
Mark de Berg

Ray Shooting,
Depth Orders and
Hidden Surface
Removal

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Bndapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitiit Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, FRG

Author

Mark de Berg

Iuris Hartmanis
Cornell University
Department of Computer ScienCe:
4130 Upson Hall
Ithaca, NY 14853, USA

Department of Computer Science, Utrecht University
Padualaan 14, NL-3508 TB Utrecht, The Netherlands

CR Subject Classification (1991): 1.3.5-8, 1.4.8

ISBN 3-540-57020-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57020-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. AU rights are reserved, whether the whole or part
of the materia1 is concerned, specifically the rightsof translation, reprinting, re-use
of i1iustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of lhis publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in ils current version, and permission fbr use must always be obtained from
Springer-Verlag. Violations are liable for prosecution un der the Germ&'1 C-opyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author
45/3140-543210 - Printed onacid.free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

Computation al geometry is the part of theoretical computer science that concerns it
selfwith geometric objects; it tries to design efficient algorithms for problems involving
points, lines, polygons, and so on. The field has gained popularity very rapidly during
the last decade. This is partly due to the many application areas of computational
geometry and partly due to the beauty of the field itself. l hope that the reader will
experience some of this beauty when reading this book. Initially, most research was
directed towards problems in two-dimensional space, and good solutions to many of
these problems have been found. In recent years the field has shifted its attention
to problems in three- (and higher) dimensional space. This shift of attention is also
reflected in this book: almost everything that is studied is three-dimensional.

This book focuses on three problems in computational geometry that arise in
computer graphies. (A more ample discussion of the relation of these problems to
computer graphies can be found in Chapter 1.) The first problem is the ray shooting
problem: preprocess a set of polyhedra into a data structure such that the first poly
hedron that is hit by a query ray can be determined quickly. The second problem is
that of computing depth orders: we want to sort a set of polyhedra such that if one
polyhedron is (partially) obscured by another polyhedron then it come first in the
order. The third problem that we study is the hidden surface removal problem: given
a set of polyhedra and a view point, compute which parts of the polyhedra are visible
from the view point. These are not only three nice problems that arise naturally
in one of the application areas of computational geometry; they involve issues that
are fundamental to three-dimensional computational geometry and are, hence, also of
considerable theoretical interest. The book also contains a large introductory part,
whieh discusses the techniques that will be used to tackle the three problems stated
above. This part should be interesting not only to those who want to read the rest of
the book but miss the necessary background, but to anyone who wants to know more
about some (recent) techniques in computational geometry.

This book is a revised version of my Ph.D. thesis, which was the result of the re
search l did at the department of computer science of Utrecht University (the Nether
lands) in the period from August 1988 to March 1992. The research was supported
by the Dutch Organization for Scientific Research (N.W.O.), and partially by the
ESPRIT Basic Research Action No. 3075 (project ALCOM). There are many people
without whom this book would not have been what it is now. First of ail, there is
Mark Overmars, who introduced me to the fascinating field of computational geom
etry: l could not have wished myself a more stimulating supervisor for my Ph.D.
research. Secondly, there is Marc van Kreveld, my roommate during ail those years:

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

vi

they w01l1d certainly have been less pleasant withollt the many discussions Wf: had on
various subjects (including computational geometry). Practically everything in this
book has. profited from. their comroents aRd suggestions. Let me also mention the
other people that contributed to the research that is reported in this book: Hazel
Everett, Danny Halperin, Otfried Sçhwarzkopf, Jack Snoeyink and Hubert Wagener.
FinaUy, l thank Jan van Leeuwen, IÇees van Overveld, Micha Sharir and Emo Welzl
for being in the reading eommittee of my thesis.

Utrecht, April 1993 Mark de Berg

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

A Introduction

1 Computational Geometry and Computer Graphies

2 Preliminaries
2.1 Terminology
2.2 Geometrie Definitions.
2.3 Segment Trees
2.4 Fractional Cascading
2.5 Cuttings and Random Sampling .

2.5.1 Random Sampling
2.5.2 Deterministie Computation of Cuttings
2.5.3 Using Cuttings

2.6 Partition Trees
2.6.1 Linear Space Partition Trees .
2.6.2 Multi-Level Partition Trees
2.6.3 Trade-offs and Dynamization

2.7 Two Geometrie Tools
2.7.1 Duality
2.7.2 Plücker Coordinates

BRay Shooting

3 Introduction

4 A General Strategy
4.1 The Strategy ..
4.2 Reducing the Query Time
4.3 Decomposing Polyhedra

4.3.1 Axis-Parallel Polyhedra .
4.3.2 c-Oriented Polyhedra
4.3.3 Arbitrary Polyhedra . .

5 Ray Shooting from a Fixed Point
5.1 Axis-Parallel Polyhedra ..

5.1.1 A Static Structure

1

3

11
11
13
15
18
20
20
21
22
26
26
28
29
31
31
31

37

39

43
43
47
49
49
50
51

53
53
53

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

viii

5.1.2 Dynamization ...
5.2 c-Oriented Polyhedra .

5.2.1 A Static Structure
5.2.2 -Dynamization .. .

5.3 Arbitrary Polyhedra .. .
5.3.1 A Simple Structure with Logarithmic Query Time .
5.3.2 Trade-Offs and Dynamization

6 Ray Shooting into a Fixed Direction
6.1 Axis-ParalleIPolyhedra

6.1.1 A Static Structure
6.1.2 Reducing theQuery Time
6.1.3 Dynamization.......

6.2 c-Oriented Polyhedra . .
6.2.1 Using the General Strategy
6.2.2 Reducing the Query Time .
6.2.3 Reducing the Dependency on c
6.2.4 Dynamization..........

6.3 Axis-ParBllel and c-Oriented Curtains .
6.3.1 A Static Structure
6.3.2 Dynamization

6.4 Arbitrary Polyhedra ...

7 Ray Shooting with Arbitrary R.ays
7.1 Axis-Parallel and c-Oriented Polyhedra

7.1.1 The Global Structure
7.1;2 lI.(tersection Counting Queries
7.1.3 Priority Intersection Querie,s
7.1.4 c-Oriented Polyhedra .

7.2 Gurtains...............
7.2.1 The Global Structure
7.2.2 Intersection Sequence Queries
7.2.3 Priority Intersection Queries .
7.2.4 Trade-Offs and Dynamization
7.2.5 Applications......

7.3 Arbitrary Polyhedra
7.3.1 The Global Structure
7.3.2 Priority InterseCtion Queries

8 Conclusions

C Computing Depth Orders

9 Introduction

CONTENTS

57
58
58
62
63
63
64

67
67
67
70
72
72

72
74
74
79
80
80
82
83

85
85
85
86
89
89
90
91
92
93

. 101

.102

.104

.104

.106

107

109

111

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

CONTENTS ix

10 Depth Orders in the Plane 115
10.1 Relative Convex Hulls 116
10.2 Embeddings 120

10.2.1 Embedding Convex Polygons . 120
10.2.2 Embedding Arbitrary Polygons . 121

10.3 Computing Ali Cycle-Free Directions . 128
10.4 Depth Order Queries in the Plane . 129

10.4.1 Convex Polygons 129
10.4.2 Arbitrary Polygons 131

10.5 Depth Order Queries for Terrains . 132

11 Depth Orders in Three Dimensions 135
11.1 Computing Linear Extensions 135
11.2 Verifying Linear Extensions 139
11.3 Computing and Verifying Depth Orders in Three Dimensions. . 140

11.3.1 Depth Orders for Line Segments. . 140
11.3.2 Depth Orders for Triangles. . 141
11.3.3 Depth Orders for Polygons . . 143

12 Conclusions 145

D Computing Visibility Maps

13 Introduction
13.1 Output-Sensitive Hidden Surface Removal
13.2 The Structure of the Visibility Map

14 Non-Intersecting Polyhedra
14.1 The Algorithm
14.2 Axis-Parallel Polyhedra .
14.3 c-Oriented Polyhedra
14.4 Arbitrary Polyhedra

15 Intersecting Polyhedra
15.1 The Algorithm ...
15.2 Axis-ParaUel Polyhedra .
15.3 c-Oriented Polyhedra
15.4 Arbitrary Polyhedra

16 Dynamization
16.1 Overview of the Method
16.2 Insertions .. '
16.3 Deletions
16.4 Axis-Parallel Polyhedra .
16.5 c-Oriented Polyhedra
16.6 Arbitrary Polyhedra .,

147

149
· 149
· 152

155
· 155
· 161
· 161
.162

163
· 163
.167
.167
.168

169
.169
.171
.173
.177
.178
· 179

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

17 Conclu~ions

References

Notation

Index

OONTENTS

181

185

195

199

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Part A

Introd uction

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Chapter 1

Computational Geometry and
Computer Graphies

This book studies three problems in computational geometry that arise in computer
graphies. Computational geometry is the part of theoretical computer science that
concerns itself with geometric objects; it tries to design efficient algorithms for prob
lems involving points, lines, polyhedra, et cetera, in one-, two- and more-dimensional
space. A paper [114] by Michael Shamos in 1975 marks the beginning of computa
tional geometry as a separate area in algorithms research. Since then computational
geometry has attracted many researchers and it has made tremendous progress. By
now it has established itself as an important field within theoretical computer science:
hundreds of people are working in the field, thousands of papers have been published,
every major conference or journal on theoretical computer science has papers on it,
and there are even several journals and conferences which are devoted solely to com
putational geometry.

What is it that makes computational geometry so appealing7 The reason for
this is twofold. First of al!, most problems have a simple and intuitive definition
and are easily visualized, which makes it easy to interest people in them. In the
second place, the applications of computational geometry are numerous, in particular
in areas like computer graphies, robotics, geographical information systems (GIS),
databases, and VLSI design. Computational geometry offers the right abstraction to
study the problems that arise in these areas. Let us give a few prime examples of
these applications.

Consider a database that stores information about, say, the age and number of
children of people. A typical query in this database is of the form: "Which persons are
between 20 and 65 years of age, and have between 13 and 18 children 7" If we represent
each person by a point in a two-dimensional space, where the first coordinate of the
point is the age of the person and the second coordinate is the number of children, then
the query asks for al! points in the rectangle [20 : 65] x [13 : 18]. See Figure 1.1. This
problem is cal!ed the orthogonal range sear'ching problem in computational geometry,
and it has been studied extensively.

A second example can be found in what are called motion planning problems in
computational geometry. Who did not have the frustrating experience of a sofa that

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

number of children t l'
20

18

13
10

5
,

Computationa.1- Geometry and Computer Graphies

.)'~ J ohn,on: age 30, ! 5 chUdren

.
•

, , : , • ,
10 50 100 -age

20 65

Figure 1,1: A query in a database,

refuses to !eave through the sa.'ne door that it was brought in through? Planning
the motion of an object from a starting position to a goal position is an essential
problem in robotics. Motion planning problems have been studied in great detail in
computatiQual geometry, leading to papers with intriguing titles like"Bowto Move
a Chair through a Door" [126] and "On the Piano Movers' Problem, 1: The Case of a
Two-Dimensional Rigid Polygonal Body Moving amidst Polygonal Barriers" [113].

A third important application area is computer graphies. Since the problems that
are studied in. this book originate in this area, we discuss it in more detail.

Computer graphies concerns itself with the display of visual in.formation on the
screen of a computer terminal. We can roughly Bubdivide computer graphies into two
subareas. One considers hardware aspects, and the other studies algorithmic aspects.
It is the latter area where computational geometry comes into play and which has our
interest. There is an enormous amount of literature on computer graphies, and we
willnot.even try to give a survey. We just 'mention two good textbooks, by Foley et
al. [58] and by Watt [120], which the interested reader can consult.

Tlle most fundamental algorithmic problems arise when one wants to display the
view ofa three-dimensional scene. As an example, consider an architect who is de"
siglling a building. It would be useful for her. to see the building before it is actually
constructed. This can be accomplished 'Jsing computer graphies. The architect tells
the system exactly where walls, doors, windows, tables, chairs and other objects are
located, what their shape is, and so on, and the system ealculates what the building
looks like for an observer standing, say, aL the main entrance. The system might
even compute what the building looks like from the inside, giving the architeet the
possibility to walk through the building, so to speak. Thus the system has ta compute
the view of a collection of abjects in three-dimenSional space as seen from a certain
view point. A simple illustration is given in Figure 1.2. The problem of determining
which parts of each object are visible and which parts are hidden is called the hidden
surface removal problem.

To understand the different approaches to the hidden surface removal problem,
one lias to know how a single, completely visible, object is displayed anto the screen.
A computer screen consists of many small dots (typically about one million) called

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Computational Geometry and Computer Graphies 5

viewpoint

view of the scene

Figure 1.2: Viewing two triangles in three-dimensional space.

pixels. To display an object it is projected onto the screen with the view point as
the center of projection. The projected image of the object covers a number of pixels
on the screen. These pixels get the color of the object, and the remaining pixels get
the background color. A realistic scene consists of many objects, and a pixel can be
covered by several of them. It is for the computer to decide which object is visible
at each pixel, so that it can give the pixels the right color. Hidden surface removal
algorithms are used to compute which object is visible at which place. They are
usually classified into image space algarithms, which work with the projected images
of the objects, and abject space algarithms, which work with the objects themselves.

Image space algorithms typically look for every pixel on the screen at ail the
objects whose projected image covers the pixel; the one that is closest to the view
point is displayed. A notable example of such a method is the depth-buffer algarithm,
also called z-buffer algarithm. This algorithm works as follows. It pro cesses each
object in turn, maintaining a buffer that stores for every pixel the (depth of the)
currently visible object. To process a new object, one tests for every pixel that lies in
the projected image of the object whether the new object is closer to the view point
(at that pixel) than the currently visible object. If this is the case, then the buffer
is updated. The main advantage of this method is that it is easily implemented in
hardware. Therefore the method is~despite its brute-force approach~fast in practice
and often used.

An interesting variation on this method is the depth sarting algarithm. This
method eliminates the test between the processed object and the currently visible
object in the depth-buffer algorithm. Moreover, the algorithm does not need a buffer
for maintaining the z-values for each pixel. It works in two phases. In the first phase
of the algorithm the objects are sorted according to their distance from the view
point: if an object A is (partially) obscured by object B then A comes before B in
the ordering. Such an order on the objects is called a depth order. Note that a depth
order on the objects does not always exist, since there can be cyclic averlap among
the objects. See, for example, Figure 1.3. In such cases the cycles have to be broken
by cutting the objects into smaller pieces. This first phase works in object space.
Efficient algorithms for computing depth orders are presented in Part C of this book.
The second phase is similar to the depth buffer method, i.e. the objects are drawn

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6 ComputationalGeometry and Computer Graphies

Figure 1.3; Three triangles with cyclic overlap.

one by one onto the screen. Because the order in which the objects are processed is
a depth order-that is, objects in the back are processed earlier than objects in the
front-none of the abjects already processed can obscure a new cbject. Rence, al!
pixels in the projected image should get the color of the new object and no depth
comparison is needed. Note that the second phase of the depth order algorithm is
similar to the way an artist makes a painting; lirst the background colors are painted
and later the objects are painted 'on top of this'. Thus the algorithm is sometimes
called thepainter's algorithm.

Another way of computing which object is visible at acertain pixel is to 'shoot
a ray from the view point through the pixel'. The first object that is hit is the one
that is visible at that pixel. See Figure 1.4. Aigorithms following this approach are

v;ew point

Figure 1.4; Hidden surface refnoval using ray tracing.

called ray tracing algorithms. Glassner [61] discusses this technique in great detai!.
Ta speed up the tracing process, the abjects are stored in a data structure that allows
one to determine the nrst object that is hit without looking at al! the objects. The
problem of designing efficient data structures for this task is called the ray shooting
problem in computational geometry. It is the topie of Part B of this book.

Obtaining realistic pictures of a scene not only involves computing whichparts of
the objects can~ be seen from the view point, but also computing shading information
about the light intensity that renects from an object. The Tay tracing algorithm can

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Computational Geometry and Computer Graphies 7

be extended to provide this information. The idea of the method is as follows. By
shooting a so-called primary ray from the view point through each pixel, one can
determine which object, let's call it A, is visible at that pixel. Let p be the point
where the primary ray through the pixel hits A. To compute the shading information
we shoot extra rays, called a shadow fee/ers, from point pinto the direction of each
light source in the scene. If a shadow feeler does not hit any object before it reaches
the light source, then we know that p is lit by the light source. Otherwise p will be
in shadow. It is, however, still possible that p is lit indirectly by the light source, by
reflections via other objects. Such indirect illumination effects can also be computed,
by shooting even more rays. It is beyond the scope of this book to discuss the ray
tracing method any further, but it should be clear that the method requires many
rays to be traced. Rence, it is extremely important to be able to compute the first
object hit by a ray efficiently. The design of data structures for this task is the topic
of Part B of this book.

The pixels on the screen can be grouped into regions where the same object is
visible. The image space methods discussed ab ove compute the view of a scene pixel
by pixel. This means that the 'structure' of the view is lost. Object space algorithms
compute a combinatorial representation of the structure of the view. Let us be more
precise about this. The view of a scene is a subdivision of the viewing plane into
maximal connected regions in each of which (sorne portion of) a single object can
be seen, or no object is seen. In Figure lA, for example, this subdivision eonsists of
four regions; the light triangle is visible in one of them, the dark triangle is visible
in two other regions, and no object is seen in the fourth, white region. Object space
algorithms compute this subdivision-which is ealled the visibiliiy map of the given
set of objects-as a collection of (polygonal) faces. In other words, object space
algorithms compute exactly which parts of each object are visible. After that the
visible parts ean be projected and displayed without difficulty. Part D is devoted to
the computation of these maps.

In general, object space hidden surface removal methods tend to be slower than
image space methods such as the z-buffer algorithm, because they cannot be im
plemented in hardware very weIl. Rowever, object space algorithms have certain
advantages over image space methods. Suppose that we want to display the hidden
lines in a scene dashed, instead of making them invisible. Object space algorithms
compute exactly which parts of each line are visible and which parts are not, thus
making it easy to display the invisible part dashed. Image space algorithms do not
provide the information that is necessary to achieve this. Another weak point of im
age space algorithms comes up when one wants to print the view of a scene on paper,
instead of displaying it on the screen of a computer terminal. When hidden surface
removal has been done in image space, the only thing we can do is to plot every
pixel separately. But this method fails to take advantage of the fact that the resolu
tion (that is, the number of pixels per square inch) of modern laser printers is mueh
higher than the resolution of computer screens. If hidden surface removal has been
performed in object space then the visibility map can be processed directly, resulting
in a picture of higher quality. A third advantage of object space algorithms is that
they can be used to compute shadows in a scene. This follows from the fact that a

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8 {;omputational Geometry and Computer Grapbies

point on an abject 18 lit by a light source if and only if the ray from the light source to
that point does not intersect any otherobject on its way. In other words, the part of
a scene that is lit by a light source is exactly the same as what can be seen froID the
lightsource. Thus we can use an object space hidden surface removal algorithm to
compute whieh parts of the objects are lit by the light source. Image space solutions
sueh as the z-buffer method do not have this possibility: we cau apply a z-buffer-liJœ
algorithm to compute the 'view' from the Iight source, but the problem IS thatthe
pixels with respect to the viewpoint do not coincide with the 'pixels' with respect to
the light source. Notice that the shadows in a scene do not change when the view
point moves'- (Although what is visible of a shadow can change, of course,) Hence, the
combinatorial r.epresentation of the shadow-which i8 exactlywhat an object-space
hidden surface removal algorithni can compute~can be used for every view point.
If shadow ealculation is performed using the ray traeing algorithm described above,
then everything has to be computed anew for each view point.

Before we givean ovetview orthe contents of this book, let us spend a few words
on the statue oiour work. This is a book aboutprobleme in computational geometry
that arise in computer graphies, not a book about computer graphies. Hence, we give
a theoretical treatment of these problems: WB derive exact time boullds for our algo
rithms thaLwill showthat our algorithms perform better (in theory)than pr€viously
known algorithms. On the other hand, we hav€ not implemented any of our methods.
Thus the applicability in practice has not been established yet. Indeed, some of our
data structures probably will not perform. well in practice if they are implemented
exactlyas desctibe.d here. Clearly, this is a topie of future study. In any. case, a
theoretical study such as undertaken here provides us with a deeper .llnder~tanding
of the important issueS involved in the problems, which can be useflil to obtain good
practical solutions.

The book consists of four parts.
Part A, of which this introduction is the first chapter, introduces the readerto

the problems that are studied and to the techniques that we use to solve them. Ac
tually, this ·part might be interestîng not only to people who want to readthis book,
but to ànyone who wants ta lalOw more about sorne of the (ïecent) techniques in
computational geometry.

Part B concerns itself with the ray shooting problem:. Preprocess a set of polyhedra
in three-dimensional space into·a data structure, such that the first polyhedron that
is hit by a query ray can be computed efficientty. We develop riew, efficient data
structures for varions settings of this problem. Inparticular, we distinguish th~ case
where the originofthe rays is fu::ed, the case where the direction of the raye is fixed,
and the general case where t-here are no restrictions on the ray. For each setting,
we study a number of difi"erent scenes: seenes consisting ofaxis-parallel polyhedra
(whose edgesare parallel to the x-axis, the y-axis, or· the z-axis), scenes consisting
of c-oriented polyhedra (whose edges are pa,rallel to c different axes), and scenes
consisting of arhitniiy polyhedra.

In Pari. C we study the problem of computing depth orders: Give..'l a set of
polygons, sort them aecording to theirdistance to the view point. Westart by
studying the problem in two-dimensiQnal space. This iB useful, because manythree-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Computational Geometry and Computer Graphies 9

dimensional scenes-in particular certain types oflandscapes, which are called polyhe
dral terrains-can be treated as being two-dimensional. We present a data structure
such that a depth order for a given view point can be calculated efficiently. We also
study three-dimensional scenes; here we present the first algorithm to compute a depth
order for a set of polygons in three-dimensional space that achieves a subquadratic
running time.

Finally, in Part D we present an object space algorithm for hidden surface removal
in general polyhedral scenes. The running time of our algorithm is output-sensitive,
that is, the running time decreases as the complexity of the visibility map decreases.
Previously, such algorithms were known only for special cases, where the objects in
the scene satisfy the-not very realistic-constraint that a depth order on the objects
exists and is known.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

