
~ tST 

652 . 
--_._. 

COMMUNICATING SEQUENTIAL 

PROCESSES. 

C.A.R. HOARE. 

, 

B
IB

LI
O

TH
E

Q
U

E
   

 D
U

   
 C

E
R

IS
T



·_0.. ___ .>_ ,._~_~~ __ .~_ .. _. __ #'_~""'_'_~'_~~~>. __ '_' __ ";';""":""'~ =_ ~ n ~~_ .. _'" \ . - >;t.;;;;;t'itV r-- ,. 
1 /'J r ~ ~/ grams. three basic constructs have received widespread 
1 V b . recognition and us.:: A repeutive construct (e,g. the while 

Programming 
Techniques 

S. L Graham, R. L Rivest 
Editors 

Communicating 
Sequential Processes 
C.A.R. Hoare 
The Queen's Universitv 
Belfast, Northem Ireland 

This pa[><!r suggests that input and output are basic 
primitives of progranuning and that parallel 
composition of communicating sequential proeesses Is a 
fundamcntal program structuring mp.thod. When 
comblned with a development of Dijkstra's guarded 
cODlDIand, these concepts are surprisingly versatile. 
Tbeir use L~ i!lustratcd by sample solutions of a variety 
of familiar progralnnÙng exercises. 

Key Words IInd Phrases: I?rog!~l!lIIÙng, 
progralllming languages, programming primitives, 
program structures. paraI/el progrannning, concurrency, 
input, output, guarded cornmands, nondeterminacy. 
coroutines, procedures, multiple cntrics, multiple exits, 
classes, da.t.a~ns, recursion. condi' J 

critical regions. momtors, iterative arrays • :;~c:/, 
, . ..,"'" 

CR Categories: 4.20, ·"22, 4.32 ) '."'( -- . - "\... t--,"- )~ 

.~.".. ~ ) '.,. -11"'« ..... r· • • 
1. Introduction 

Among the primitive concepts of computer program
ming, and of the high levellanguages in which programs 
are expressed, the action of assignment is familiar and 
weil understood. In fact, any change of the internai state 
of a machine executing a program c:m be modeled as an 
assignment of a new value to sorne variable part of that 
machine. However, the operations of input and output, 
which affect the external environment of a œachine. are 
not nearly so weil understood. They are often added to 
a programming language only as an afterthought. 

Among the structuring methods for computer pro-
General permi~ion ta make fair use. in teaching or research of all 

,,!r part of th!s malenal i.s g,.nted to indiVIdu.! reade .. and to non profit 
libran .. aCllng lor :bem provlded that ACM', copyright notice i. given 
and thal referençe 15 mad: to tbe publication. 10 ilS date of is:sue~ and 
to the, faa tbat reprinling privi!eges wc,. granted by l"'rmissien of the 
AssoclatlOIl for Com~utmg ~1achinery. Tc otherwise reprint a rlgure, 
table., o~her substanual e~cerpt, or the entire work tC!"qulres specifie 
~rml.SSlon as does republic.auon, or systematic or multiple reproduc~ 
Uon. 

This researc' was supported by a Senior Fellowsbip of the Science 
R...,arch CounciJ. 

Auther'. pres<:n! ;"ldross: Progf3mmin.g Re •• arch Group. 45, Ban
bury Road. O.ford, England. 
© 1978 ACM 0001-0782/78/0800-0666 $00.75 

loop). an alternative construct (e.g, the conditional 
if..then .. else). and normal sequential program composi
tion (often denoted by a semicolon). Less agreement has 
been reached about the design oi other important pro
gram structures, and man y suggestions have bcen made: 
Subroutines (Fortran), procedures (Algol 60 [15]), entries 
(PL/l). coroutines (UN!X [17]), classes (SIMt:LA 67 [5]), 
processes and monitors (Concurrent Pascal [2]), clusters 
(CLU [13!), forms (ALPHARD [19]), actors (Hewitt [IJ). 

The traditional stored program digital computer has 
been designed primarily for deterrninistic execution of a 
single sequential program. Where the desire for greater 
speed has led to the introè.uction of parallelism, every 
attempt has been made to disguis.: this fact from the 
programmer, either by hardware itself (as in the multiple 
function units of the CDC 6600) or by the software (as 
in an 1/0 control package, or a multiprogrammed op
erating system). However, developments of processor 
technology suggest that a multiprocessor machine. con
structed from a number of similar self-contained proe
essors (each with its own store), may become more 
powerful, capacious, reliable. and eeonomical than a 
machine which is disguised as a monoprocessor. 

In order to use such a machine effectively on a single 
task, the component processors must be able to com
municate and to synchronize with eaeh other. Many 
methods of achieving this have been proposed. A widely 
adopted method of communication is by inspection and 
updating of a common store (as in Algol 68 [18J, PL/l, 
and many machine codes). However, this can create 
severe problems in the construction of correct programs 
and il may lead to expense (e.g. çrossbar switches) and 
unreliabifily (e.g. glitehes) in sorne technologies of hard
ware implementation. A greater variety of methods has 
been proposc:d for synchronization: semaphores [6], 
events (PL/I), eonditional critieal regions [10], monitors 
and queues (Concurrent Pascal (2]), and path expressions 
[3). Most of these are demonstrably adequate for their 
purpose, but there is no widely recognized criterion for 
choosing between them. 

This paper makes an ambitious attempt to find a 
single simple solution to an these problems. The essential 
proposais are: 
(1) Dijkstra's guarded commands [8) are adopted (with 
a slighl change of notation) as sequential control struc
tures, and as the sole means of introducing and control
ling nondeterminism. 
(2) A paranel command, based on Dijkstra's parbegin 
[6], spedfies concurrent execution of ils constituent se
quentiaJ eommands (processes). All the proeesses start 
simultaneously, and the parallel eommand ends only 
when they are ail fuùshed. They may not communicate 
with each other by updating global variables. 
(3) Simple forms of input and output command are 
introduced, They are used for communication between 
concurrent processes. 

Communications 
of 
theACM 

August 1978 
Volume 21 
Number 8 

B
IB

LI
O

TH
E

Q
U

E
   

 D
U

   
 C

E
R

IS
T



·_ ............ -----~ .. ~-,'""'--'--~-.....,.,.,. ..... ~ ..... ;.., __ ~ ..... _ .... " .. "'''' ......... __ ,_ ......... ' ..... ,,-.. .... , ...... l1'-'_ ... "" .... __ ~_· .. • .. ' ... • ... ,;, .. b .. "_'~, __ _ 
~ 

(4) Such communication occurs wnen one process 
names another as destination for output and the second 
process names the first as source for input. In this case, 
the value to be output is copied from the first process to 
the second. There is no automatic buffering: ln general, 
an input or output command is delayed until the other 
process is ready with the corresponding output or input. 
Such delay is invisible to the delayed process, 
(5) Input commands may appear in guards, A guarded 
command with an input guard is selected for execution 
only if and when the source named in the input com
mand is ready to execute the corresponding output com
mand. If several input guards of a set of alternatives 
have ready destinations, only one is selected and the 
others have no effeet; but the choice between them is 
arbitrary, In an efficient implementation, an output COOl

mand which has been ready for a long time should be 
favored; but the deftnitÎon of a language cannot specify 
this since the relative speed of execution of the processes 
is undefmed, 
(6) A repetitive command may have input guards, If ail 
the sources named by them have terrninated, then the 
repetitive command also termina tes. 
(7) A simple pattern-matching feature, similar to that of 
[16], is used to discrimina te the structure of an input 
message, and to access its components in a secure fash· 
ion. This [ealUre is used to inhibit input of messages that 
do not match the specilled pattern. 

The programs expressed in the proposed language 
are intended to be implementable. both by a conventional 
machine with a single main store, and by a flXed network 
of processors connected by input/output channels (al
though very different optimizations are appropriate in 
the different cases). ft is consequently a rather static 
language: The text of a program determines a flXed 
upper bound on the number of processes operating 
concurrently; there is no recursion and no facility for 
process,valved variables. ln other respects àlso, the lan, 
guage has been stripped to the barest minimum necessary 
for explanation of its more novel features. 

The concept of a communicating sequential process 
is shown in Sections 3-5 to provide a method of express
ing solutions to many simple programming exerCÎses 
which have previously been employed to illustrate the 
use of various proposed programming language features. 
This suggests that the process may constitute a synthesis 
of a number of familiar and new programming ideas. 
The reader is invited to skip the examples which do not 
interest him. 

However, this paper also ignores many serious proh
lems. The most serious is that it fails to suggest any proof 
method to assist in the development and verification of 
corre"t programs. Secondly, it pays no attention to the 
problems of efficient implementation. which may be 
panicularly serious on a (raditional sequcntial computer. 
It is r so u ion to these problems will 

~-i'ë'ëiuir~ (1) impo~ilif? of r strictions in the use of the 
l , propo*d featu.~i~ reint oduction of distinctive no-

1 

~ IflQue 
. :,(jf~\·US 

tations for the most common and useful special cases: 
(3) development of automatic optimization techniques; 
and (4) the design of appropriate hardv.are, 

Thus the concepts and notations introduced in this 
paper (although described in the next section in the forro 
of a programming language fragment) should not be 
regarded as suitable for use as a programming language, 
either for abstract or for concrete programming. They 
are at best only a panial solution to the problems tackled. 
Further discussion of these and other points will be 
found in Section 7. 

2. Concepts and Notations 

The style of the following descri ption is borrowed 
from Algol 60 [15]. Types, declarations, and expressions 
have not been treated; in the examples, a Pascal-like 
notation [20] has usually been adopted. The curly braces 
{} have been introduced into BNF to denote none or 
more repetitions of the enclosed material. (Sentences in 
parentheses refer to an implementation: they are not 
strictly pan of a language definition.) 

<command> :,.. <simple commànd>l<structured command> 
<simple command> ::- <nul! command>I< .... ignment command> 

I<input command>l<output command> 
<structured command> :.,- <::.alternative command> 

l<repeûtive command>! <parallel command> 
<null commnnd> ::- skip 
<command list>::- «declaraûon>; l<command>;) <command> 

A command specifies the behavior of a device exe, 
cuting the commando It may succeed or fail. Execution 
of a simple command,.if successful, may have an effect 
on the internai state of the executing device (in the case 
of assignment), or on hs external environment (in the 
case of output), or on both (in the case of input), Exe
cution of a structured command involves execution of 
sorne or ail of its constituent commands, and if any of 
these fail, so does the structured commando (In this case, 
whenever possible, an implementation should provide 
sorne kind of comprehensible errar diagnostic message.) 

A null command has no effect and never fails. 
A command Iist specifies sequential execution of its 

constituent commands in the order written. Each decla
ration introduces a fresh variable with a scope which 
extends from its declaration to the end of the command 
list. 

2.1 Parallel Commands 

<parallel command>::- [<pro<:ess> {1I<pro<:css>} 1 
<prtxess> c- <process label.> <command Ust> 
<proc:css label> ::=0 <cmpty>l<idcntitier> :: 

I<idcntificr>«label subscript>{.<label subscript>l) :: 
<label subscript> ::- <integer consta.nt>l<mnge> 
<integer constant> ::= <numeral>l<bound variable> 
<bound variable> ::= <identifier> 
<range> ::=- <bound variablc>:<lowcr bound> .. <upper bound> 
<Iower bound> ::= <imeger constant> 
<upper bound> ::= <integer COnstant> 

Communications 
of 
theACM 

August 1978 
Volum.ll 
Number8 

l 
1 
.1 

r 

B
IB

LI
O

TH
E

Q
U

E
   

 D
U

   
 C

E
R

IS
T




