delays are 
variable and that transmission errors are 
possible. AlI communications are handled by 
a specific pi:ce of software. Examples ~or 
packet-switchlng networks are the ARPA NCP 
(1) and the CYCLADES TS (2). 

Follpwing this introduction,.a descrip~ion 
of t~o different system archltectures lS 
given alang with a presentation of sorne 

245 

B
IB

LI
O

TH
E

Q
U

E
   

 D
U

   
 C

E
R

IS
T




