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Preface 

The digital computer is a machine which is inherently finite in all of its 
aspects which are of importance to a programmer or user. Whether the 
problem posed to the computer relates to numerieal computation, symbol 
manipulation, information retrieval, or picture generation, the procedures 
and results are restricted by the finiteness of word length and memory size, 
and by the discrete time steps in which a computer operates. Hence for a 
thorough understanding of the capabilities and limitations of computers, it 
is important to be aware of the impact of these restrictions. Thus the purpose 
of this text is to bring together many of the concepts from discrete mathe
matics which are important to computing. Throughout 1 have tried to keep 
two questions in mind: (1) How does this topie influence the theory and 
practice of computing? (2) How is the computer used to solve problems in 
this topic? These questions cannot always be given equally good answers, and 
there are topics, particularly early in the book, where any relation between 
the topic and computing is largely suppressed. Hopefully, these topies are 
few and brief, and in the nature of a mathematical background necessary to 
the remainder of the book. 

The text is designed as a sophomore- or junior-Ievel book, corresponding 
to the course B3, Introduction to Discrete Structures, in the ACM Cur
riculum 68. Thus 1 assume that the student knows and can use at least one 
high level programming language, and 1 use this assumption in both the text 
and the exercises. 1 view B3 as the more mathematical half of a one-year 
course. Thus the student who has covered the material presented here should 
be ready to use these mathematical concepts in courses which de al more 
specifically and directly with computers. He should have the basic mathe
matics to enable him to feel comfortable in undergraduate courses in data 
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x PREFACE 

structures (the natural follow-up to B3), switching circuits, and automata 
theory. With this in mind, topies such as lists, circuit design, and finite state 
machines have been largely omitted, to be covered in succeeding courses. 

This book is not intended as a formaI, rigorous introduction to the theory 
of discrete structures, although 1 believe that the mathematieal content is 
accurate and not misleading. It has been my experience that most computer 
science students at this level do not appreciate the subtleties of the theory. 
Hence 1 have tried to motivate the theoretical constructs as thoroughly as 
possible from computing, and to present any arguments, however formaI, in 
an informaI setting. Nevertheless, 1 firmly believe that the instructor should 
be willing and able to put the challenge of formaI work to those students 
who can absorb more theory. 

The text is quite loosely structured, with ample material so that the 
instructor can pick and choose. Very little mathematical background is 
required of the student, although students who have had a course in the 
foundations of modern mathematics will find much of Chapters 1 and 9 to be 
review material. Basieally there are five sections to the text, and almost any 
permutation of these sections makes sense. However, my experience with 
the material has led me to the present order, both among and within sections. 

Chapter 1 constitutes the first section. This covers the basic mathe
matical background needed, and should be studied first. It also includes sorne 
discussion of the computer representation of sets. 

The section on graph theory consists of Chapters 2-4. The organization 
progresses from the simplest concepts toward more complex ones. The 
sections on storage minimization and bandwidth present an example of the 
close interaction which is possible between mathematics and computing, to 
the benefit of both. Chapter 3 develops a conceptual framework which has 
been little publicized ouside of research papers, as does the last section of 
Chapter 4. 

The algebra section, Chapters 5-7, concentrates on semigroups, groups, 
and lattices. This does not imply that rings, fields, and univers al algebras 
are unimportant, but rather that at this level of text, and for the purposes of 
this course, these latter structures can weIl be omitted. 

The concepts of Boolean algebra and propositional calcul us are covered, 
in rather tradition al fashion, in Chapters 8 and 9. A new tabular method of 
Boolean function minimization is described. Discussion of the Polish notation 
in Chapter 9 provides a nice tie back to the concepts of Chapter 3. The 
predicate ca1culus is omitted, for much the same reason that certain alge
braic structures are omitted: litt le is lost by postponing discussion of it until 
a later course. 

The final section of the book, centered around combinatorics and prob
ability, is perhaps the most nove!. Chapter 10 introduces the student to the 
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PREFACE xi 

general process of enumerating objects, through a number of examples show
ing different techniques. Polya's theory, while extremely important, is suf
ficiently complex that it cannot properly be covered in a course at this level. 
Hence 1 have reluctantly omitted any reference to it. Chapter Il is totally in 
the nature of a case study. The problem chosen is a complex one which has 
numerous ties into applications in operations research, and which illustrates 
both the use of a computer, and the importance of knowing something 
about the combinatorial nature of a problem before doing the programming. 
Finally, Chapter 12 introduces the student to sorne of the probabilistic con
cepts which he will need repeatedly in bis career. 

A few exercises, mostly programs, have been marked (*) or (* * ). The 
single asterisk identifies a difficult problem, while the double asterisk marks 
a problem which the students will probably find extremely difficult or impos
sible to do. These problems are included both to challenge the brighter 
students, and, more importantly, to provide material for class discussion. 
That is, 1 suggest assigning a (* *) problem for the students to spend a week 
on (without really expecting them to solve it), and then spending time in 
class discussing the difficulties which they have encountered, and how to 
work around them. 
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CHAPTER 1 

Basic Forms 
and Operations 

1. INTRODUCTION 

This is a book about structures. Between this page and the final one we 
shaH examine a wide variety of mathematical frameworks. We shaH compare 
them-finding at times that we have two or more qui te distinct ways of 
describing a framework. We shaH explore and map them, so that we can 
more easily find our position in a given framework, and can reference and 
discuss various locations within the framework. We shaH clothe the se frame
works with data and with programs, and examine what can be said about the 
resulting structures. Always, since our interest is in digital computation, our 
structures will be discrete. That is, they will have no more parts than there 
are integers. 

A computer is basically a data transformer. Given certain input data, a 
computer will, by means of its programs and its internai circuitry, transform 
the data into other data which constitute the output of the machine. As 
users, we may interpret the data to represent numbers, words, music, 
pictures, and so on. The data become information. We propose to examine 
the concept of data as it relates to computers, to determine the basic forms 
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2 BASIC FORMS AND OPERATIONS 

that data can take regardless of the interpretation, and to study these 
forms for properties which affect computation. We shall begin with the 
simplest form, the set, and progress into data forms with more complex 
structures. 

2. ELEMENTS AND SETS 

The simplest structure that we encounter is the set. Without defining 
set precisely, a set is a mere collection of "things": books, computers, 
concepts, colors, words, numbers, cars, and so forth. These "things" in a set 
are called the elements or members of the set. A set, as a set, is almost 
de void of properties: there is no order to the set, no relationship among 
the elemen ts other than that they aIl belong to the set. In fact, the only basic 
property which we shaH assume is that, given a "thing" x and a set A, we 
can de termine whether x is an element of A. We shaH denote set membership 
by the symbol E, writing x E A if x is an element of A, and x 1= A if x is 
not an element of A. 

A set may be described either by listing aIl of its elements within 
braces, or by stating a property that de termines whether a "thing" is an 
element of the set. 

Example 2.1 

Describe the sets consisting of the elements (a) 1, 2, 3; 
(b) a, e, i, 0, and u; (c) red, yellow, and blue. 

ANSWER. (a){1,2,3},(b) {a,e,i,o,u}, 
(c) {red, yellow, blue}. 

Whenever the meaning is clear, we may use ellipses ( ... ) to abbreviate the 
list. Thus the set of aIl integers between 1 and 1,000,000 may be written 
{1,2,3, ... ,1,000,000}, and the set of aH negative integers may be written 
{ 1, -2, -3, ... }. 

It should be noted that a change in the order in which the elements 
of a set are listed does not change the set. Nor does multiple listing of 
elements change the set, any more than multiple listing of houses for sale 
changes the set of houses available. Thus the listings {1, 2, 3}, {2, 3, l}, and 
{l,l, 3, 2} aIl describe the same set. 

The form used to de scribe a set by a property is {x 1 P(x)}, read "the set 
of aIl x such that P(x) holds," where Pis the defining property. 
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