
SOFTWARE
ENGINEERING
EDUCATION

Needsand
Objectives
PROCEEDINGS OF AN
INTERFACE WORKSHOP

EDITED SY

Anthony 1. Wasserman
Peter Freeman

[1
Springer -Verlag
New York Heidelberg Berlin
1976

i -, 1
i

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Anthony 1. Wasserman
Graduate Program in Medical Information Science
University of California
San Francisco, CA 94143/USA

Peter Freeman
Information and Computer Sciences
University of California
Irvine, CA 92717/USA

Library of Congress Cataloging in Publication Data

Interface Workshop on Software Engineering Education,
University of California, Irvine, 1976.
Software engineering education.

Bibliography: p.
Includes index.
1. Electronic digital computers-programming-Study and
teaching (Higher)-Congresses. 1. Wasserman, Anthony 1.
Il. Freeman, Peter, 1941-III.Title.

QA76.6.1527 1976 001.6'42 76-45179

Ali rights reserved.

No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag.

© 1976 by Springer-Verlag New York Inc.

Printed in the United States of America.

ISBN 0-387-90216-3 Springer-Verlag New York
ISBN 3-540-90216-3 Springer-Verlag Berlin Heidelberg

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

To all of our children's superheroes--

Superman, Wonder Woman, Batman, the Bionic Wornan,

and the others--

maybe they know how to build complex software systems!

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

PREFACE

"Software engineering" is a term which was coined in the late 1960's as the
theme for a workshop on the problems involved in producing software that could be
developed economically and would run reliably on real machines. Even now, software
engineering is more of a wish than a reality, but the last few years have seen an
increased awareness of the need to apply an engineering-type discipline to the
design and construction of software systems. Many new proposaIs have been made for
the management of software development and maintenance and many methodologies have
been suggested for improving the programming process.

As these problems and solutions become better understood, there is a growing
need to teach these concepts to students and to practicing professionals. As a
prelude to the educational process, it is necessary to gain an understanding of the
software design and development process in industry and government, to define the
appropriate job categories, and to identify the fundamental content areas of soft
ware engineering.

The need for quality education in software engineering is now recognized by
practitioners and educators alike, and various educational endeavors in this area
are now being formulated. Yeti discussions we had had over the past year or so led
us to believe that there was insufficient contact between practitioners and educators,
with the resultant danger that each group would go off in separate ways rather than
working together.

As a result, we organized a one-day workshop to bring together practitioners of
software engineering and educators working to build quality curricula in software
engineering. Our primary purpose was to help establish communication on a topic of
common concern: software engineering education. In that manner, it would be possible
for industry representatives to learn about current educational efforts and to
influence the direction of new efforts. Similarly, it would be possible for educa
tors to gain a better understanding of industry needs and the roles of software
engineers in industry and government, so that existing educational programs could
be altered as necessary to fit these requirements and new, more appropriate programs
could be developed.

with this motivation, an Interface Workshop on Software Engineering Education:
Needs and Objectives was organized and held at the University of California, Irvine,
on February 9, 1976. Approximately 40 people, respresenting a balance among industry,
government, and universities attendéd the meeting.

The purpose of this book is to share with a broader segment of the software en
gineering community the questions, ideas, opinions, and conclusions of the Workshop.
The book is patterned after the successful reports on the seminal workshops held on
software engineering in the late 1960's [Buxton and Randell; Naur and Randell]. It
includes position papers prepared especially for the workshop, other position
statements prepared verbally at the meeting and later written up, edited comments

v

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

taken from a taped transcription of the discussions, and a few papers presented else
where, but of particular relevance to the subject of the Workshop. As is fitting for
a meeting dealing with an unexplored area, many of the papers are relatively informaI
and were written to present some tentative ideas or work in progress.

The discussions are not intended to be a literaI transcription of the proceedings
of the Workshop. Many of the discussions which took place were not weIl suited to
verbatim reproduction. Also, there was a tendency at the meeting to drift away from
and then return to some topics. An effort has been made here to convey a sense of the
themes and issues by adding some material and by reordering some of the papers and
comments, while remaining faithful to the comments of the individual participants.
There is, of necessity, a certain amount of repetition. Many of the industry repres
entatives identified similar needsi many of the educators are attempting similar
programs. Many of these remarks, though, come from different perspectives and we
have chosen to retain them for emphasis and reinforcement.

These proceedings consist of five major parts. In the first, we·expand on the
objectives of the meeting and present a thought-provoking paper by Robert McClure,
based upon his keynote address to the IEEE Spring 1976 COMPCON. The second section
presents a number of position statements concerning industrial needs for software
engineering education. The third presents a sampling of approaches being tried
or thought about in a number of universities. The fourth section contains a number
of discussions from the meeting and our perceptions of the situation as it applies
to the next steps in software engineering education. These four parts are followed
by a highly selective annotated bibliography on software engineering, along with
more details on the meeting and its participants.

We should note that these proceedings presume a prior familiarity on the reader's
part with some of the topics and issues of software engineering. Many of the papers
and comments refer to software engineering concepts with the assumption that the
audience is familiar with them. It is our hope that the brief bibliography will be
helpful to those who do not presently have this background.

We believe that these proceedings will be of interest to aIl persons involved
in developing computer science and software engineering curricula, not only in
universities, but also in industry. Furthermore, we hope that these proceedings
can serve as the starting point for additional work in the development of coherent
software engineering curricula.

We owe a deep dept of gratitude to our colleagues who came to the meeting and
prepared papers. Of equal importance was the foresightedness of our publisher in
understanding the importance of timely and wide distribution of these proceedings.
The office staffs in our respective departments assisted us greatly in the logistics
of arranging the meeting. Brian Kernighan suggested the inclusion of the bibliography.
The large majority of the typing was done by Edie Purser. We, of course, take sole
credit for any errors. Above aIl, we give special thanks to Cheryl Burke for her
work on arrangements before and during the meeting, and to Tina Walters for typing
up aIl of the loose ends in the process of manuscript preparation.

Anthony I. Wasserman Peter Freeman
University of California, San Francisco University of California, Irvine

July 23, 1976

vi

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

TABLE OF CONTENTS

PREFACE

SECTION 1. INTRODUCTION

Software Engineering Education: Workshop Overview
Peter Freeman and Anthony 1. Wasserman

Software--the Next Five Years
Robert M. McClure, Consultant

SECTION II. INDUSTRY NEEDS FOR SOFTWARE ENGINEERING EDUCATION

Section Overview

Software Engineering Education: Some Industry Needs
Barry W. Boehm 1 TRW Systems and Energy, Inc.

Software Engineering: the Commercial Data processor's Needs
Robert H. Clinton, Bank of America

The Software Engineer: Role, Responsibilities, and Education
C.A. Irvine, SofTech, Inc.

What the Software Engineer Should Know about program Verification
Thomas H. Bredt, Hewlett-Packard Corp. and Stanford University

Responsibiljties of the Software Engineer in the Reliability Area
Herbert Hecht, Aerospace Corporation

Should we Seek a Problem-Oriented Specialization?
Guy de Balbine, Caine, Farber, and Gordon, Inc.

Softwar~ Engineering: an Art Searching for Scientific Recognition?
D.E. Anderson, McDonnell Douglas Automation

On the Need for Teaching First Principles in Software Engineering
Robert D. Merrell, Burroughs Corporation

v

l

2

5

10

Il

13

20

23

28

41

47

51

56

SECTION III. UNIVERSITY PLANS AND PROGRAMS IN SOFTWARE ENGINEERING EDUCATION 60

Section Overview

On the Skills Required for Software Engineering
Richard E. Fairley, Texas A&M University

Software.Engineering as a Central Computer Science Discipline
Clement McGowan and Andries VanDam, Brown University

The Software project as a Serious Game
James J. Horning, University of Toronto

Realism, Style, and Design: Packing it into a Constrained Course
Peter Free~n, University of California, Irvine

vii

61

63

68

71

78

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

SECTION III. (Cont'd.)

An Experimental project Course in Software Engineering 90
Barry W. Boehm, TRW Systems and Energy, Inc. and UCLA Graduate School

of Management

Making Software Engineering Issues Real to Undergraduates 104
Mary Shaw, Carnegie-Mellon University

Toward Improved Software Engineering Education 108
Anthony 1. Wasserman, University of California, San Francisco

The Central Role of Design in Software Engineering 116
Peter Freeman, University of California, Irvine

Performance Analysis as a Fundamental Objective in Software Engineering 120
Education

Robert M. Graham, University of Massachusetts

A Bachelor of Arts in Computer Programming
William McKeeman, University of California, Santa Cruz

SECTION IV. DISCUSSION TOPICS

Section OVerview

University-Industry Cooperation

Faculty Sabbaticals in Industry

Industrial Education

Design Training

Where Should Various Topics be Learned?

Where Do We Go From Here?

SECTION V. CONCLUSION

postscript

A Highly-Selective, Annotated Software Engineering Bibliography
Anthony 1. Wasserman, University of California, San Francisco

List of Participants

Index of Contributors

viii

123

127

128

129

132

134

139

142

146

149

150

151

157

159

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

SECTION 1.

INTRODUCTION

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

SOFTWARE ENGINEERING EDUCATION: WORKSHOP OVERVIEW

Peter Freeman
University of California, Irvine

and
Anthony I. Wasserman

University of California, San Francisco

The primary objective of the Interface Workshop on Software Engineering Educa
tion was to facilitate communication between leading educations and practitioners
on the needs and objectives of software engineering education. This purpose was
captured weIl in the opening remarks delivered at the Workshop by Prof. William
Parker, Assistant Vice-Chancellor for Plans and programs, University of California,
Irvine:

The objective that you have set for yourselves in examining the
relationship of an educational program to industrial needs in
the area of software engineering is a manifestation of a general
problem which any university must face these days. The university
is faced with the problem of adjusting its educational programs
to respond to the ever changing needs of society. Industry and
the university have different objectives. If we do not have
discussions, such as these today, we will end up going our own
ways. So l would hope that during these discussions there would
be a frank exchange of views so that the university can learn
what the industrial needs are and the people in industry can
realize the cbnstraints within which the educational programs
must function.

The objectives of the workshop included communication between both groups of people
on the specifie needs for software engineering education, the present and future
roles of software engineers, and the value of current attempts to provide software
engineering education.

Within the broad objective of.establishing communication on any topics of
relevance to software engineering education, sorne more specifie questions were
suggested for discussion:

- What is the role of a software engineer? Now? Five years from now?
- What are the duties of a software engineer in various organizations?
- What is the proper balance between formaI education and employer training

for software engineers?
- What are successful educational techniques for software engineering?

Work/study programs? Software laboratory courses?
- At what level of education should software engineering be taught?

Should there be a professional degree in software engineering?
- Who should become a software engineer? Should they be certified?

2

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

What is the relevance of various topics--programming management, economics,
program verification, etc.--for software engineering jobs?

- How should practicing software engineers receive continuing education on
software engineering and related developments?

- How weIl prepared are current graduates for software engineering jobs?

While this is not an exhaustive list, it includes many of the questions that
the participants wanted to address.

The organization of this report reflects the three main discussion themes of
the Workshop: industrial needs for software engineering education, educational pro
grams, and future developments. Within these three broad themes, we can identify
several recurrent ideas or opinions that were heard repeatedly.

The software engineering practitioners generally agree that better educational
programs are needed in order to provide them with people who can predictably carry
out a range of activities. There seems to be agreement that the software engineer
is a generalist and is something more than just a good designer or programmer. The
need for solid communications skills and general problem-solving ability was stres
sed. Having a solid understanding of computer science fundamentals was perceived
as a necessary basis for a software engineer. Fam1liarity with and ability to use
management and economic techniques and knowledge was also considered to be one of
the important attributes needed by software engineers. Finally, it seems clear that
industry needs people who not only have aIl of these capabilities at the outset,
but who will be able to adapt and grow both within software engineering and within
the specific industry.

There are several trends that seem evident to us in looking at the university
presentations. First, most universities are approaching the problem of providing
software engineering education with caution. At present, most efforts are simply
modifications or additions to existing curricula in computer science, industrial
engineering, or electrical engineering, often no more than a single course. This
cautiousness was reflected in most of the comments heard at the Workshop. Second,
those schools which are attempting to me et the perceived needs of industry are be
ginning to make some attempts at software engineering education. While universities
may eventually provide programs and turn out students which improve the quality of
software development in industry, the current situation seems to be more one of
trying to find ways to provide through educational programs what industry must now
provide for itself through experience and in-house training. Finally, aIl of the
university programs disucssed at the Workshop included a large àmount of practical
work in addition to more traditional academic work.

The discussions on the future centered around three trends. First, everyone
agreed that there was a need for continued dialogue between aIl parties. This
book, in fact, is a result of the general feeling that a broad range of people should
be addressing these problems. Second, complementing the calI for more dialogue was
the feeling that increased cooperation between industry and the academic community
is needed, both in educational and research programs. Finally, it seems clear that
the development of curriculum guidelines for software engineering education is a
necessary next step.

Within the context of a one-day meeting, it was possible to present the prob
lems and constraints from both the industry and the academic side, to review briefly
some of the plans and programs in software engineering education within the univer
sities, to begin to evaluate these needs and programs, and to open up some of the
lines of communication between industry and un~versities. However, it was not pos
sible to deal with many of the issues at any depth and it was apparent that there is
a great need to establish a continuing dialogue in order to work toward solutions to
the various problems that were raised at the Workshop.

3

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

The Difference between a Programmer and a Software Engineer

Implicit in aIl of the discussions is the understanding that a software engineer
is fundamentally different from a programmer or a computer scientist. A programmer
is an individual whose primary responsibility is rapidly becoming the production of
code. A programmer is typically familiar with one or more notations for programming
and with the relevant features of the operating system on which the program will run.
In general, though, the programmer plays little, if any, role in the development of
system requirements or the specification and overall design phases of the software
life cycle.

In contrast, a software engineer has responsibility throughout the entire soft
ware development process, with emphasis on tasks of specification and design. The
software engineer must have a solid background emphasizing the design and construc
tion of software systems. This background must be supplemented by a knowledge of
managerial and economic issues, so that he/she can serve as a problem-solver, a
designer, an implementor, a manager, and a communicator.

A computer scientist is still a different type of individual. The computer
scientist possesses rigorous academic training which includes emphasis on a number
of foundation areas, including automata theory, discrete structures, computer
organization/architecture, and formaI languages. The job of the computer scientist
is to provide basic understanding of the underlying theory and concepts.

The contrast between a programmer and a software engineer can be shown still
further by examining some of the typical tasks which each might perform in a
software development effort. First, consider the several activities involved in
programming at the lowest level (coding):

- devising local and concrete data representations for information;

- forming precise algorithms for doing necessary processing;

- taking care of housekeeping details necessitated by the particular
programming system used (language plus run-time environment);

- choosing names, forming syntactically correct language statements, and
making the program letter perfecto

By contrast, the software engineer is concerned with somewhat different
activities:

- abstracting the operations and data of the task situation so that they may be
represented in the system;

determining precisely what is to be done by the software under design;

- establishing an overall structure of the system;

- establishing interfaces and definite control and data linkages between parts
of the system and between the system and other systems;

- choosing between major design alternatives;

- making tradeoffs dictated by global constraints and conditions in order to
meet varied requirements such as reliability, generality, or user-centeredness.

These distinctions indicate the qualitative difference between the activities of
the software engineer and the programmer as perceived by most of the Workshop attend
ees. It appears that the concept of a software engineer is just beginning to have an
impact and that it will be several years before the relationship between software
engineers, computer scientists, systems analysts, programmers, and programming
assistants is clearly defined.

4

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

SOFTWARE -- THE NEXT FIVE YEARS

Robert McClure
Consultant, Saratoga, California

This paper is based upon a keynote address given at IEEE Spring '76 COMPCON
concerning the next five years in software practice and development. Since the
software field is too large for any one person to know in depth, l drew not only
upon my personal experiences, information from friends and associates, and published
material, but also from the neighborhood tea leaf reader. Since the intention in
this paper is to generalize, the result is clearly not directly applicable to
specifie companies, Universities, professional associations, or programming groups.

Decade #1 -- 1956-1965: The Great Years

In order to do a credible job at foretelling the future, l must first give a
brief (and subjective) review of the past two decades. The first real decade in
software comprised the years from 1956 through 1965. This covers the years from the
introduction of the IBM 704 to the first deliveries of the IBM System/360.

This first decade saw the invention, development, and acceptance of substantially
the entire body of programming lore as it is known today. At the start of the decade,
large numbers of programmers were still actively engaged in writing programs in octal.
The symbolic assembly program was known to but a few. Macro assemblers wou Id have
been considered revolutionary. FORTRAN (1) was a mere gleam in IBM's eye, even with
out separately compilable subprograms.

At the end of the decade, hundreds of systems programmers were actively writing
the first PLII compiler. COBOL had been out long enough for the government to
conclude that the final answer to programming was at hand. ALGOL had gone through
two iterations. In fact, most of the languages on Jean Sammet's list had already
been implemented for the first time. Compiler building had progressed from being
an arcane art to that of graduate student exercise. One software house was
advertising that they could turn out FORTRAN compilers on an assembly line.
Translator writing systems were available to everyone. Anyone who cared knew that
parsing was no longer a problem, but that good code generation was a very difficult
job. (Note. It still is!)

At the start of the decade, users of computers worked mostly "hands off". That
is, they got their programs to execute by sticking a one card binary bootstrap loader
on the front of an absolute binary deck, putting the cards in the hopper, and pushing
the load button. Corrections were often made by carefully patching the deck and
punching the checksum ignore bit.

At the end of the decade, enormous time sharing systems (Multics, TSS, and
others) that would unleash unbounded computer power at the flick of a terminal key

5

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

were thought to be just around the corner. And IBM had 5000 shock troops churning
out code for OS/360.

It was a great time to be in the software game. Almost every day brought new
wonders to behold. The future seemed bright indeed.

Decade #2 -- 1966-1975 -- or What Went Wrong?

If the first decade was like a drunken orgy, the second was more like a hangover.
Early in the decade, ev en IBM conceded that the five thousand programmers involved in
BIG OS were not making much progress. Amidst much embarrassment, mighty M.I.T. and
Bell Laboratories admitted to being humbled by the Multics project. And Digitek
bent its pick trying to turn its FORTRAN compiler technology loose on PL/I. In
fact, the principal thrust was a monumental effort to secure the gains of the first
decade, and to restore sorne order to an industry clearly out of control.

In any event, the second decade saw almost no inventions comparable to the first
roaring decade. No languages of significance were developed during this period.
(PASCAL and ALGOL 68 en~husiasts please don't write.) A similar claim can be made
in the case of operating systems. As in the case of languages, several developments
started in the first decade were not completed until much later in the second. It
is a fact that substantially aIl of the operating systems in use at the end of the
second decade had been started before 1966.

Although there were few inventions, several significant things did happen in
this second decade. For example, there was finally a genuine acceptance among the
applications programming fraternity of higher level languages, most notably FORTRAN
and COBOL. In retrospect, this acceptance is due to two major factors in addition
to the basic fact that it is a better way to write code. The first of these
consisted of a very strong push from the US government in the direction of COBOL.
By requiring compilers for aIl machines used for data processing, and requiring
COBOL use for aIl appropriate applications, the US government guaranteed COBOL's
success. The second of these factors is what is called the "Bandwagon" effect.
In other words, it became fashionable for an engineer or scientist to know how to
program in FORTRAN.

Interestingly enough, the major software segment to ignore higher level
programming were systems programmers themselves. Neither of the two factors just
mentioned were present.

The major surge in the second decade has been the great enthusiasm for "soft
ware engineering", "structured programming", "GO TO less programming", "top-down
design", "chief programmers", "structured walk-throughs", etc. This seerns to have
been mainly triggered by the first NATO Software Engineering Conference held in
1968. At this now famous meeting a number of software eIders gathered to complain
to each other that they really did not know how to control the production of soft
ware, and to try to decide what if anything was possible to do about it. A careful
reading of the proceedings of that meeting reveals a consensus that building soft
ware is not basically different from any other engineering work, and that the
corrective actions required are the same. However, it was widely assumed that a
new discipline had been created. This produced the spate of buzzwords referred to
previously.

Unfortunately, my personal experience indicates that the great masses of
programmers have not changed their habits. Their code is as unstructured as it
ever was. Simply put, the great idea has not been reduced to practice.

Nor does there appear on the horizon the slighest sign of winds of change.
So far there has not been the equivalent of a "COBOL edict". without this, the
"Bandwagon" effect cannot get started.

6

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

This second decade also saw a strong push toward language standardization.
Almost every language of any signific~ce saw the formation of at least one standards
committee, some under government auspices, and at least one (TRAC) by private fiat.
The careful observer may have noticed, however, that publication of a standard did
not automatically guarantee that compilers would be made to conform to the standard.
Only through major effort by Grace Hopper and staff in the case of COBOL, has even
glacial motion toward standards conformity been recorded. The desire of almost aIl
compiler writers (and their sponsors) to construct semi-permeable membranes to
prevent the migration of code away from their machines has not really improved the
portability of programs (and data) in the last ten years.

Although the second decade was not inspirational in the same way that the first
decade was, it was nevertheless interesting. During this decade, software stopped
being fun and games, and was recognized as a serious business. It was noted that
operating systems, compilers, and other esoteric tools were necessary, but
applications were really where the money was. This did not escape the major computer
manufacturers, either. By the end of the decade the major software effort among the
mainframers was overwhelming on the side of application packages rather than systems
software.

The Next Five Years -- A Gloomw Outlook

At the start of the third decade, the major inventions are at hand, and it i9
unlikely that there will be any new major breakthroughs. The managerial techniques
and controls needed to prevent the calamities of the mid '60's are in place. Never
theless, at this moment software production in most shops is still running at half
speed or worse. There is no reason to believe it will soon improve.

There are several reasons for a gloomy outlook for any major upgrading of the
quality of software production in the next five years. Let me note here some of the
most important ones:

1. There exists a vast overburden of programming history in the form of
enormous amounts of code that must be modified and maintained. Much
of this code is still in assembler language. Most of the rest is in
COBOL. Almost none of it is "structured". The bill payers seem quite
reluctant to scrap this code and redo it in civilized style.

2. There are rapidly growing numbers of small computers, both mini and
micro. These seem to be programmed mostly in a style in vogue in 1955,
with heavy emphasis on programming trickery, memory economy, and
execution efficiency.

3. Languages which are suited for writing weIl structured programs (such
as PL!I, ALGOL, or PASCAL) have failed to displace to any significant
degree FORTRAN and COBOL, which are not.

4. A major manufacturer has recently introduced a portable computer that
supports only BASIC and APL. Neither of tnese languages are satis
factory from a structured programming point of view.
Worse, APL seems to encourage a cryptic programming style that only
other "one-liner" devotees could love.

5. There have appeared a few signs of a trend toward "unionism" in the
ranks of practicing programmers, with concerns about seniority systems,
reluctance to change, overtones of featherbedding, and a recent ruling
that programmers were not "exempt" from overtime rules. These
reactionary trends will clearly inhibit further innovation in actual
software production.

7

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

The Next Five Years -- A Note of Optimism

So much for the gloomier part of the next five year outlook. There are also a
few positive things to be said. Let me comment of two of these that l view as most
significant:

The first of the se is the new acceptance of simpler systems that are not intended
to solve aIl problems for aIl users for aIl time at once. The concept that, for
instance, a single operating system could simultaneously provide complete generality,
utmost efficiency, absolute reliability, total security, and consummate ease of use
for batch, time-sharing, and real-time users has been discredited. The early goals
of Multics have been trimmed, and the latest developments in 370 operating systems
foretell of fewer access methods rather than more. The grassroots enthusiasm for
UNIX, an unadvertised operating system for the PDP-ll developed by Bell Laboratories,
is a case in point. It's popularity is due to the fact that what it lacks in
generality, it makes up for in simplicity and consistency. This abandonment of
unconstrained generality is a very healthy trend, and will be speeded along by one
of the major influences in the computing business, IBM, which now seems to under
stand the basic problem of over-complexity.

The second of the positive trends is the increasing willingness of business
management to purchase (or lease) software. There seems to be a new awareness of
the real cost of writing software in-house. To sorne extent, this has also been
brought about by IBM. Their decision to unbundle, and then their introduction of
the System/32, a machine meant to run canned application programs (and sold as such)
has been very influential. l wonder how far the phonograph would have gone if aIl
users had to record their own programs. With increasing markets, the software
industry will become healthier and more competitive, and be forced to find ways to
making their products more reliable, more effective, and cheaper. If there is a
major move toward improved programming practices it must come from the independent
software producers because they can benefit most quickly from improved productivity.

A Few Specifie Predictions

A paper like this should always include a few specifie predictions to throw
rocks at, so here goes:

1. FORTRAN and COBOL will continue to reign supreme as application
languages. The principal reason is that only these two have support
from aIl the major computer manufacturers, and further only these are
known:b:Y the majority of working programmers.

2. "Structuring"
To adopt such
portability.
generation of
will remain a

extensions to FORTRAN and COBOL will be mostly ignored.
extensions at this time invites spectres of non-
Until there are new standards, new compilers, and a new
programmers, structured programming in FORTRAN and COBOL
curiosity.

3. Operating systems will mostly continue to be written in assembly
language. This follows from the premise that most of the new computer
designs will be at the micro end of the spectrum, and that systems for
them will need to be as small as possible, etc.

4. In fact, almost aIl software for micros will be written in assembly
language. Same reason as above.

5. Multiple processor systems will finally come to be widely used. This
follows from the very low cost of processors of the micro class and
the ease of constructing systems from a multiplicity of them.

6. No new language will gain wide acceptance. There has been a growing

8

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

feeling that the basic problems will not be solved no matter how good
the programming language. Ergo, use the old language at hand. Even
the heavy hand of IBM didn't gain major acceptance for PL/I.

To summarize, the next five years is not likely to see any major improvements
in the way in which software is specified, designed, written, tested, or used. OUt
side of a few very sophisticated large users (this does not include aIl of the
computer manufacturers) and a few progressive software houses, there is not likely
to be any major practical adoption of the concepts of software engineering.

9

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

