BIBLIOTHEQUE DU CERIST

COMMUN | CATING

PROCESSES.

C.A.R. HOARE.

SEQUENTTAL




o = it

(52

Programming S. L. Graham, R. L. Rivest
Techniques Editors i

Communicating
Sequential Processes
C.A.R. Hoare

The Queen's University
Belfast, Northern Ireland

This paper suggests that input and output are basic
primitives of programming and that parailet
tompesition of communicating sequential processes is a
Tindamental program structuring method. When
pombined with a development of Dijkstra’s guarded
copmmand, these concep1s are surprisingly versatife,
Lheir use is illustrated by sample solutions of a variety
of familiar programming exercises.

Key Words and Phrascs: programuming,
programming languages, programming p;‘imitives,
Rrogram structures. paraliel progranuning, cancurrency,
mput, output, guarded commands, nondeterminacy.
coroutines, procedures, muhiple entries, multiple exits,
classes, data Wns, recursion, conditi
eritical regions, moniiors, iterative arrays

CR Categories: 4.20, 4,22, 4.32

L, Introduction

Among the primitive concepts of computer program-
ming, and of the high level languagss in which programs
sre expressed, the action of assignment is familiar and
well understood. In fact, any change of the internal state
ol a machipe executing a program can be modeled as an
assignment of a new value to some variable part of that
machine. Eowever, the operations of input and output,
which affect the external environment of a machine. are
oot nearly so well understood. They are often added to
a programming language only as an afterthought.

Among the structuring methods for computer pro-

General permission to make fxir use in teaching or research of ail
or part of this material is granted to individual readers and to nonprofis
libraries acting for them provided that ACM's copyright notice is given
and that reference is inads to the publication, 10 its date of issue. and
1o the fact that reprinting privileges were granted by permission of the
Association for Computing Maciunery, To otherwise reprint a figure,
table, other subswanual excerpt, or the entire work tequires specific
permission as does republication, or systeratic or multiple reproduc-
on.

“This research was supposted by a Senior Fellowship of the Science
Research Council,

Author's present address: Programming Research Group, 45, Bane
bury Road, Oxford, Enzland.

@ 1978 ACM 00C1-G782/78/0300-0666 S00.75

666

—— CTRE QP

grams, three basic constructs have received widespread
recognition and use: A repetitive construct (e.g. the while
loop), an alizrnative construct (e.g. the conditional
if..then..else). and normal sequential program composi-
tion (often denoted by a semicolon}. Less agreement has
been reached about the design of other important pro-
gram structures, and many suggestions have been made:
Subroutines (Fortran}, procedures (Algol 60 [15]), entries
(PL/1), coroutines (unix [17]), classes (sivura 67 [S5]),
processes and monitors (Concurrent Pascal [2]), clusters
{CLU [13]), forms (ALPHARD [I9]). actors (Hewittt [I]).

The traditional stored program digital computer has
been designed primariiy for deterministic execuiion of a
single sequential program. Where the desire for greater
speed has led to the introduction of parallelism, every
attempt has been made to disguise this fact from the
programmer, either by hardware itself (as in the multiple
functicn units of the CDC 6600) or by the software (as
in an [/0O control package, or a multiprogrammed op-
erating system). However, developments of processor
technology suggest that a multiprocessor machire, con-
structed from a number of similar self-contained proc-
essors {each with its own store), may become more
powerful, capacious, reliable, and economical than a
machine which is disguised as a monoprocessor.

In order to use such a machine effectively on a single
task, the component processors must be able to com-
muntcate and to synchronize with each other. Many
methods of achieving this have been proposed. A widely
adopted method of communication is by inspection and
updating of a common store (as in Algol 68 [18], PL/1,
and many machine codes). However, this can create
severe problems in the construction of correct programs
and it may lead to expense {e.g. crossbar switches) and
unreliability (e.g. glitches) in some technologies of hard-
ware implementation, A greater variety of methods has
been proposed for synchronization: semaphorss [6],
events (PL/]), conditional critical regions [10], monitors
and queues {Concurrent Pascal [2]), and path expressions
[3]. Most of these are demonstrably adequate for their
purpose, but there is no widely recognized criterion for
choosing between them.

This paper makes an ambitious attempt to find a
single simpie solution to ali these problems. The essential
proposals are:

(1) Dijkstra’s guarded commands [8] are adopted (with
a slight change of notation) as sequential control struc-
tures, and as the sole means of introducing and control-
ling nondeterminism.

{2) A parallel command, based on Dijkstra’s parbegin
{6]. specifies concurrent execution of its constituent se-
quential commands {processes). All the processes start
simultaneously, and the parallel command ends only
when they are all finished, They may not communicate
with each other by updating global variables.

(3) Simple forms of input and output command are
introduced. They are used for communication between
concurrent processes.

Communications August 1978
of Yolume 21
the ACM Number §



(4) Such communication occurs when one process
names another as destination for output and the second
process names the first as source for input. In this case,
the value to be cutput is copied from the first process to
the second. There is no automatic buffering: In general,
an input or output command is delayed until the other
process is ready with the corresponding output or input.
Such delay is invisible to the delayed process.

(5) Input commands may appear in guards. A guarded
command with an input guard is selected for execution
only if and when the source named in the input com-
mand is ready to execute the corresponding output com-
mand. If several input guards of a set of alternatives
have ready destinations, only one is selected and the
others have no effect; but the choice between them is
arbitrary. In an efficient implementation, an output com-
mand which has been ready for a long time should be
favored; but the definition of a language cannot specify
this since the relative speed of execution of the processes
is undefined.

{6} A repetitive command may have input guards. If all
the sources named by them have terminated, then the
repetitive command also terminates.

{7} A simple pattern-matching feature, similar to that of
[L6], is used to discriminate the structure of an input
message, and to access its components in a secure fash-
ion. This feature is used to inhibit input of messages that
do not match the specified pauern.

The programs expressed in the proposed language
are intended to be implementable both by a conventional
machine with a single main store, and by a fixed network
of processors connected by input/output channels (al-
though very different optimizations are appropriate in
the different casesy. It is conseguently a rather static
language: The text of a program determines a fixed
upper bound on the number of processes operating
concurrently; there is no recursion and no facility for
process-valued variables. In other respects also, the lan-
guage has been stripped to the barest minimum necessary
for explanation of its more novel features.

The concept of a communicating sequential process
is shown in Sections 3-5 to provide a method of express-
ing solutions to many simple programming exercises
which have previously been employed to illustrate the
use of various proposed programming language features.
This suggests that the process may constitute a synthesis
of a number of familiar and new programming ideas,
The reader is invited to skip the examples which do not
interest him.

However, this paper also ignores many serious prob-
lems. The most serious is that it fails to suggest any proof
method to assist in the development and verification of
correct programs. Secondly, it pays no attention to the
problems of cfficient implementation, which may be
particularly serious on a traditional sequential computer.
It is pr solufion to these problems will

tations for the most common and useful special cases:
(3) development of automatic optimization techniques;
and (4) the design of appropriate hardware.

Thus the concepts and notations introduced in this
paper {(although described in the next section in the form
of a programming language fragment) should not be
regarded as suitable for use as a programming language,
either for abstract or for concrete programming. They
are at best only a partial solution to the problems tackled,
Further discussion of these and other points will be
found in Section 7.

2. Concepts and Notations

The style of the following description is borrowed
from Algol 60 [15]. Types, declarations, and expressions
have not been treated; in the examples, a Pascal-like
notation [20] has usually been adopted. The curly braces
{ } have been introduced into BNF to denote none or
more repetitions of the enclesed material. (Sentences in
parentheses refer to an implementation: they are not
strictly part of a language definition.)

<command>> i <simple wmm&nd:rf(s:mm:md command>
<simple command> 1= <oull command>|<assignment command>
i<input command>|<output command>>
<structured command> == <aliemative command>
{<repetitive command>»! <parallel command>>
<aull command> 1= skip
<command list> = [<declaration>; {<command>>;) <command>

A command specifies the behavior of a device exe-
cuting the command. It may succeed or fail. Execution
of a simple command,. if successful, may have an effect
on the internal state of the executing device (in the case
of assignment), or on its external environment (in the
case of output), or on both (in the case of input). Exe-
cution of a structured command involves execution of
some or all of its constituent commands, and if any of
these fail, so does the structured command. {In this case,
whenever possible, an implementation should provide
some kind of comprehensible error diagnostic message.)

A null command has no effect and never fails.

A command list specifies sequential execution of its
constituent commands in the order written. Each decla-
ration introdnces a fresh variable with a scope which
extends from its declaration to the end of the command
fist.

2.1 Parallel Commands

<parallel command> = [<processs {[{<process:>} ]

<process>> = <process label> <command list>

<process label> := <empty>>|<identifier> ::
|<identifier>(<label subscript>{,«label subscrip>}) =

<label subscript> = <linteger constant>|<ranges»

<integer constant™ = <numeral>{<bound vanable>

<bound variable> ;= <identifier>>

<range> v= <bound varable><lower bound». .<upper bound>

——="téquirg (1) impobition of restrictions in the use of the
", proposed features; (2) reintfoduction of distinctive no-
. B \

s o

<lower bound> = <integer constant>
<uypper bound> == <integer constant>

\ 6671 6 oLl 1079 ‘\ Communications August 1978
R of Volume 21
| T OAS the ACM Number §
GEN‘(R;‘ oy (. N LGFLR

g Cwih A - .
BT FELA L o oA





