BIBLIOTHEQUE DU CERIST

Pseudo-Dynamic
Resource Allocation
In distributed
database

IST 659



£

BIBLIOTHEQUE DU CERIST

Pseudo-Dynamic Resource Allocation in

Distributed Databases

G, Le Lann

ALL.T.oAL

2132

C65y

Institut de Recherche d'Informatique et d’Automatigue {I1RIA} Projet SIRIUS,

Rocguencourt 78150 Le Chesnay, France

ABSTRACT

Specific problems arise in distributed processing systems where
processors share a common database. Existence of simultaneous
updates and retrievals on the database may threaten the data-
base integrity and the comsistency of the computations perfor-

med on that database,

In this paper, we present a solution to the problem of maintai-
ning the internal integrity of & distributed database. This
problem is shown to be identical to a resource allocation
problem in a distributed processing system which is subject to

failures. A resilient control structure alloewing for mutual

exclusion is used as an underlying mechanism. A protocol built

upon this mechanism is desbribed in detail.

1. INTRODUCTION

In many computing systems, it can be obser-
ved that a certain amount of data is shared
by processing tasks. It can be just a few
variables or a very large data structure.
Usually, when the amount of data is large
and the semantic rules governing the usage
of data are of some complexity, these data
structures are referred to as databases.

In this paper, we consider computer networks
which include several processors sharing a
database. We do not make any assumption
regarding the individual computing power of
these processors as we do not make any
assumption regarding the complexity of the
semantics associated with the database,

For cur purposes, we assume the database to
be dispersed over several storage devices.
Also, specific processors are responsible
for the physical data handling on these
devices ; such processors will be referred
to 85 storage processors.

External users access the computer network
simultaneously from different locations.
Users can initiate their own tasks and they
can also invoke system tasks. We assume that
tasks can be partitioned into processing

"units called processes. Processes are such

that, if executed until completion, they

meet the database integrity criterion. Speci-
fication of the resources they need to get
initiated is expressed in terms of data
subsets and predicates.

The database is thoughtof as a collection of
items which are lockable individually,
Examples are file subsets or individual
records. We do not make any assumption regar-
ding the size of these items. Choice of a
particular size is generally dictated by the
nature of the applications using the database

and by the degree of acceptable bookkeeping

overhead.

User and system processes are run on several
processers which perform the analysis of
process needs. On behalf of processes, they
are allowed to read data items, even those
which are locked.

From the analysis of predicates on data sub-
sets as provided by a process and from the
reading of data items, a processor can infer
which data items are actually necessary for

a process to be initiated. Let us point out
that there is no assumption made so far
regarding the strategy used by processes to
request -data items. Processes may state their
needs a prieri or they may reguest new data
while running, i.e. dynamically,

These processors are alsc provided with an
internal mapping mechanism allowing for the
identification of which sterage processor is
to be accessed to reach a given data item.
Such processors will be referred to as
database controllers or controllers.

As far as users are concerned, the existence
of several controllers, storage processors
and devices should be kept invisible. Actual-
ly, the whole computer network is to be
viewed #s a single system.

Communications are message-based., We will
assume that interprocess transit delavs are
variable and that transmission errors are
possible. All communications are handled by
a2 specific piece of software. Examples for
packet-switching networks are the ARPA NCP
(1) and the CYCLADES TS (2). '

Fellpwing this introduction, a description

of two different system architectures is
given along with a presentaticn of some

245





