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Preface 

Computation al geometry is the part of theoretical computer science that concerns it
selfwith geometric objects; it tries to design efficient algorithms for problems involving 
points, lines, polygons, and so on. The field has gained popularity very rapidly during 
the last decade. This is partly due to the many application areas of computational 
geometry and partly due to the beauty of the field itself. l hope that the reader will 
experience some of this beauty when reading this book. Initially, most research was 
directed towards problems in two-dimensional space, and good solutions to many of 
these problems have been found. In recent years the field has shifted its attention 
to problems in three- (and higher) dimensional space. This shift of attention is also 
reflected in this book: almost everything that is studied is three-dimensional. 

This book focuses on three problems in computational geometry that arise in 
computer graphies. (A more ample discussion of the relation of these problems to 
computer graphies can be found in Chapter 1.) The first problem is the ray shooting 
problem: preprocess a set of polyhedra into a data structure such that the first poly
hedron that is hit by a query ray can be determined quickly. The second problem is 
that of computing depth orders: we want to sort a set of polyhedra such that if one 
polyhedron is (partially) obscured by another polyhedron then it come first in the 
order. The third problem that we study is the hidden surface removal problem: given 
a set of polyhedra and a view point, compute which parts of the polyhedra are visible 
from the view point. These are not only three nice problems that arise naturally 
in one of the application areas of computational geometry; they involve issues that 
are fundamental to three-dimensional computational geometry and are, hence, also of 
considerable theoretical interest. The book also contains a large introductory part, 
whieh discusses the techniques that will be used to tackle the three problems stated 
above. This part should be interesting not only to those who want to read the rest of 
the book but miss the necessary background, but to anyone who wants to know more 
about some (recent) techniques in computational geometry. 

This book is a revised version of my Ph.D. thesis, which was the result of the re
search l did at the department of computer science of Utrecht University (the Nether
lands) in the period from August 1988 to March 1992. The research was supported 
by the Dutch Organization for Scientific Research (N.W.O.), and partially by the 
ESPRIT Basic Research Action No. 3075 (project ALCOM). There are many people 
without whom this book would not have been what it is now. First of ail, there is 
Mark Overmars, who introduced me to the fascinating field of computational geom
etry: l could not have wished myself a more stimulating supervisor for my Ph.D. 
research. Secondly, there is Marc van Kreveld, my roommate during ail those years: 
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vi 

they w01l1d certainly have been less pleasant withollt the many discussions Wf: had on 
various subjects (including computational geometry). Practically everything in this 
book has. profited from. their comroents aRd suggestions. Let me also mention the 
other people that contributed to the research that is reported in this book: Hazel 
Everett, Danny Halperin, Otfried Sçhwarzkopf, Jack Snoeyink and Hubert Wagener. 
FinaUy, l thank Jan van Leeuwen, IÇees van Overveld, Micha Sharir and Emo Welzl 
for being in the reading eommittee of my thesis. 

Utrecht, April 1993 Mark de Berg 
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Chapter 1 

Computational Geometry and 
Computer Graphies 

This book studies three problems in computational geometry that arise in computer 
graphies. Computational geometry is the part of theoretical computer science that 
concerns itself with geometric objects; it tries to design efficient algorithms for prob
lems involving points, lines, polyhedra, et cetera, in one-, two- and more-dimensional 
space. A paper [114] by Michael Shamos in 1975 marks the beginning of computa
tional geometry as a separate area in algorithms research. Since then computational 
geometry has attracted many researchers and it has made tremendous progress. By 
now it has established itself as an important field within theoretical computer science: 
hundreds of people are working in the field, thousands of papers have been published, 
every major conference or journal on theoretical computer science has papers on it, 
and there are even several journals and conferences which are devoted solely to com
putational geometry. 

What is it that makes computational geometry so appealing7 The reason for 
this is twofold. First of al!, most problems have a simple and intuitive definition 
and are easily visualized, which makes it easy to interest people in them. In the 
second place, the applications of computational geometry are numerous, in particular 
in areas like computer graphies, robotics, geographical information systems (GIS), 
databases, and VLSI design. Computational geometry offers the right abstraction to 
study the problems that arise in these areas. Let us give a few prime examples of 
these applications. 

Consider a database that stores information about, say, the age and number of 
children of people. A typical query in this database is of the form: "Which persons are 
between 20 and 65 years of age, and have between 13 and 18 children 7" If we represent 
each person by a point in a two-dimensional space, where the first coordinate of the 
point is the age of the person and the second coordinate is the number of children, then 
the query asks for al! points in the rectangle [20 : 65] x [13 : 18]. See Figure 1.1. This 
problem is cal!ed the orthogonal range sear'ching problem in computational geometry, 
and it has been studied extensively. 

A second example can be found in what are called motion planning problems in 
computational geometry. Who did not have the frustrating experience of a sofa that 
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Figure 1,1: A query in a database, 

refuses to !eave through the sa.'ne door that it was brought in through? Planning 
the motion of an object from a starting position to a goal position is an essential 
problem in robotics. Motion planning problems have been studied in great detail in 
computatiQual geometry, leading to papers with intriguing titles like"Bowto Move 
a Chair through a Door" [126] and "On the Piano Movers' Problem, 1: The Case of a 
Two-Dimensional Rigid Polygonal Body Moving amidst Polygonal Barriers" [113]. 

A third important application area is computer graphies. Since the problems that 
are studied in. this book originate in this area, we discuss it in more detail. 

Computer graphies concerns itself with the display of visual in.formation on the 
screen of a computer terminal. We can roughly Bubdivide computer graphies into two 
subareas. One considers hardware aspects, and the other studies algorithmic aspects. 
It is the latter area where computational geometry comes into play and which has our 
interest. There is an enormous amount of literature on computer graphies, and we 
willnot.even try to give a survey. We just 'mention two good textbooks, by Foley et 
al. [58] and by Watt [120], which the interested reader can consult. 

Tlle most fundamental algorithmic problems arise when one wants to display the 
view ofa three-dimensional scene. As an example, consider an architect who is de" 
siglling a building. It would be useful for her. to see the building before it is actually 
constructed. This can be accomplished 'Jsing computer graphies. The architect tells 
the system exactly where walls, doors, windows, tables, chairs and other objects are 
located, what their shape is, and so on, and the system ealculates what the building 
looks like for an observer standing, say, aL the main entrance. The system might 
even compute what the building looks like from the inside, giving the architeet the 
possibility to walk through the building, so to speak. Thus the system has ta compute 
the view of a collection of abjects in three-dimenSional space as seen from a certain 
view point. A simple illustration is given in Figure 1.2. The problem of determining 
which parts of each object are visible and which parts are hidden is called the hidden 
surface removal problem. 

To understand the different approaches to the hidden surface removal problem, 
one lias to know how a single, completely visible, object is displayed anto the screen. 
A computer screen consists of many small dots (typically about one million) called 
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Computational Geometry and Computer Graphies 5 

viewpoint 

view of the scene 

Figure 1.2: Viewing two triangles in three-dimensional space. 

pixels. To display an object it is projected onto the screen with the view point as 
the center of projection. The projected image of the object covers a number of pixels 
on the screen. These pixels get the color of the object, and the remaining pixels get 
the background color. A realistic scene consists of many objects, and a pixel can be 
covered by several of them. It is for the computer to decide which object is visible 
at each pixel, so that it can give the pixels the right color. Hidden surface removal 
algorithms are used to compute which object is visible at which place. They are 
usually classified into image space algarithms, which work with the projected images 
of the objects, and abject space algarithms, which work with the objects themselves. 

Image space algorithms typically look for every pixel on the screen at ail the 
objects whose projected image covers the pixel; the one that is closest to the view 
point is displayed. A notable example of such a method is the depth-buffer algarithm, 
also called z-buffer algarithm. This algorithm works as follows. It pro cesses each 
object in turn, maintaining a buffer that stores for every pixel the (depth of the) 
currently visible object. To process a new object, one tests for every pixel that lies in 
the projected image of the object whether the new object is closer to the view point 
(at that pixel) than the currently visible object. If this is the case, then the buffer 
is updated. The main advantage of this method is that it is easily implemented in 
hardware. Therefore the method is~despite its brute-force approach~fast in practice 
and often used. 

An interesting variation on this method is the depth sarting algarithm. This 
method eliminates the test between the processed object and the currently visible 
object in the depth-buffer algorithm. Moreover, the algorithm does not need a buffer 
for maintaining the z-values for each pixel. It works in two phases. In the first phase 
of the algorithm the objects are sorted according to their distance from the view 
point: if an object A is (partially) obscured by object B then A comes before B in 
the ordering. Such an order on the objects is called a depth order. Note that a depth 
order on the objects does not always exist, since there can be cyclic averlap among 
the objects. See, for example, Figure 1.3. In such cases the cycles have to be broken 
by cutting the objects into smaller pieces. This first phase works in object space. 
Efficient algorithms for computing depth orders are presented in Part C of this book. 
The second phase is similar to the depth buffer method, i.e. the objects are drawn 
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6 ComputationalGeometry and Computer Graphies 

Figure 1.3; Three triangles with cyclic overlap. 

one by one onto the screen. Because the order in which the objects are processed is 
a depth order-that is, objects in the back are processed earlier than objects in the 
front-none of the abjects already processed can obscure a new cbject. Rence, al! 
pixels in the projected image should get the color of the new object and no depth 
comparison is needed. Note that the second phase of the depth order algorithm is 
similar to the way an artist makes a painting; lirst the background colors are painted 
and later the objects are painted 'on top of this'. Thus the algorithm is sometimes 
called thepainter's algorithm. 

Another way of computing which object is visible at acertain pixel is to 'shoot 
a ray from the view point through the pixel'. The first object that is hit is the one 
that is visible at that pixel. See Figure 1.4. Aigorithms following this approach are 

v;ew point 

Figure 1.4; Hidden surface refnoval using ray tracing. 

called ray tracing algorithms. Glassner [61] discusses this technique in great detai!. 
Ta speed up the tracing process, the abjects are stored in a data structure that allows 
one to determine the nrst object that is hit without looking at al! the objects. The 
problem of designing efficient data structures for this task is called the ray shooting 
problem in computational geometry. It is the topie of Part B of this book. 

Obtaining realistic pictures of a scene not only involves computing whichparts of 
the objects can~ be seen from the view point, but also computing shading information 
about the light intensity that renects from an object. The Tay tracing algorithm can 
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Computational Geometry and Computer Graphies 7 

be extended to provide this information. The idea of the method is as follows. By 
shooting a so-called primary ray from the view point through each pixel, one can 
determine which object, let's call it A, is visible at that pixel. Let p be the point 
where the primary ray through the pixel hits A. To compute the shading information 
we shoot extra rays, called a shadow fee/ers, from point pinto the direction of each 
light source in the scene. If a shadow feeler does not hit any object before it reaches 
the light source, then we know that p is lit by the light source. Otherwise p will be 
in shadow. It is, however, still possible that p is lit indirectly by the light source, by 
reflections via other objects. Such indirect illumination effects can also be computed, 
by shooting even more rays. It is beyond the scope of this book to discuss the ray 
tracing method any further, but it should be clear that the method requires many 
rays to be traced. Rence, it is extremely important to be able to compute the first 
object hit by a ray efficiently. The design of data structures for this task is the topic 
of Part B of this book. 

The pixels on the screen can be grouped into regions where the same object is 
visible. The image space methods discussed ab ove compute the view of a scene pixel 
by pixel. This means that the 'structure' of the view is lost. Object space algorithms 
compute a combinatorial representation of the structure of the view. Let us be more 
precise about this. The view of a scene is a subdivision of the viewing plane into 
maximal connected regions in each of which (sorne portion of) a single object can 
be seen, or no object is seen. In Figure lA, for example, this subdivision eonsists of 
four regions; the light triangle is visible in one of them, the dark triangle is visible 
in two other regions, and no object is seen in the fourth, white region. Object space 
algorithms compute this subdivision-which is ealled the visibiliiy map of the given 
set of objects-as a collection of (polygonal) faces. In other words, object space 
algorithms compute exactly which parts of each object are visible. After that the 
visible parts ean be projected and displayed without difficulty. Part D is devoted to 
the computation of these maps. 

In general, object space hidden surface removal methods tend to be slower than 
image space methods such as the z-buffer algorithm, because they cannot be im
plemented in hardware very weIl. Rowever, object space algorithms have certain 
advantages over image space methods. Suppose that we want to display the hidden 
lines in a scene dashed, instead of making them invisible. Object space algorithms 
compute exactly which parts of each line are visible and which parts are not, thus 
making it easy to display the invisible part dashed. Image space algorithms do not 
provide the information that is necessary to achieve this. Another weak point of im
age space algorithms comes up when one wants to print the view of a scene on paper, 
instead of displaying it on the screen of a computer terminal. When hidden surface 
removal has been done in image space, the only thing we can do is to plot every 
pixel separately. But this method fails to take advantage of the fact that the resolu
tion (that is, the number of pixels per square inch) of modern laser printers is mueh 
higher than the resolution of computer screens. If hidden surface removal has been 
performed in object space then the visibility map can be processed directly, resulting 
in a picture of higher quality. A third advantage of object space algorithms is that 
they can be used to compute shadows in a scene. This follows from the fact that a 
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8 {;omputational Geometry and Computer Grapbies 

point on an abject 18 lit by a light source if and only if the ray from the light source to 
that point does not intersect any otherobject on its way. In other words, the part of 
a scene that is lit by a light source is exactly the same as what can be seen froID the 
lightsource. Thus we can use an object space hidden surface removal algorithm to 
compute whieh parts of the objects are lit by the light source. Image space solutions 
sueh as the z-buffer method do not have this possibility: we cau apply a z-buffer-liJœ 
algorithm to compute the 'view' from the Iight source, but the problem IS thatthe 
pixels with respect to the viewpoint do not coincide with the 'pixels' with respect to 
the light source. Notice that the shadows in a scene do not change when the view 
point moves'- (Although what is visible of a shadow can change, of course,) Hence, the 
combinatorial r.epresentation of the shadow-which i8 exactlywhat an object-space 
hidden surface removal algorithni can compute~can be used for every view point. 
If shadow ealculation is performed using the ray traeing algorithm described above, 
then everything has to be computed anew for each view point. 

Before we givean ovetview orthe contents of this book, let us spend a few words 
on the statue oiour work. This is a book aboutprobleme in computational geometry 
that arise in computer graphies, not a book about computer graphies. Hence, we give 
a theoretical treatment of these problems: WB derive exact time boullds for our algo
rithms thaLwill showthat our algorithms perform better (in theory)than pr€viously 
known algorithms. On the other hand, we hav€ not implemented any of our methods. 
Thus the applicability in practice has not been established yet. Indeed, some of our 
data structures probably will not perform. well in practice if they are implemented 
exactlyas desctibe.d here. Clearly, this is a topie of future study. In any. case, a 
theoretical study such as undertaken here provides us with a deeper .llnder~tanding 
of the important issueS involved in the problems, which can be useflil to obtain good 
practical solutions. 

The book consists of four parts. 
Part A, of which this introduction is the first chapter, introduces the readerto 

the problems that are studied and to the techniques that we use to solve them. Ac
tually, this ·part might be interestîng not only to people who want to readthis book, 
but to ànyone who wants ta lalOw more about sorne of the (ïecent) techniques in 
computational geometry. 

Part B concerns itself with the ray shooting problem:. Preprocess a set of polyhedra 
in three-dimensional space into·a data structure, such that the first polyhedron that 
is hit by a query ray can be computed efficientty. We develop riew, efficient data 
structures for varions settings of this problem. Inparticular, we distinguish th~ case 
where the originofthe rays is fu::ed, the case where the direction of the raye is fixed, 
and the general case where t-here are no restrictions on the ray. For each setting, 
we study a number of difi"erent scenes: seenes consisting ofaxis-parallel polyhedra 
(whose edgesare parallel to the x-axis, the y-axis, or· the z-axis), scenes consisting 
of c-oriented polyhedra (whose edges are pa,rallel to c different axes), and scenes 
consisting of arhitniiy polyhedra. 

In Pari. C we study the problem of computing depth orders: Give..'l a set of 
polygons, sort them aecording to theirdistance to the view point. Westart by 
studying the problem in two-dimensiQnal space. This iB useful, because manythree-
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Computational Geometry and Computer Graphies 9 

dimensional scenes-in particular certain types oflandscapes, which are called polyhe
dral terrains-can be treated as being two-dimensional. We present a data structure 
such that a depth order for a given view point can be calculated efficiently. We also 
study three-dimensional scenes; here we present the first algorithm to compute a depth 
order for a set of polygons in three-dimensional space that achieves a subquadratic 
running time. 

Finally, in Part D we present an object space algorithm for hidden surface removal 
in general polyhedral scenes. The running time of our algorithm is output-sensitive, 
that is, the running time decreases as the complexity of the visibility map decreases. 
Previously, such algorithms were known only for special cases, where the objects in 
the scene satisfy the-not very realistic-constraint that a depth order on the objects 
exists and is known. 
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