
11. 000 ic

CENTRE INTERUNIVERSITAIRE DE CALCUL (C.I.C.G.)

SYSTEMES

DE

PROGRAMMATION GENERATEURS

DE

MACHINES VIRTUELLES

par

Maurice

BELLOT

Jean

GUILLOU

Jean-Pierre

Le HEIGET

Maurice

REY

Liliane

SIRET

Jean-Pierre

DUPUY

C.S. IBM

C.I.C.G.

157 293

TABLE DES MATIERES

CHAPITRE I

I CONFIGURATION REELLE	PAGE	013
I-1 GENERALITES I-2 DESCRIPTION DE LA CONFIGURATION I-3 LA CONFIGURATION MINIMALE	PAGE PAGE PAGE	015
II CONVENTIONS DE LIAISON	PAGE	023
II-1 REGISTRES ET ZONES DE SAUVEGARDE II-2 TRAITEMENT DES INTERRUPTIONS SVC. LES	PAGE	024
	PAGE	026
EXIT, GOTO)	PAGE	029
III MISE EN MARCHE ET ARRET DU SYSTEME CP	PAGE	031
III-1 ECRITURE DU NOYAU ET IPL III-2 INITIALISATION DU SYSTEME: LE MODULE	PAGE	031
	PAGE PAGE	
IV GESTION DE L'ESPACE DISQUE	PAGE	039
IV-1 ATTRIBUTION DE CYLINDRES: LE MODULE TMPSPACE	PAGE	039
IV-2 RESTITUTION DE CYLINDRES: LE MODULE TMPRET	PAGE	040
V GESTION DE LA MEMOIRE	PAGE	041
V-1 GESTION DES BLOCS DE TAILLE NON STANDARD V-2 GESTION DES BLOCS DE TAILLE STANDARD V-3 ETUDE DES CAS PARTICULIERS	PAGE PAGE PAGE	044
CHAPITRE II		
I DESCRIPTION DE LA MACHINE VIRTUELLE	PAGE	058
I-1 LE CATALOGUE DES MACHINES VIRTUELLES I-2 REPRESENTATION DE LA CONFIGURATION VIRTUELLE	PAGE	058
EN MEMOIRE	PAGE	061

I-3 L'OPERATION DE LOGIN I-4 MODIFICATION DYNAMIQUE DE LA CONFIGURATION	PAGE	064
VIRTUELLE	PAGE	060
I-5 L'OPERATION DE LOGOUT	PAGE	
II MISE EN OEUVRE DE LA MEMOIRE VIRTUELLE		
PAR CP	PAGE	078
II-1 PUIDES DES PONSUTONS NEGESCATDES à 12 CESTION		
II-1 ETUDES DES FONCTIONS NECESSAIRES A LA GESTION DE LA MEMOIRE VIRTUELLE	PAGE	070
II-2 TRAITEMENT DES INTERRUPTIONS-PROGRAMME	PAGE	070
SPECIFIQUES DE L'UTILISATION DES MEMOIRES		
VIRTUELLES	PAGE	000
II-3 TRAITEMENT D'UNE FAUTE DE PAGE	PAGE	
II-4 GESTION DE LA MEMOIRE SECONDAIRE -	PAGE	002
	DAGE	000
MODULES PAGEGET ET PAGEREL	PAGE	000
TIT I LINITUR ORNORIE VIDUIRIE	DACE	001
III L'UNITE CENTRALE VIRTUELLE	PAGE	091
III-1 MODES DE FONCTIONNEMENT DU CALCULATEUR		
IBM 360	D 3 C E	001
	PAGE	091
III-2 MODES DE FONCTIONNEMENT D'UNE MACHINE	DAGE	000
VIRTUELLE	PAGE	092
III-3 ACTIVATION DESACTIVATION DE LA MACHINE	D3.05	000
VIRTUELLE - REFLEXION D'UNE INTERRUPTION	PAGE	
III-4 SIMULATION DES INSTRUCTIONS PRIVILEGIEES	PAGE	
III-5 TRAITEMENT DES INSTRUCTIONS SVC	PAGE	100
III-6 TRAITEMENT DES INSTRUCTIONS NON PRIVILEGIEES		
PROVOQUANT UNE INTERRUPTION PROGRAMME	PAGE	
III-7 RECAPITULATION	PAGE	101
IV GESTION DES ENTREES-SORTIES	PAGE	102
IV-1 MECANISME DE GESTION DES ENTREES-SORTIES		
REELLES	PAGE	102
IV-2 RECONNAISSANCE D'UNE DEMANDE D'ENTREE-SORTIE	PAGE	109
IV-3 TRAITEMENT DES INSTRUCTIONS D'ENTREE-SORTIE		
SUR UN CANAL SELECTEUR VIRTUEL. LE MODULE		
VIOEXEC	PAGE	110
IV-4 TRAITEMENT DE L'INSTRUCTION SIO SUR UN		
CANAL SELECTEUR VIRTUEL	PAGE	114
IV-5 TRAITEMENT DES INSTRUCTIONS D'ENTREE-SORTIE		
SUR UN CANAL MULTIPLEXEUR VIRTUEL. LE		
MODULE MVIOEXEC	PAGE	126
IV-6 TRAITEMENT DES INSTRUCTIONS SIO SUR LES		
UNITES DITES DE SPOOLING	PAGE	127
IV-7 TRAITEMENT DE L'INSTRUCTION SIO POUR LA		
CONSOLE MAITRESSE DE LA MACHINE VIRTUELLE	PAGE	140
		•
V SIMULATION DU PUPITRE. LES FONCTIONS CONSOLE	PAGE	149
V-1 LA FONCTION STOP	PAGE	150

V-2 FONCTIONS QUI N'AUTORISENT PAS UNE REPRISE		
	PAGE	151
V-3 FONCTIONS QUI AUTORISENT UNE REPRISE D'ACTIVITE		- - -
	PAGE	
V-4 LA TOUCHE REQUEST DE LA CONSOLE MAITRESSE	PAGE	160
VI COMMUNICATION ENTRE UNE MACHINE VIRTUELLE		
ET CP. L'INSTRUCTION DIAGNOSE	PAGE	161
WE I MAN TERMINE AND THORNIGHTONG ATLANAGE		
VI-1 TRAITEMENT DES INSTRUCTIONS DIAGNOSE. LE MODULE PRIVLGED	PAGE	162
VI-2 LES DIFFERENTES FONCTIONS		
C H A P I T R E III		
CHAPITRE III		
I INTRODUCTION	PAGE	170
II SYNCHRONISATION DES CHAINES DYNAMIQUES		
DE TRAITEMENT	PAGE	171
II-1 GESTION DES CPEXBLOK ET REPRISE DE L'EXECUTION		. 7.0
DES CHAINES DE TRAITEMENT II-2 EXEMPLE D'UTILISATION	PAGE PAGE	
11-2 BABALDE D OTTBIOATION	INGL	1,75
III GESTION DE L'UNITE CENTRALE: LE MODULE		
DISPATCH	PAGE	175
III-1 ROLE DU MODULE DISPATCH ET DEFINITIONS		
COMPLEMENTAIRES	PAGE	176
III-2 ETUDE DE CAS PARTICULIERS	PAGE	179
III-3 ETUDE DES SOUS PROGRAMMES FONDAMENTAUX		
DE DISPATCH ET CLASSIFICATION DES MACHINES VIRTUELLES	PAGE	181
III-4 RESUME DE FONCTIONNEMENT GENERAL DE DISPATCH		
IV GESTION DES MEMOIRES VIRTUELLES. LA	DAGE	
PAGINATION	PAGE	195
IV-1 PROTECTION ENTRE MEMOIRES VIRTUELLES	PAGE	195
IV-2 RECHERCHE D'UNE PAGE DISPONIBLE EN MEMOIRE		
REELLE	PAGE	198
V PARTAGE DE SYSTEME ET PARTAGE DE PAGES	PAGE	202
V IIIIIIII DD DIDIDID DI IIIIIII	11100	202
V-1 IPL PAR NOM	PAGE	202
V-2 UTILISATION PARTICULIERE DE L'IPL PAR NOM: PARTAGE DE PAGES EN MEMOIRE REELLE	PAGE	205
TANTAGE DE FAGES EN MENOTRE REELLE	PAGE	205
CONCLUSION	PAGE	207

Nous tenons à remercier Madame CHOMAT pour le travail important qu'elle a fourni aussi bien pour la frappe initiale de ce manuel que pour les nombreuses corrections que nous avons apportées au cours de la rédaction.

Sa maitrise du langage SCRIPT de CMS nous a permis de lui laisser l'entière responsabilité de la mise en page. Nous ne pouvons évaluer combien cet état de fait nous a aidés dans la réalisation définitive de ce cours.

Nous remercions aussi le service de reproduction du C.I.C.G. auquel nous devons la réalisation matérielle de ce manuel.

AVERTISSEMENT

Le but de ce manuel est de servir de support à un cours sur le système CP67.

Les principes et les algorithmes exposés ici sont, dans leur quasi-totalité identiques à ceux du nouveau système VM sur IBM/370, annoncé le 2 août 1972.

\sim	u	7	D	т	т	D	T	т

INTRODUCTION

Au cours des vingt dernières années, le mode d'utilisation des ordinateurs a évolué en fonction de l'augmentation de leur puissance et de leur complexité. Cette croissance s'est développée sous les pressions conjuguées et imbriquées des utilisateurs, des progrès de la technologie, et des nombreuses recherches effectuées en vue d'une utilisation optimale des ressources d'une installation.

Dans les années 1950, la programmation est affaire de spécialistes car les ordinateurs ne possèdent aucun support de programmation. L'utilisateur dispose de toute la machine, et s'occupe lui-même des diverses manipulations pour obtenir ses résultats. Cette méthode présente un avantage certain.

En effet la mise au point du programme s'effectue sur la machine par interaction entre l'utilisateur et l'ordinateur. Les dispositifs de mise au point offrent l'exécution instruction par instruction du programme, l'arrêt sur adresse, la visualisation sur oscilloscope ou voyants lumineux du contenu de la mémoire centrale et le rangement manuel d'informations dans la mémoire. Parfois, l'utilisateur dispose d'un programme qui interprète chaque instruction et en imprime le résultat; c'est une première aide à la programmation.

Cette façon de travailler présente aussi un inconvénient majeur: la programmation et la mise au point des programmes étant très proches de la logique interne du calculateur, le rendement global du matériel est fonction de la parfaite connaissance de la machine par l'utilisateur; le rapport entre la vitesse de fonctionnement interne de la machine et les réactions humaines conduit de toutes façons à un rendement faible.

En l'espace de dix ans environ, vers les années 1960, le nombre croissant d'utilisateurs non spécialistes entraîne un développement rapide des outils de programmation (compilateurs, chargeurs ...). Parallèlement, les progrès de la technologie permettent d'augmenter la puissance de traitement des ordinateurs. D'un point de vue économique, pour utiliser au mieux ce potentiel de puissance, il devient

nécessaire de minimiser l'intervention humaine en créant un mécanisme d'enchaînement automatique des travaux sur la machine. C'est l'apparition des systèmes d'exploitation dits "Batch Processing", organisés autour d'un programme moniteur résidant en mémoire. Avec ce nouveau mode de fonctionnement l'exploitation de l'ordinateur est confiée à un opérateur non spécialiste en programmation qui utilise le matériel suivant un mode d'emploi précis.

Le programmeur ne manipule plus lui-même la machine, il doit déposer ses programmes dans un casier d'entrée, et il retrouve ses résultats dans un casier de sortie. Il travaille avec des langages d'assemblage ou de haut niveau; il accède aux unités périphériques à l'aide des programmes généraux du moniteur qui permettent d'utiliser de façon efficace les dispositifs d'entrée-sortie de plus en plus complexes (simultanéité entre les canaux et l'unité centrale).

Du côté machine, la mise en oeuvre d'un tel mode de fonctionnement entraîne l'apparition de notions nouvelles; il devient indispensable:

- d'empêcher le programme utilisateur de détruire le moniteur. Pour celà, le système emploie le mécanisme de protection mémoire.
- de permettre au moniteur, grâce au mécanisme

d'interruptions, de reprendre le contrôle en cas d'incidents de fonctionnement du travail en cours.

Le moniteur abandonne alors ce travail et initialise le travail suivant.

- d'arrêter automatiquement un travail au bout d'un temps déterminé, à l'aide d'une horloge interne. On résout ainsi le problème posé par un programme qui "tourne en rond".

Les perfectionnements ultérieurs des systèmes "Batch Processing" n'amènent guère de changements dans la façon de travailler des utilisateurs, si ce n'est une plus grande souplesse d'emploi au prix d'une plus grande complexité des langages de commandes. Cependant des techniques nouvelles, en particulier la multiprogrammation, ont considérablement amélioré le rendement global des installations; en contrepartie elles ont généralement donné naissance à des systèmes extrêmement complexes.

Actuellement l'utilisateur d'un système "Batch Processing" bénéficie d'un large éventail de possibilités nouvelles. Par contre, il a perdu tout moyen d'interaction directe avec son programme.

Pour rétablir cette interaction, des sytèmes d'un type nouveau ont été développés ces dernières années et

répondent à des besoins spécifiques ou à des besoins plus généraux. Ces systèmes donnent à chaque utilisateur la possibilité de rester en liaison directe avec son programme.

Pour ce faire, on a imaginé de remplacer les organes traditionnels d'entrée-sortie (lecteurs de cartes et imprimantes) par des machines à écrire connectées à l'ordinateur par ligne téléphonique, et, compte tenu de la lenteur relative des réactions humaines par rapport à la vitesse interne des machines, d'affecter successivement l'unité centrale, par tranches de temps, à chaque utilisateur, donnant ainsi à celui-ci l'impression de disposer de toute la machine.

Alors que les systèmes orientés vers des applications particulières ont, en général, donné satisfaction, les systèmes polyvalents sont devenus lourds et compliqués et n'ont pas eu les performances escomptées. Ces essais ont cependant permis de dégager certaines idées fondamentales, telles que le temps partagé, la mémoire virtuelle, les composants conversationnels. Par la suite, des systèmes moins ambitieux, donc plus simples, ont vu le jour et leurs performances sont acceptables.

Actuellement les systèmes en temps partagé offrent de

grandes facilités à leurs utilisateurs; ils imposent cependant, de par leur conception, des liens étroits entre programmes et système. En particulier, ils ne donnent accès aux possibilités de la machine que par le biais de leurs conventions; ceci exclut de les utiliser pour mettre au point de nouveaux systèmes, pouvant fonctionner sans modifications sur la même machine.

Une approche originale de ce problème a été définie et réalisée en 1967 par le Centre Scientifique IBM de Cambridge (Massachussets - U.S.A.) qui a développé le système CP/67.

INTRODUCTION AU SYSTEME CP-67.

programme de contrôle CP-67, actif sur calculateur IBM-360/67, est un générateur de machines virtuelles, dans un contexte de temps partagé et multiprogrammation. Il transforme le calculateur réel sur lequel il est actif en plusieurs machines virtuelles indépendantes les unes des autres. Celles-ci diffèrent entre elles par leurs caractéristiques (taille mémoire, unités d'entrée-sortie, etc...); elles sont toutefois la réplique de machines pouvant réellement exister. De façon plus formelle appelons élément virtuel la simulation "software" de son équivalent physique (unité centrale, mémoire, unités d'entrées-sorties); par définition, une machine virtuelle est un ensemble d'éléments virtuels qui constituent sa configuration.

Un aspect fondamental du principe des machines virtuelles est le suivant: tout programme autonome écrit sur une machine virtuelle, de configuration donnée, peut aussi fonctionner sans modification sur une machine réelle de même configuration. D'une façon générale, CP-67 tel qu'il est actuellement, réalise correctement sa tâche de simulation de

machines réelles. Il suffit pour s'en convaincre d'examiner la diversité des systèmes qui ont pu être activés sur une machine virtuelle: TSS360, MTS, OS (PCP, MFT, MVT) DOS, APL, CMS, etc... et CP-67 lui-même.

On peut remarquer cependant que certaines limitations, dues au principe même du temps partagé, font que la plupart des applications "temps réel" ne peuvent être réalisées de façon satisfaisante.

Lorsqu'un utilisateur, par l'intermédiaire d'un terminal connecté au 360/67, se fait reconnaître de CP grâce au nom et au mot de passe de sa machine virtuelle, CP construit la configuration virtuelle correspondante. Pour accéder à sa machine virtuelle, l'utilisateur dispose alors de ce terminal sur lequel CP simule fonctionnellement le pupitre d'un 360 réel. Par exemple, grâce à la fonction IPL de CP, on peut simuler le bouton LOAD du pupitre et initialiser ainsi le système de son choix. D'autre part ce même terminal représente pour la machine virtuelle la console maîtresse d'un 360 réel, console qui est en général utilisée par les systèmes comme console opérateur et, qui, rappelons-le, est une unité d'entrée-sortie comme les autres.