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Preface

Computational geometry is the part of theoretical computer science that concerns it-
self with geometric objects; it tries to design efficienl algorithms for problems involving
points, lines, polygons, and so on. The field has gained popularity very rapidly during
the last. decade. This is partly due to the many application areas of computational
geometry and partly due to the beauty of the field itself. T hope that the reader will
experience some of this beauty when reading this book. Initially, most research was
directed towards problems in two-dimensional space, and good solutions to many of
these problems have been found. In recent years the ficld has shifted its attention
to problemns in three- (and higher} dimensional space. This shift of attention is also
reflected in this hoeok: almost cvervthing that is studied is three-dimensional.

This book focuses on ihree problems in computlational geometry that arise in
computer graphics. (A more ample discussion of the relation of these problems to
computer graphics can be found in Chapter 1.) The first problem is the rav shooting
problem: preprocess a sel of polyhedra into a data structure such thal the first poly-
hedron that is hit by a query ray can be determined quickly. The second problem is
that of computing depth orders: we want to sort a set of polyhedra such that if one
polvhedron is {partially] obscured by another polyhedron then it come first in the
order. The third problem that we study is the hidden surface removal problem: given
a set of polvhedra and & view point, compule which parts of the polyhedra are vigible
from the view point. These are not only three nice problems that arise naturally
in cnre of the application areas of computational geometry; they involve issues that
are fTundamenial to three-dimensional computational geometry and are, hence, zlso of
considerable theoretical interest. The book also contains a large introductory part,
which discusses the techniques that will he used to tackle the three problems stated
above. This part should be interesting not cnly to those who want to read the rest of
the book but miss the necessary background, but to anyone who wants to know more
about some (recent] techniques in computational geometry,

This book is a revised version of my Ph.D), thesiy, which was the result of the re-
search I did at the department of computer science of Utrecht University (the Nether-
lands} in the period from August 1988 to March 1992. The research was supported
by the Duteh Organization for Scienlific Research (N.W.0.), and partially by the
ESPRIT Basic Research Action No. 3075 (project ALCOM). There are many pecple
without whom this book would not have heen what it is now. First of all, there is
Mark Overmars, who introduced me to the fascinating field of computational geom-
etry: T could not have wished myself a more stimulating supervisor for my Ph.D.
research. Secondly, there is Mare van Kreveld, my roommate during all those years;
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they would certainly have bean less pleasant wishous the many discuasstons we had on
various subjects {including computational geometry). Practically everything in this
bock has profited from their comments and suggestions. Let me also mention the
othier people that contributed to the research that is reported in this book: Hazel
Lverett, Danny Halperin, Otfried Schwarzkopf, Jack Snoeyink and Hubert Wagener.
Finally, I thank Jan van Leeuwen, Kees van Overveld, Micha Sharir and Emo Welzl
for being in the reading committee of rmy thesis.

Utrecht, April 13993 Mark de Berg
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Chapter 1

Computational Geometry and
Computer Graphics

This book studies three problems in compuiational geometry that arise in computer
graphics. Compntational geometry is the part of theoretical computer scicnee that
concerns itself with geometric objects; it tries to design efficient algorithms for prob-
lems involving points, lines, polvhedra, et cetera, in one-, two- and more-dimensional
space. A paper [114} by Michael Shamos in 1975 marks the beginning of computa-
tional geometry as a separate arca in alporithms research. Sinec then computational
geometry has attracted many researchers and it has made tremendous progress. Iy
now it has established itself as an important field within iheoretical computer science:
hundreds of people are working in the field, thousauds of papers have been published,
every major conference or journal on theoretical computer science has papers on it,
and there are even several journals and conferences which are devoted solely to com-
putational geometry.

What is it that makes compulational geomelry so appealing? The reason [or
this is twofold. First of all, most problems have a simple and intuitive definition
and are easily visualized, which makes it easy to interesl people in them. In the
second place, the applications of computational geometry arc numerous, in particular
in areas like computer graphics, robotics, geographical information systems (GIS),
databases, and VLSI design. Computational geometry offers the right abstraclion to
study the problems that arise in these arcas. Let us give a few prime examples of
these applications.

Consider a database that stores information about, say, the age and number of
children of people. A typical query in this database is of the form: “Which persons are
belween 20 and 65 years of age, and have between 13 and 18 children?” If we represent
esach person by a poinl in & two-dimensional space, where the first coordinate of the
point is the age of the person and the second coordinate is the number of children, then
the query asks for all points in the rectangle {20 : 65] % {13 : 18]. Sce Figure 1.1. This
problem is called the orthogonel range searching problem in computalional geometry,
and it has been studied extensively.

A second example can be found in what are called mefion planning problems in
computational geometry. Who did not have the frustrating experience of a sofa that
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Figure 1.1: A guery in a database.

reiuses to leave through vhe same door that it was brought in throcgh? Planning
the motion of an object from a starting »osition to a goal position is an essential
problem in robotics. Motion planning problems have been studied in great detaii in
computational geometry, leading to papers with intrigning titles like “How 1o Move
a Chair throvgh a Daor”[126] and “On the Piano Movers' Problem, T: The Cage of a
Two-Dimensional Rigid Polygonal Bedy Moving amidst Polvgoml Barriers” [113).

A third impoertant application drea is computer graphics. Since the problems that
are studied in this book origindte in this area, we discuss it in more detail.

Computer graphics concerns itself with the display of visual information en the
screen of o computer lerminal. We can roughly subdivide computer graphics into two
subareas. Ore considers hardware aspocts, and the other studies algorithmic aspects.
1t is the latter area where computational geometry comes into plav and which has our
interest. There is an enormous amoust of literature on computer graphics, and we
'vill'not even try to gl ‘8 a gurvey. We just mention fwo good textbooks, by Foley et

al. [58! and by Watt [120], which the iuterested reader can consult,

The most fundamental algoritamic problems arise when one wants to display the
view of a three-dimensional scene. As an example, consider an architect who is de-
signing a building, It would be nseful for her {0 see the building before it is actnally
conatricied. This can be accomplished asing computer graphics. The srchiteet telis
the system exactly where walls, deors, windows, tables, cheirs and other ohiects are
located, what their shape is, and so on, and the system calenlates what the building
locks like for an observer stapding, say, at the muin entrance. The system might
aven compnte what the building looks like from the inside, giving the architect the
possibility to walk through the building, 5o to speak. Tius the system has to compute
the view of a collection of objects in three-dimensional space as seen from & certain
view peinl. A simple illustration is gives in Figure 1.2, The probler: of determining
whizh parts of 2ach object are wsﬂﬂ? and which parts are hidden is called the hidden
surface removal problem.

To understand the different approaches to the hidden surface removal problem,
one les to know how a wngle, (,fhrlp]-“[?h visible, object is displayed onto the screen.
A computer screea consists of many small dots (ivplcally about one million) called
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vicw point

view Of the scene

Figure 1.2: Viewing two triangles in three-dimensional space.

pivels. To display an object it is projected onto the screen with the view point as
the center of projection. The projected image of the object covers a number of pixela
on the screen. These pixels get the color of the object, and the remaining pixels get
the backpround color. A realistic scenc consists of many objects, and a pixel can be
covered by several of them. It is for the computer to decide which object is visible
at each pixel, so that it can give the pixels the right color. Hidden surface removal
algorithms are used to compute which object is vigible at which place. They are
usually classified into image space algorithms, which work with the projected images
of the ovhjects, and object space algorithms, which work with the objects themselves.

Image space algorithms typically look for every pixel on the screen at all the
objects whose projected image covers the pixel; the one that is closest to the view
point is displayed. A notable example of such a method is the depth-buffer ailgorithm,
also called z-buffer algorithmn. This algorithm works as follows. It processes each
objecl in turn, maintaining a buffer that stores for every pixel the (depth of the)
currently visible object. To process a new object, ane tests for every pixel that lies in
the projected image of the object whether the new object is closer to the view point
(al that pixel) than the currently visible object. If this is the case, then the buffer
is updated. The main advantage of this method is that it is easily implemented in
hardware. Therefore the method is—despite its brute-force approach—fast in practice
and often used.

An interesting variation on this method is the depth soriing algorithm. This
method eliminates the test between the processed object and the currently visible
ohject in the depth-huffer algorithm. Moreover, the algorithm does not need a buffer
for maintaining the z-values for each pixel. It works in two phases. In the first phase
of the algorithm the objects are sorted according to their distance from the view
poinl: if an object A is (partially} obscured by object B then A comes hefore B in
the ordering. Such an order on the objects is called a depth order. Note that a depth
order on the objects does not always exist, since there can be cyclic overlap among
the abjects. See, for example, Figure 1.3. In such cases the cycles have to be broken
by cutting the objects into smaller pieces. This first phase works in object space.
Efficient algorithms for computing depth orders are presented in Part C of this book.
The second phase is similar Lo the depth buffer method, i.e. the objects are drawn
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Figure 1.3: Threc triangies with cyclic overlap.
oie by one onto the sereen. Because the order in which the ohjects are processed is

a depth order—that is, objects in the back are procedsed earlier than obiects in the
front ~-none of the obiects already processed can obscure a new chiect. Hence, all
pixels in the projected image shonld get the color of the new object and no depth
comparison ig needed. Note that the second phase of the depth order algorithin is
similar to the way an arlist makes a painting: first the background eolors are painted
and later the objects are painted ‘on top of this”. Thus the algorithm is sometimes
called the painter’s alyorithm.

Another way of computing which object is visible at a certain pixel is to ‘shoot

a ray from tke view point through the pixel’. The first object that iz hit is the one
that ie visible at that pizel. See Figure 1.4, Algorithms following this approach are

view point Jscr_een

Figure 1.4: Hicden surface refnoval using ray tracing.

called gy iracing algorithms. (lassner [61] discusscs this technique in great deteil,
To speed up the tracing process, the objects are stored in a data structnre that allows
one to detcrmine the first object that iz hit witheut looking at s}l the ohjects. The
problera of designing efficient dasa structures fox this {ask is called the ray shooting
problem in computational geometry. [t is the topic of Part B of this book,
Obtaining realistic pictures of a scene not only involves computing which parts of
the objects can be seen from the view point, but alsc computing shading information
aboul the light utensity that reflects from an object. The ray tracing algorithm can
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be extended to provide this information. The idea of the method is as follows. By
shooting a so-called prémery ray from the view point through each pixel, one can
determine which object, let’s call it A, is visible at that pixel. Let p be the point
where the primary ray through the pixel hits 4. To compute the shading information
we shoot extra rays, called a shadow feelers, from point p into the direction of each
light source in the scene. If a shadow fealer does not hit any object before it reaches
the light source, then we know that p is lit by the light source. Otherwise p will be
in shadow. It is, however, still possible that p iz lit indirectly by the light source, by
refllections via ather objecls. Such indirect illumination effects can also be computed,
by shooting even more rays. [t iz bevond the scope of this book to discuss the ray
tracing melhod any further, but it should be clear that the method requires many
rays to be traced. Hence, it is extremely important to be able to compute the first
object hit by a ray efficiently. The design of data struetures for this rask is the topie
of Part B of this book.

The pixels on the screen can be grouped into regions where the same cobject is
visible. The image space methods discussed above compute the view of a scene pixel
by pixel. This means that the ‘structure’ of the view is lost, Object space algorithms
compute a combinatorial representalion of the structure of the view. Let us be more
precise about this. The view of a scene 13 a subdivision of the viewing plane into
maximal connected regions in each of which (some pertion of) a single object can
be seen, or no abject ig seen. In Figure 1.4, for example, this subdivision consists of
four regions; the light triangle is visible in one of them, the dark triangle is visible
in two other regions, and no object is seen in the fourth, white region. Objeet space
algorithms compute this subdivision—which is called the wsibility map of the given
set of objects—as a collection of {polygonal) faces. In other words, object space
algorithms compute exactly which parts of each object are visible. After that the
visible parts can be projected and displayed without difficulty. Parl 1 is devoted to
ihe camputation of thesc maps.

In general, object space hidden surface removal methods tend to be slower than
image space methods such as the z-buffer algorithm, because they cannot be im-
plemented in hardware very well. However, object space algorithms have certain
advantages over image space methods. Suppose that we want to display the hidden
lines in a scene dashed, instead of making them invisible. Object space algorithms
compute exactly which parts of each line are visible and which parts are not, thus
making it easy to display the invisible part dashed. Image space algorithms do not
provide the information that is necessary to achieve this. Another weak point of im-
age space algorithms comes up when one wants to print the view of a scene on paper,
instead of displaying it on the screen of a computer terminal. When hidden surface
removal has been done in image space, the ouly thing we can do s to plot every
pixel separately. But this method fails to take advantage of the fact that the resolu-
ticn {that is, the number of pixels per square inch) of modern laser printers is much
higher than the resolution of computer screens. If hidden surface removal has been
performed in object space then the visihility map can be processed directly, resulting
in a picture of higher quality. A third advantage of object space algorithms is that
they can be used to compute shadows in a scene. This follows from the fact that a
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ooint on an obiect is kit by a light source if and only if the ray from the lighs source to
that point does not intersect any otker object on its way. To other words, the part of
a scene that is lit by a light source is exactly the same as what can be seen from the
light source. Thus we can use an object space hidden surface removal algorithme to
compute which parts of the objects are lit by the light source. Image spate solutions
suech as the z-buffer method do not have this possthility: we can apply a2 z-buffer-like
slgorithm to compule the ‘view' from the light source, but the problem is that the
pixels with respect to the viewpoint do not coincide with the ‘pixels’ with respect. to
the light scurce. Notice thai the shadows in a scene do not change when the view
point moves. (Although what is visible of a shadow can change, of course.) Hence, ths
combinateris! representation of the shadow—which is exactly what an cbject-space
hidden surface removal algorithm can compute—can he used for every view point.
If shadow calculation is performed using the ray tracing algorithm described above,
then everything has to be computed snew for each view point.

Before we give an overview of the contents of this book, let us spend a few words
on the status of our work. This iz a book about problems in computational geometry
thai arise in computer graphics, not a book about computer graphics. Hence, we give
a theoretical treatment of these problems: we derive exact time bounds for our algo-
tithms that_will show that our algor,thmb perform better {in theoty) than prekusly
known algerithms, On the other hand, we have not implemented any of our methods.
Thus the applicability in practice has not been established yet. Indeed, some of cur
data structures probably will not perform well in practice if they are hnplemented
cxactly as deseribed here. Clearly, this iz a topic of future study. In any case, a
theoretical study stch as undertaken here prevides us with a deeper nnderstanding
of the important. issues involved in the problems, which can be usefui to obtain good
vractical solutions.

The book consists of four parts.

Part A, of which this intreduction is the first chapter, introduces the reader to
the vroblems that are studied and to the technigues that we use to sclve them. Ac-
tually, this part might be interesting not only to people who want to read -this book,
but to duyore who wanis w0 know more about some of the (recent) techniques in
computational geometry.

Part B concerns itself with the ray shooting problem: Preprocess a set of poivhedra
in three-dimensional space into a data struciure, such that the first polyhedron that
13 hit by a query ray can be computed efficiently. We develop new, efficient data
structures for various settings of this problem. In perticular, we distinguish the case
where the origin of the rays is fixed, the case where the direction of the rays is fixed,
and the general caze where there are no resirictions on the ray. For each setting,
we study & number of different scenes: scenes cousisting of axis-parailel polyhedrs
{whose edges are parallel to the z-axis, the y-axis, orthe z-axis), scenes consisting
of c-oriented polyhedra (whose edges are parallel to ¢ different axes), and scenes
consisting of arbitrary polyhedra. "

In Paré C we study the problem of computing depth orders: Given a set of
polygons, sort them according to their distance to the view point. We start by
studying the problem in two-dimensioral space. This is useful, because many threc
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dimensional scenes -in particular certain types of landscapes, which are called polyhe-
dral ferrains—can be treated as being two-dimensional. We present a data structure
such that a depth order for a given view point can be caleulated efficiently. We also
study three-dimensional scenes; here we present the first algorithm to compute a depth
order for a set of polvgens in three-dimensional space that achieves a subquadratic
running time.

Finally, in Part D we present an object space algorithm for hidden surface removal
in general polyhedral scenes. The running time of our algorilhn is oulpui-sensitive,
that is, the running time decreases as the complexity of the visibility map decreases,
Previously, such algorithms were known only for special cases, where the objects in
the scene satisfy the—not very realistic —constraint that a depth order on the objects
exists and is known.





