
ISi
61+

TOWAROS THE SUPPORT OF INTEGRATEO

VIEWS OF MULTPLE OATABASES AN

AGGREGATE SCHEMA FACILITY

SWARTWOUT OONALD

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

TOWARDS THE SUPPORT OF INTEGRATEO VIEWS OF MULTIPLE DATA BAS
AN AGGREGATE SCHEMA FACILITY

Donald Swartwout
James P. Fry

Database Systems Research Group
The University of Michigan, Ann Arbor, Michigan

ABSTRACT: Supporting multiple user views of data bases is currently an important problem area
in database management system development. An interesting facet of this problem arises whenever
a user needs an integrated view of several distinct databases. Using traditional database
concepts, an aggregate schema facility has been developed to address this problem. The
basic functions of an 8ggregate schema facility are discussed, as well as their implementation
1 n a COOASYL/DBTG-l i ke envi ronment. rnterest in an aggregate SC.lema facil ity grew out of a
problem in restructuring large databases. The application of this facility to restructuring
is discussed, as well as potential applications to dynamic translation and distributed
databases.

KEYWOROS AND PHRASES; Oatabase integration, aggregate schema, database management systems,
data definition languages, data base restructuring, data translation, dynamic translation,
distributed databases.

1.0 INTRODUCTION

Today we find numerous databases implemented
under various accessing schemes being utilized by
many diverse users. With the installation of
more and more database management systems. the
trend has been toward databases which are
larger (in terms of volume), more complex (in
terms of 1nterrelat1cnshjps among records). and
L~~~ by il broader spect~um of users, To ~~~~ce
thts complexity, and te sorne degree 1mprove
security. the data base administrator often pro­
vides a subset of the database for the user to
process. In COOASYL terms, th1s would be a
subschema. whereas in IMS terminology lt ls
called a PSB (Program Specification Block) or
in ANSI/SPARC vocabulary, an External Schema.
Independent fram the 10g;ca1 subsetting capa­
bilities DBMS a1so provlde features to enhance
database access--CODASYL provides AREA/REALM
and indexfng mechanisms and IMS provides several
access methods--physical databases, secondary
dataset groups, and indexing. The problem 1s
that in either case, there is no facility for
the direct connection of a user view with an
"optimized" access method.

Whi1e this genera1 problem of supporting
multiple user "windows" is encountered whenever
data is shared by a diverse user community, it
has appeared in restricted form in the restruc­
turing of large databases. Ouring the develop­
ment of the Michigan Data Translator (MOT) we
found that while sorne restructuring transforma­
tions substant1ally alter a database. many affect
only a few record and set types. In such cases.
only a small portion of the total data actua11y

132 .

requires processing, whi1e the remainder need
only be copied from the original to the trans-
1ated database.

Our efforts to exploit this fact soon led to
a situation which sometimes required one of the
MDT's major modules to process two distinct
dat ... Jû,5es as i: they \'Iere a single d~tabase.
To facilitate thfs unusual processing. the
Aggregate Schema Faci11ty was developed. It
allows the user (in this case a translator module)
to view and to access two distinct, but possibly
1nterrelated network databases at the same time,
as if they were a single database.

More generally. an aggregate schema faci11ty
1s any set of data definit10n and manipulation
capab111t1es whfch permit the processtng of
severa1 physically and schematica11y distinct,
passibly interrelated databases as if they were
a single database. This single database is
referred ta as an aggregate schema database; its
schema is an aggregate schema. The physica1ly
existing databases are referred to aS underlying
or component databases; their schemas as und er­
ly1ng or component schemas. An aggregate schema
faci1ity can represent a considerable relief for
a user whose processing requires substantia1
interfacing of several databases. The user 1s no
longer responsib1e for keeping track of the
current database, selecting the database in
wh1ch relevant data res1des, account1ng for
nam1ng discrepancies among the databases, etc.
In fact, in the MOT 1mp1ementation. the module
which uses the aggregate schema facility 1s

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

_.--\

s st?· \~7g J
- lOUE

,('!

unaware of the number of underlying databases 1 Therefore, an aggre~ sch a fac1l1ty must pro.
1s processing. vide a mechanis~-1o~ s ating references to

8 rè' e-scffema names into references to the
While similar at the the conceptual level tOL_-~ppropriate underlying schema names.

the IMS logical database concept where several
physical hierarchical databases can be integrated The implementation details for such a
into a complex logical structure, the aggregate facility are not very complex, and are determined
schema facility differs in the following way. An largely by the time at which the binding of aggre-
IMS user may only process/access (in his PSB) a gate schema names to underlying schema names is
hierarchical subset of the logical database, performed. Choices for this binding time are at
although the logical database may in fact be a aggregate schema DOL compile time, aggregate
network. The ASF permits full access to the database application time, or at each OML call.
underlying databases. The aggregate schema The latter is unlikely to be advantageous unless
approach also bears slmilarity to the COOASYl- applications are expected to lssue relatlvely
OBTG SChema/Subschema facility. While this few DMl calls which accomplish large amounts of
facllity is a true subsetting capability. perhaps data transfer. The first two options differ in
t~e best way to view the aggregate schema facility one important respect: binding at DOL compile
is a "supersetting capability". An aggregate requires recompiling the aggregate schema DOL
schema data base is an aggregation of subsets of whenever a recompile of one of the underlYing
databases. Objects (records, items. sets) in an database DOLs occurs. but binding at run time
aggregate network database correspond more or less does not. In the ASF. binding occurs at DOL
directly with objects in the underlying databases. compile, since the underlying schemas were ex-
An aggregate schema facility is by no means as pected to be stable enough that the increased
general as an ANSI/SPARC External/Internal Schema flexibility of later binding would not outweigh
interface, but 1s a step in this direction. the increased cost,

This paper descrlbes the functions of aggre­
gate schema facilities, and seme of the imple­
mentation problems they present. The ASF ls Used
as an example throughout. Section Z discusses
the basic tasks of an aggregate schema faci11ty.
and Section 3 describes the implementation of the
ASF. The application of ASF to the restructuring
of large databases is described in Section 4,

Finally. a somewhat less obvious form of
name-mapping is necessary. Each OBTG record
instance has a name, known as its database key.
Database keys generally do not contain infor­
mation identifying the database in which the
record instance resides. As a result, if the
aggregate schema system permits the user access
to database keys, some sort of database identi·
fication must be appended to underlying database and Section 5 concludes by discussing some

additional applications.

2.0 BASIC TASKS OF AN AGGREGATE SCHEMA FACIlITY

keys, when they are pas sed to the user. Con- :.; ,)-,_ ,.~:J 1

versely, a data base key received from the user .. '.> .,., ~
must be decoded into an identifier for an und ~~~
lying database and a database key for a reco " •

In order to achieve functional equi-valence
between an aggregate schema database and its set
of underlylng databases. four basic tasks must
be performed: i) mapping of aggregate schema
names to underlying databases, ii) maintenance.
of inter·database connections, iil) maintenance
of currency for the aggregate database. and iv)
protecting the consistency of the aggregate
databases. OBTG terminology will be used in
the discussion, but analogous tasks exist for
other classes of databases. Also, we discuss
exclusively aggregate schema facilities built
"on top of" an existing OBMS; that is, those
~hich do not alter the existing OBMS functions or
implementation. At run time, they act approxi­
lately as dispatchers translating the aggregate
chema operations into DMl call s for the .
ppropriate underlying database. The more com­
licated problem of incorporating aggregate
chema capabilitles into existing OBMS functions
; not considered here. Finally. implementation
:rategies used in the Aggregate Schema Facility
\SF) will be identified.

1 Name Mappi n,9

Many aggregate schema names differ fram the
nes of the corresponding underlying schema
lstructs. In fact, if a particular name is
!d for different objects in two or more of the
\erlying databases. only one of them can use

comman name as its aggregate schema name.

133

residing in that database. U ~
2.2 Inter-database Connections \ '. ""+;!'. -'"

Name mapping 15 tilE: only major task required~.5;
of an aggregate schema facility which does not
recognize connections among underlying databases.
However, among data bases which are reasonable
candidates for aggregation. there are likely to
exist implicit and/or explicit inter-database
relationships, In the environment which led to
the development of the ASF, such relationships
were a necessary feature of the underlying
databases (see Section 4). In OBTG environments.
inter-database relationships take two natural
forms. In the first fonn, the owner of a set
resides in one of the underlying databases, and
its member record types in another. In the
second form. data items which the aggregate
schema user views as the items of a single
record type are divided among record types in
different underlying databases. Such a record
type in an aggregate schema is referred to as a
"split" record type and the underlying record
types are its "components", In the same spirit,
we will refer to a divided set as a ·split set".

At the heart of both forms is the necessity
for information contained in a record instance in
one of the underlying databases to identify a
record instance in one of the other underlylng
databases. Record instances can be identified

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

