TOWARDS THE SUPPORT OF INTEGRATED

VIEWS OF MULTPLE DATABASES AN

AGGREGATE SCHEMA FACILITY
SWARTWOUT DONALD

BIBLIOTHEQUE DU CERIST

ST
674



BIBLIOTHEQUE DU CERIST

MAE. t—:-owc.;

Tume 423

TOWARDS THE SUPPORT OF INTEGRATED VIEWS OF MULTIPLE DATABAS
AN AGGREGATE SCHEMA FACILITY

Donald Swartwout
James P. Fry
Database Systems Research Group
The University of Michigan, Ann Arbor, Michigan

ABSTRACT: Supporting multiple user views of databases is currently an important problem area

in database management system development. An interesting facet of this preblem arises whenever
a user needs an integrated view of several distinct databases. Using traditional database
concepts, an aggregate schema facility has been developed to address this problem. The

basic functions of an aggregate schema facility are discussed, as well as their implementation
in a CODASYL/DBTG-like environment. Interest in an aggregate scaema facility grew out of a
problem in restructuring large databases. The application of this facility to restructuring
Zs d;scussed, as well as potential applications to dynamic translation and distributed

atabases.

KEYWORDS AND PHRASES: Database integration, aggregate schema, database management systems,

data definition languages, database restructuring, data translation, dynamic translation,
distributed databases.

1.0 INTRODUCTION

Today we find numerous databases implemented requires processing, while the remainder need
under various accessing schemes being utilized by only be copied from the original to the trans-
many diverse users. With the installation of lated database,
more and more database management systems, the -~
trend has been toward databases which are OQur efforts to exploit this fact scon led to
Jarger (in terms of volume), more complex (in a situation which sometimes required one of the
terms of interrelationships among records). and MDT's major modules to process two distinct
.sed by a broader specirum of users, To reduce dat.oases as 1. they were a single datadase,
thts complexity, and to some degree improve To facilitate this unusual processing, the
security, the database administrator often pro- Aggregate Schema Facility was developed. It
vides a subset of the database for the user to allows the user (in this case a translator module)
process. In CODASYL terms, this would be a to view and to access two distinct, but possibly
subschema, whereas in IMS terminology it is interrelated network databases at the same time,
called a PSB (Program Specification Block) or as if they were a single database,
in ANSI/SPARC vocabulary, an External Schema.

Independent from the logical subsetting capa- More generally, an aggregate schema facility

bilities DBMS also provide features to enhance ts any set of data definition and manipulation

database access--CODASYL provides AREA/REALM capabilities which permit the processing of

and indexing mechanisms and IMS provides several several physically and schematically distinct,

access methods~-physical databases, secondary possibly interrelated databases as if they were

dataset groups, and indexing. The problem is a single database. This single database is

that in efther case, there is no facility for referred to as an aggregate schema database; its

the direct connection of a user view with an schema is an aggregate schema, The physically

“optimized" access method. existing databases are referred to as underlying
or component databases; their schemas as under- .

While this general problem of supporting 1ying or component schemas. An aggregate schema
multiple user “"windows" is encountered whenever facility can represent a considerable relief for
data is shared by a diverse user community, it 2 user whose processing requires substantial
has appeared in restricted form in the restruc- interfacing of several databases. The user is no
turing of large databases. During the develop- longer responsible for keeping track of the
ment of the Michigan Data Translator (MOT) we current database, selecting the database in
found that while some restructuring transforma- which relevant data resides, accounting for
tions substantially alter a database, many affect naming discrepancies among the databases, etc.
only a few record and set types. In such cases, In fact, in the MDT implementation, the module
only a small portion of the total data actually which uses the aggregate schema facility {s

132 . .



unaware of the number of underlying databases 1
is processing.

while similar at the the conceptual level t
the IMS logical database concept where several
physical hierarchical databases can be integrated
into a complex logical structure, the aggregate
schema facility differs in the following way. An
IMS user may only process/access {in his PSB) a
hierarchical subset of the logical database,
although the logical database may in fact be a
network. The ASF permits full access to the
underlying databases. The aggregate schema
approach also bears similarity to the CODASYL-
DBTG Schema/Subschema facility., While this
facility is a true subsetting capability, perhaps
the best way to view the aggregate schema facility
is a "sypersetting capability". An aggregate
schema database is an aggregation of subsets of
databases. Objects (records, items, sets) in an
aggregate network database correspond more or less
&ivectly with objects in the underlying databases.
Armraggregate schema facility is by no means as
@dheral as an ANSI/SPARC External/Internal Schema
igterface, but 15 a step in this direction.

This paper destribes the functions of aggre-
gate schema facilities, and some of the imple-
mentation problems they present, The ASF is used
as_an example throughout, Section 2 discusses
the basic tasks of an aggregate schema facility,
#7iY) Section 3 describes the implementation of the
ASF. The application of ASF to the restructuring
of large databases is described in Section 4,
and Section 5 concludes by discussing some
hdditional applications.

2<0 BASIC TASKS OF AN AGGREGATE SCHEMA FACILITY

In order to achieve functional equivalence
between an aggregate schema database and its set
67 underlying databases, four basic tasks must
fe performed: i) mapping of aggregate schema
hames to underlying databases, i1} maintenance
3f )inter-database connections, 1i1) maintenance
e¥-currency for the aggregate database, and iv)
prdtecting the consistency of the aggregate
gwiabases. DBTG terminology will be used in
Ine discussion, but analogous tasks exist for
gther classes of databases. Also, we discuss
exclusively aggregate schema facilities built
“on top of" an existing DBMS; that is, those
shich do not alter the existing DBMS functions or
implementation. At run time, they act approxi-
wately as dispatchers translating the aggregate
chema operations into OML calls for the '
ppropriate underlying database. The more com-

licated problem of incorporating aggregate
thema capabilities into existing DBMS functions
s not considered here. Finally, implementation
:rategies used in the Aggregate Schema Facility
\SF) will be identified.

1 MName Mapping

Many aggregate schema names differ from the
nes of the corresponding underlying schema
istructs, In fact, if a particular name is
d for different objects in two or more of the
lerlying databases, only cne of them can use

common name as fts aggregate schema name.

133

?%P w79 |
\/ \ B )“g. "‘-‘\QUE

C(_h"l.

- A"\

o

(S

Therefere, an aggregate schdma facility must pro-
vidgég mechanism _far Siating references to

B e-schiema names into references to the

propriate underlying schema names.

The implementation details for such a
facility are not very complex, and are determined
largely by the time at which the binding of aggre-
gate schema names to underlying schema names is
performed. Choices for this binding time are at
aggregate schema DDL compile time, aggregate
database application time, or at each DML call.
The latter is unlikely to be advantagesous unless
applications are expected to issue relatively
few DML calls which accomplish large amounts of
data transfer. The first two options differ in
one important respect: binding at DDL compile
requires recompiling the aggregate schema DDL
whenever a recompile of one of the underlying
database DDLs occurs, but binding at run time
does not. In the ASF, binding occurs at DDL
compile, since the underlying schemas were ex-
pected to be stable enough that the increased
flexibility of later binding would not outweigh
the increased cost.

Finally, a somewhat less obvious form of
name-mapping is necessary. Each DBTG record
instance has a name, known as its database key.
Database keys generally do not contain infor-
mation identifying the database in which the
record instance resides. As a result, if the
aggregate schema system permits the user access
to database keys, some sort of database identi-
fication must be appended to underlying database
keys, when they are passed to the user, Con-
versely, a database key received from the user/
must be decoded into an identifier for an undér-x”
lying database and a database key for a recond. ¢
residing in that database. 5%

2.2 Inter-database Connections

o ¥

Name mapping is the only major task requfrea\\\-«3
of an aggregate schema facility which does not
recognize connections among underlying databases.
However, among databases which are reasonable
candidates for aggregation, there are likely to
exist implicit and/or explicit inter-database
relationships. In the environment which led to
the development of the ASF, such relationships
were a necessary feature of the underlying
databases {see Section 4). In DBTG environments,
inter-database relationships take two natural
forms. In the first form, the owner of a set
resides in one of the underlying databases, and
its member record types in another. In the
second form, data ftems which the aggregate
schema user views as the items of a single
record type are divided among record types in
different underlying databases. Such a record
type in an aggregate schema is referred to as a
"split" record type and the underlying record
types are its "components". In the same spirit,
we will refer to a divided set as a "split set.

At the heart of both forms is the necessity
for information contained in a record instance in
one of the underlying databases to identify a
record instance in one of the other underlying
databases. Record instances can be identified





