
PROCEEDINGS OF THE
___________________ SYMPOSIUM ON

COMPUTER SOFTWARE
ENGINEERING

New York, N. Y., April 20-22, 1976

Microwave Research Institute Symposia Series ,',
JEROME FOX, Editor

Volume XXIV

POLYTECHNIC PRESS
OF THE

POLYTECHNIC INSTITUTE OF NEW YORK, BROOKLYN, N.L

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

- 1 <

COMPUTER
SOFTWARE

ENGINEERING

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

POL YTECHNIC INSTITUTE OF NEW YORK

MICAOWAVE AESEAACH INSTITUTE

SYMPOSIA SERIES

Modem Network Synthesis

II Nonlinear Circuit Analysis

III Infonnation Networks

IV Modem Advances in Microwave Techniques

V Modern Network Synthesis II

VI Nonlinear Circuit Analysis II

VII The Role of Solid State Phenomena in
Electric Circuits

VIII Electronlc Waveguides

IX Millimeter Waves

X Active Networks and Feedback Systems

XI E1ectromagnetics and Fluid Dynamics of
Gaseous Plasma

XII Mathematical Theory of Aulomata

XIII Optical Masers

XIV Quasi-Optics

XV System Theory

XVI Generalized Networks

XVII Modem Optics

XVIII Turbulence of Fluids and Plasmas

XIX Computer Processing in Communications

XX SubmilUmeter Waves

XXI Computers and AutomatB

XXII Computer-Communications Networks and
Teletramc

XXIII Optical and Acoustical Micro·Electronics

XXIV Computer Software Engineering

April 1952

April 1953

April 1954

November 1954

April 1955

April 1956

April 1957

April 1958

March-Aprill959

April 1960

April 1961

April 1962

April 1963

June 1964

April 1965

April 1966

March 1967

April 1968

April 1969

March-April1970

April 1971

April 1972

April 1974

April 1976

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Organized bv

The Polytechnic Institute of New York
Microwave Research Institute

With the participation of
The Institute of Electrical and Electronics Engineer.

Computer Society
Professional Group on Reliability

The Association for Computing Machinery

Cb-Sponsored by
The Air Force Office of Seientifie Research
The Office of Naval Research
The U.S. Army Research Office

Arrangements for this Symposium were supported
in part under the Joint Services Electronics Program
at the Polytechnie by the Air Force Office of Seientific
Rescarch under Grant Number AFOSR·75·289Il

DfSTRIBUTORS. HAlSTED PRESS, A DIVISION OF
JOHN WllEY & SONS, INe. NEW YORK/LONDON/SYDNEY /TORONTO

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

© Copyright 1976 by the
Polytechnic Press

of the
Polytechnic Institute of New York

Edited by
Jerome Fox

Associate Editor
Mark Howard Schlarn

Assistant Eliitor
Walter O. Peter

None of the papers contained in these Proceedings
may be reproduced in whole or in part, except for
the customary brier abstract, without permission
of the author and the publisher and with due credit
to the Symposium.

Library of Congress Cata/og Card Number 76-26332

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

TABLE OF CONTENTS

FOREWORD•..................•... ,., ... , ..•...... ',.... ix

COMMITTEE • • . xv

THE EVEREST OF SOFTWARE
L. M. Branscomb•......•.•......• , . . . • . . • xvii

KEYNOTE: SOFTWARE MANAGEMENT
J. S. Gansler

MODERN SOFTWARE DESIGN TECHNIQUES
R. E. Fairley , , . II

SOFTWARE DESIGN REPRESENTATION SCHEMES
L. J. Peters and L. L. Tripp . 31

A MODULAR APPROACH TO THE STRUCTURED DESIGN OF
OPERATING SYSTEMS

S. Krakowiak, M. Lucas, J. Montuelle, and J. Mossiere . 57

ISDOS AND RECENT EXTENSIONS
D. Teicl1roew. 75

SPECIFICATION VERIFICATION A KEY TO IMPROVING
SOFTWARE RELIABILITY

P. C. Belford and D. S. Taylor. 83

R-NETS: A GRAPH MODEL FOR REAL·TIME SOFTWARE
REQUIREMENTS

M. W. Alford and 1. F. Burns.. 97

A FLOW-ORIENTED REQUIREMENTS STATEMENT LANGUAGE
T. E. Ben and D. C. Bixler•.......•...... _ 109

REQUIREMENTS DERIVATION IN AUTOMATIC PROGRAMMING
W. A. Martin and M. Bosyj•........................•...•.... 123

A SOFTWARE PHYSICS ANAL ysrs OF AKlY AMA'S DEBUGGING DATA
Y. Funami and M. H. Halstead•...........•....... 133

PROGRAM STRUCTURES, COMPLEXITY AND ERROR CHARACTERISTICS
T. F. Green, N. F. Schneidewind, G. T. Howard, and R. J. Pariseau 139

EFFECT OF MANPOWER DEPLOYMENT AND BUG GENERATION ON
SOFTWARE ERROR MODELS

M. L. Shooman and S. Natarajan. . . .• . • . .. 155

AN EXPERIMENT IN AUTOMATIC QUALITY EVALUATION OF SOFTWARE
S. J. AInster, E. J. Davis, B. N. Dickman, and J. P. Kuoni 171

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

vi TABLE OF CONTENTS

A MEASURE TO SUPPORT CALIBRATION AND BALANCING OF THE
EFFECTIVENESS OF SOFTWARE ENGINEERING TOOLS AND
TECHNIQUES

R. W. Curry , , .. , , 199

COST OF MODULARITY
J. W. Camp and E. P. Jensen ,...... 215

FORMAL PROBLEM SPECIFICATIONS FOR READERS AND WRITERS
SCHEDULING

I. Greif ... ' 225

AXIOMS FOR STRUCTURAL INDUCTION ON PROGRAMS CONTAINING
BLOCKEXITS

R. B. Kieburtz and J. C. Cherniavsky ... , , .. 239

SPECIFICATIONS, REFINEMENT, AND PROOF OF A MACROPROCESSOR
L. Yelowitz , , .. , ... ,

A PROGRAM VERIFIER WITH ASSERTIONS IN TERMS OF ABSTRACT
DATA

251

V. Schorre , ' . , .. 267

A SEMI·MARKOV MODEL FOR SOFTWARE RELIABIUTY WITH
FAILURE COSTS

B. Littlewood ' 281

DECOMPILATION AND THE TRANSFER OF ASSEMBLY· CODED
MINICOMPUTER SYSTEMS PROGRAMS

F. L. Friedman , 301

SPTRAN: A FORTRAN·COMPATIBLE STRUCTURED PROGRAMMING
LANGUAGECONVERTER

I. B. Elliott ... , . .. 331

FORMALIZING THE SPECIFICATION OF TARGET MACHINES FOR
COMPILER ADAPTABILITY ENHANCEMENT

C. V. Ramamoorthy and P. Jahanian. .. 353

DATA TYPES AND PROGRAMMING RELIABILITY: SOME PRELIMINARY
EVIDENCE

J. D. Gannon " .. " .. , ... , .. ", ,..... 367

FAULT·TOLERANT SOFTWARE: MOTIVATION ANDCAPABILITIES
H. Hecht , , ' ' , , . , .. , .. , 377

FAULT·TOLERANT SOFTWARE FOR A DUAL PROCESSOR WITH MONITOR
J. N, Johnson and J, L, Shaw

EMULATION OF AN AEROSPACE COMPUTER ON A
MICROPROGRAMMABLE MACHINE

395

RCarney ... , ... , , .. ,.,." , ... , ,., .. '",' ... , 409

AUTOMATING MULTIPLE PROGRAM REALIZATIONS
J. Boyle and M. Matz .. "" " " ' .. ,. 421

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

TABLE OF CONTENTS vii

EXPERIENCE WITH AN ALGOL 68 NUMERICAL ALGORITHMS TESTBED
M. A. Hennell, D. HedIey, and M. R. Woodward. .. 457

TESTER{I: AN ABSTRACT MODEL FOR THE AUTOMA TIC SYNTHESIS OF
PROGRAM TEST CASE SPECIFICATIONS

R. J. Peterson .. 465

PROPOSED MEASURES FOR THE EVALUATION OF SOFTWARE
S. N. Mohanty and M. Adamowicz • . . . • 485

AN EXPLORA TORY EXPERIMENT WITH "FOREIGN" DEBUGGING OF
PROGRAMS

J. D. Musa.. 499

A COMPREHENSIVE SOFTWARE DESIGN TECHNIQUE
D. Davidson and C. Jones 513

SOFTWARE EFFECTIVENESS: A RELIABILITY GROWTH APPROACH
R. A. Pikul and R. T. Wojcik.. 531

SIMON: A PROJECT MANAGEMENT SYSTEM FOR SOFTWARE
DEVELOPMENT

R. J. Fleischer and R. W. Spitler 547

AN APPLICATION OF TOP·DOWN PROGRAMMING
J. P. Schaenzer•............................. 561

INDEX TO CONTRIBUTORS 581

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

FOREWORD

WELCOMING ADDRESS

Dr. George Bugliarello
President. POlytechnic Institute of New York

1 am here ta extend the warmest greetings of Polytechnic and the hope that this
symposium-the twenty.fourth in the series sponsored by MRI -will be a successful and
rewarding one.

On behalf of Polyteehnic, 1 should like ta express ta .11 of you our thaoks for yom
being willing ta meet in this embattled eity of New York. We can give you reasonable
assurances that it will not sink under your feet in these three days-but should it siok,
pleose remember-women and children ftrst!

We are delighted at the mas! distinguished group of speakers and participants that the
symposium has gathered, 1 know that 1 am expressing the gratitude, not only of
Polytechruc, but of ail of you, in thanking for their sponsorship the Joint Services
Technical Advisory Committee, the Institute of Electrical and Electronics Engineers, and
the Association for Computer Machinery, But above ail our thanks go to Professor
Oliner, Professor Shooman, Jerry Fox, and the other members of the Program
Committee.

We hope that for sorne of you il may be possible, during or afler the symposium, to
take a closer look at what we are doing at Polytechnic, both in Brooklyn and
Farmingdale. In general, the two years that have elapsed from the last MRI symposium
have been a period of immense progress at Polytechnic. Ta give you just two figures, our
freshman enrollment has increased by over 130%-to a considerable extent because of the
opening of undergraduate programs at our Farmingdale Campus-and our researeh awards
per faculty member have increased by some 40%. We have also opened graduate
programs in Westchester-including programs in computer science.

Again, thank you very much for coming, and welcome.

GREETINGS FROM THE CO-SPONSORING AGENCIES

l t. Col. Donald R. lasher
Commander and Dlrector, U,S. Army Communications/Automatic Data Processing Laboratory

Il is a distinct honor and pleasure for me to represent the Department of Defense in
this twenty-fourth annual symposium organized by the Mierowave Research Immute of
the Polyteehnic Institute of New York. It is a partieular pleasure for me to be here since
the subjeet of Computer Software Engineering is one in which 1 have special interest, and
1 feel il is a topic most !imely and appropriate for sueh a symposium. Therefore, on

ix

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

x FOREWORD

behalf of the Department of Defense, the Army, the Navy, and the Air Force, 1 wish 10
extend our best wishes for a very successful and profitable meeting.

ln reviewing the agenda, 1 was not only impressed with the breadth and depth of the
coverage, but also reminded of the long way we have come in software development and
engineering since 1 first wrote a computer program almost twenty years ago. In tho8O
days our Software Engineering was done by sitting at the operator's console and half·
stepping our way through the programs, most often done in the wee hours of the night.

High-order languages and compilers (for which wc are so indebted to the likes of Jean
Sammet and Captain Grace Hopper) wcre in their infancy; and design, verification, and
debug tools were essentially nonexistent Programming was considered an art, and
disciplines were also nonexistent. But it was fun!

Of course, computers wcre also much different then. The term nano8Ocond had not
even been coined, much less comprehended; and the equivalent of central processors that
then weighed tons can now be held in your hand! Even though 1 am pre80ntly in the
business of developing even smaller and faster technology, such progress still boggies my
mind.

Therein lies much of our current problem, which is that hardware technology has to a
large degree far outstripped Our abilities to use it efficiently. This assertion is supported
by several studies that show that where software u80d to be lOto 20% of total system
cost, lt ls now often 75 to 80%, with predictions that it will reach 95% by the 1980's!

1 reeognize that much of this relative hardware-to-software cost ratio ls due to the
dramatie increases in hardware "bang for the buck," and to the substantlal lncrease in the
complexity of our computer based systems and their software. Nevertheless, 11 ls fact
that the costs of software development and malntenance 1S burgeoning-at Jeast within the
Department of Defense, where our annual cost is measured in billions each year.

As Mf. Gansler will no doubt amplify in his address, the Department of Defense has
become 8Oriously coneemed about the sharply rlsing costs of computer software and the
importance of computer software ln the weapons systems needed to insure our national
security.

Our software problems in the Army are probably represent.tive of those that exist
throughout the DoD. For our part we have COme to reaUze that software too often is
expensive, late, unreliable, inflexible, and fails to meet the user's needs. This has been
especiaUy true in the tactical or weapons systems environment, where there is a need to
perform complex functions in so called rea/-lime situations. Add to this the complica
tion of concurrently developing and debugging the hardware and the executive and sup
port software (run-time executives, compilers, etc.) and you can begin to appreciate the
problem.

In sum, we haven'! done very weil in the past in developing or procuring software. Of
the many causative factors contributing to this situation two of the most important are:
(1) a lack of management understanding of and emphasis on the software development
process (after all hardware is easier to kick and touch); and (2) the absence of 0001
Industry accepted software development disciplines. The first we are doing something
about, the second we hope you will help us with.

In recognition of this situation several joint service efforts have culmlnated in a soon
to be published 000 Directive called 5000.XX. This directive, among other things,
requires the DoD components to "develop and implement a disciplined approach to the
management of software design, engineering, and programming." This directive also
requires that ail developments use a high-order language.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

fOREWORD

And 50 our work is cut out, we need to:

(1) Achieve effective high-Ievellanguage prograrnming for our time, space, and
weight-crltical systems

(2) DeveJop an effective generalized approach to real-time tactical executive
systems

xi

(3) Develop an approach to take advantage of existing and emerging commercial
hardware architectures and software, while also achieving an integrated
approach ta software development that will significantly reduce errors and life
cycle costs.

We are working on these, but we need help. Sa you can appreciate why we are very
interested in promoting symposia such as this one, which will, we hope, eventually Jead
to a software engineering discipline applicable to our software development efforts.

Thank. you and good luck.!

O •. Robe.t F. Cotellessa
Executive Vice President Institute of Electrlcal and Electronic$ Engineen

Mt. Chal.man, President Bugliarello, Mc. Gansler, distinguished participants, and
guests in this twenty-fourth Microwave Research Institute symposium, it is a unique
pleasure for me to represent IEEE in this introductory session. IEEE has enjoyed an
association with the MRI symposia beginning with the first one in 1952, and feels privi
leged to do so.

In view of IEEE's strong espousal of leadership in research and development, it is
appropriate ta .pplaud the support that the U.S. Arroy, N.vy, and Air Force research
offices have continued ta provide. Harold ZaIù, Arnold Shostak, and William Otting may
be remembered as the persans who represented these offices for the early symposia.

The Microwave Research Institute has demonstrated great prescience, first, in not
dedic.ting the symposia to a single subject area, and, second, in its choice of different
topies. Bach meeting is a gratifying surprise which, with the reputation for excellence
that has been achieved, attracts attention and attendance from ail parts of the world. 1
am sure that the Cocus that each symposium has given to a nascent area has intluenced
directions of research and development. Individual investigators have been stimulated to
develop new ideas and to perceive new objectives.

The topie of this symposium is no exception to the historically estabHshed charac
teristics of the series. Computer Software Engineering is viewed by many as a bridge
between the increasingly fuzzy boundaries of computer hardware and software. In th!s
contexl, it is appropriate that the two technical societies, IEEE and AC.\t, are joint par
ticipants in this meeting. For the IEEE, the Compuler Society and the Group on
Reliability represent the Institute. The content of the technical program itself provides
iusight as to the identification of the bridge.

1 cannot conclude without paying tribute ta Arthur A. Oliner and the works he has
wrought. Many here may not be aware that he was one of the first IEEE M!crowave

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

xii FOREWORD

Theoryand Techniques Society National Lecturers and set the high standard by which
that program has prospered; he has contributed in many other roles in IEEE as weil. He
and his colleagues at MRI are to be congratulated today on the excellent symposium that
has been arranged.

To ail participants, greetings and best wishes for realizing the opportunities that this
symposium offers.

Ms. Jean E. Sammet
Prerident, Association for Computh'lg Machinery

It has been true throughout the hlstory ofthe computer field that there have been a
number of fads, both in terminology and in concept This is not necessariJy bad; some
limes these fads tend to point up in a very concrete and usefu! way various concepts and
ideas which have becn around for many years, nlbeit sometimes under different headings.
Sorne years ago one of the fads was modular programming; today the fad terminology
includes automatic programming, struetured programming and of course the subject of
this symposium, namely Software Engineering. 1 am sure that almost every speaker will
provide his or her own definition of Software Engineering and therefore 1 am not going
to add to the confusion by trying to create stOl another definition. 1 will simply say that
in my view Software Engineering, as the term is being used today, is meant to encompass
all of the concepts, ideas, and techniques which improve the likelihood of getting pro
grams written on time, more cost effectively, reliably, and with more efficiency of both
personnel and machine time. That of course is a very large scope of aetivity and does not
Jeave out very mueh of anything!

1 am very stad to say that uging that terminology, in one way or another ACM has
been involved with Software Engineering almost since ACM's beginning in 1947, even
though the words have not becn used that frequently. Throughout its 29 year history
most of the empllasis and activity within ACM have been in the software area although
wc do have a number of members who are interesled in such topies as computer architec
ture and mieroprogramming. The concerns of ACM have traditionally ranged from the
very theoretieal-such as automata theory-to the far more practical, namely how docs
One get better programs. Il is certainly truc that more of ACM's publications have been
in the theoretical area than in the practicaJ, and this is to be expected sinee more of that
work is done at colleges and universities than in industry and furthermore the faully
people are often given ineentives for publication whereas the industrial people unfortu
nately are not.

Sinee ACM is a very large organizalion-and in fact the largest in the computer field
having over 32,000 members as of April 1976, it is natural that sorne type of subgrouping
is needed to allow people to concentra!e on specialized interests. The mechanism for
doing this within ACM is via our grass roots Special Intere.t Groups and Committees, of
which we have almost 30 ranging in membership size from a few hundred to over 5000
for the Special Interest Groups on Programming Languages and Operating Systems.
Directly related to the subject of this meeting, last year we formed a Special Interest
Committee On Software Engineering whlch is just beginning to get off the ground. Since
sorne of the issues within the field of Software Engineering specifically relate to docu
mentation 1 should point out that we have a separate (and somewhat older) Special

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

FOREWORD xiii

Interest Committee (SICDOC) just on that subject and it puts out an excellent newsletter.
(Our Special Interest Groups and Committees traditionally put out informai newsIetters
containing technicaI material as weil as news and notices. The first issue of the SICSOFT
newsletter is expected very soon.) Those of you who want more information can contact
ACM.

Let me say just a few words on SICSOFT activities that are under way. This Special
Interest Commit tee will be organizing technicaI sessions at the ACM annuaI conference in
Houston in November 1976; we have joined with the IEEE Computer Society and the
National Bureau of Standards in the Second International Conference on Software
Engineering to be held in San Francisco in October 1976; and there is a specifie ACM
conference on Language Design for Reliable Software which will be held in Raleigh,
North Carolina in March 1977.

1 want to urge ail of the attendees not to be entirely misJed by the terminology
Software Engineering. There are many cases in which material has been identified under
that label but rather incorrectly in my judgement; s!milady, there is quite a bit of activity
going on which is quite propedy within that framework but which uses other terms to
describe it. Hence when you look at conferences and papers and publications, it is
important to look below the title to see wha! the subject really is. As 1 looked at the
abstracts for this conference, they appeared to range from theoretical work to fairly
practical attempts to improve the quality of our software, which is after ail what wc are
ail interested in. On the other hand, sorne of the abstracts seem to deal with subjects
which have shown up at numerous other apparentty unrelated conferences, This just sup·
ports the contention [made at the beginning which is that the term Software Engineering
is being used for almost any work people wish to report on, ln that very broad frame
work, most of ACM's technical activities involve Software Engineering.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

POL YfECHNIC INSTITUTE OF NEW YORK

G. Bugliarello, President
J. J. Conti, Provost

IL J. Cresci, Associate Provost for Research

MRI SYMPOSWM COMMITTEE

General OIairman: A. A. Oliner, Director, MRJ
Executive Secretary: J. Fox, Assistant Director. MRI

MRI PROGRAM COMMITIE!!

M. L. Shooman, Chalmum

M. Adamowicz M. H. Halstead M. G. Mesecher
L. Belady H. Hecht J. D. Musa
B. W. Boehm A. E. Laemmel P. D. Patent
R. Flynn M. M. Lehman H. Ruston
S. Habib J. H. Manley J. R. Suttle

THE JOINT SERVICES TECHNICAL
ADVISORY COMMITIEE

OFFICE OF NA VAL RESEARCH
J. O. Dinunock, Chairman D. K. Ferry

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

J. W. Gregory, Member G. Il. Knausenberger

THE V.S. AR.\1Y RESEARCH OFFICE

H. K. Ziegler, Member H. Robl
J. E. Teti,ExecutiveSecretary

PARTICIPATING PROFESSIONAL SOCIETIES

THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS

J. K. DilIard,Presldent

ASSOCIATION FOR COMPUTING MACHINERY

J. E. Sammet, President

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

THE EVEREST OF SOFTWARE

Lewis M. Branscomb
Vice President and Chief Scientist, IBM Corporation, A,monk~ NY

Much has been written about the tremendous advances of computing over the past
rew dccades. ln fact, when we computerniks get together, we generaUy pat each other on
the back and teU ourselves how great we are. l, myself, am quite guilty of quoting
frequently the famous statement by John Pierce, who said: "Arter twenty-five years of
extraordinary progress, the computer industry is ready to enter its infancy."

Before 1 comment on this statement in detail, let me correct an historical inaccuracy.
It is not truc that computers have been with us for only Iwenty-five years. In fact, the
earliest recorded reference to computers was made by Jonathan Swift in bis "A Voyage
to Laputa," Chapter 5, where he describes a visit of Gulliver to the Academy of Laputa.
This passage de scribes a device invented by the Professor of Speculative Learning, which
can be described as nothing less than a computer. and, in fact, contains many of the
clements of SOrne computer science project, of our days.

The computer of Laputa was a "Frame" that contained " ... all the words of the;r
language in the;r several Moods, Tenses, and Declensions, but without any Order .. '."
These words Were cranked out by the Professor's pupils, and any strings of them thot
could compose a piece of 0 sentence were put oside. Thus the Professor expected to
create ua complete Body of all Arts and Sciences; which however might be still improved,
and much expedited, if the Publick would raise a Fund for making and employing five
hundred sueh Frames· . '." As you can see, this passage contains not only a fairly
technical discussion of a modem Monte Carlo text generation project, but, also, the usual
appeal for government support.

Let me now analyze the elements of a computing process. According to Harlan Mills,
a computing process is nothing more nor less than the operation of a multiprocessing
system. Even the simplest computing operation involves at Icast two processors: a
human being; and a computer. In order to make these two processors work together, we
need Iwo other elements: a users' language which interfaces with the human being; and a
software package which interfaces with the computer.

Let us now go over these four elements of a computing process and sec how weil
John Pierce', statement reflects reality; that is, how well we stand today with respect to
the development of these four clements, and where wc are going from here. Le!'s take
the human being flIst. 1 think it is fair to say that there is no reason for great concem for
the technologieal development of that element. It has been engineered for many centu
ries, and its manufacturing process has been perfected to a great exten!. 1 would be
perfectly willing to say more about this subject, but 1 understand it is outside the scope
of this meeting.

The users' manual is a puzzling subject to me. As near as 1 can make it, there are Iwo
kinds of people in this world, the writers of users' manuols and the readers of users'
manu ais. The two groups work on completely different planes of understanding. Every

Address presented at the banquet following the opening day of the symposium on
Computer Software Engineering, Po!ytechnic Institute of New York, April 20-22, 1976.

xvii

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

xviii FOREWORD

time 1 open a users' manual, 1 remember the following opening sentence in a book by
A. A. Blasov of Moscow University: "The purpose of the present course is the deepening
and deveJopment of difficulties undedying contemporary theory." Nevertheless, 1 feellhat
we are ooly a couple of mutations away from developing a breed of computer specialists
who can understand users' manuals, so J will not worry about this particular topie.

The third element of the process is the computer itself. There we have absoJutely
nothing to worry about. As everyone knows, the advances in computer hardware have
been 50 phenomenal that even the pioneers in the computing industry are amazed at how
far we have gone during the past twenty-five years. This Is, of course, exactly what John
Pierce meant by his famous statement. Progress in computer hardware, with respect to
cost, speed of computations, and decrease in size, is measured by several orders of magni
tude, and the most dramatie is the 40% compound annual rate of reduction in the unit
cost of memory and storage. This has permitted ail kinds of shortcomings in software
efficiency to be swept under the rug of expanding memory.

So now, let us take a look at the fourth element of the process, the software. There
we scem to be in trouble. We all know that a science of software has yet to be developed.
Software design is stilllargely an art, and you good people are the struggling practitioners
of this noble art. 1 know how difficuIt your struggle is, and 1 want to tell you that 1 am
very sympathetic with your problems. Of course, for me to display my sympathy with
your problems is very much like the practice of certain Greek pcasants of Iying in bed in
sympathy for their wives who are eonvalescing from childbirth.

But what is really wrong with the software process? One of the problems, of course,
is the increasing complexity of software, particularly systems programs. The size of sys
tems programs was measured in a few thousand instructions in the early days of COm
puting, but it is measured in millions of instructions today, in sorne cases. What is more,
wc secm to be unable to deveJop building blocks of software, analogous to the building
blocks that wc have developed for hardware. In fact, it is worse than that. It has been
5aid that every systems program is donc by an amateur. because everyone who has pre
parcd a systems program once doesn't want to do it ever again.

Everyone who has given any thought to the problem of software cornes to the conclu
sion that we must develop a design methodology for software. 1 wish 1 could have stood
before you today and given you a blueprint for the development of thi. design method
ology. 1 cannot give you that, but 1 can try 10 identify some principles that we lIlay use
in scaling this seemingly unreachable heighl, the Everest of software. Ficst of all, 1 think
we must do away with our sometimes excessive preoccupation with efficient use of the
hardware. This may sound like a self-serving slalement, in view of the nature of my
employment, bul it is not. 1 assure you Ihat 1 am speaking at this moment as a user of a
computer, and not as a seller of hardware. There must be a balanced consideration of
questions of efficiency.

Let me illustrate where effidency rnay sometimes lead you by reading a passage From
a book titled UA Random Waik ln Science," which con tains a report by an anonymous
author of a visit by a team of efficiency experts to the Royal Festival Hall:

"F or considerable periods the four oboe players had nothing to do. Their
numbers should be reduced, and the work spread more evenly over the whole
of the concert, thus eliminating peaks of activity. ,.. Ali the twelve first
violins were playing identical notes. This seems unnecessary multiplication.
The staff of this section should be drastically cut; if a large volume of sound is

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

FOREWORO

required, it could be obtained by means of electronic amplifiers .. ,. Much
effort was absorbed in the playing of demisemiquavers. This seems an excessive
refinement. It is recommended that all notes should be rounded up to the
nearest semiquaver. If this were done it would be possible to use trainees and
lower grade operatives more extensively There seems to be too much
repetition of sorne musical passages. Scores should be drastically pruned. No
use fui purpose is served by repeating on the horns a passage which has already
been handled by the strings. It is estimated that if all redundant passages were
eliminated the whole concert time of two hours could be reduced to twenty
minutes, and there would be no need for an interval."

xix

On a more serious vein, efficient use of hardware must be balanced against efficient use
of the programmers who write software. Sometimes, 1 feel that we have been conditioned
from the days when computers were very expensive tools that had to be extremely weil
utilized. This is a well·known economic principle, that is not oniy appropriate for the use
of computers. A piece of machinery must be utilized a lot better in India where its rela·
tive value with respect to human labor is much higher than it is in this country. The same
piece of machinery can be burned in this country in order to save a few man·hours which
are expensive.

1 think there is a certain lag in our awareness of the decreasing costs of hardware as a
percentage of the total cost of the computing process. If we look at any data, we come
to the conclusion that the relative cost of hardware, whlch started at something like 90%
of the total cost of computing in the early days of computing, is now weil below 50%,
and slated to be less than 10% by the middle 1980s. When the software cost becomes
nine times the hardware cost, simple arithmetic will tell you that you can afford to
double the cost of hardware if you can save anything more than one·ninth of your soft.
ware expenditures. Ifyou want a more sophisticated economic statement, it must be:
"The code efficiency must be at a level such that the cost for a marginal increase of
efficiency must be equal to the corresponding marginal decrease of hardware costs." 1
have a nagging suspicion that we are not running our computing business according to
thls principle today. The problem has its roots in the lack of a methodology for per
formance specification and evaluation-a way to put together the appropriate mix of
hardware and software to meet performance requirements.

1 have stated an economic principle in balancing software development costs against
hardware costs, but 1 am weil aware that even the best economic principle does not by
itself solve the software design problems. 1 have mentioned, earlier in my talk, the desire
to have modularity in software, which would permit building a large system out of build
ing blocks. But modularity implies stabilized interfaces. And the rate of evolution of
data processing technology-the shift from batch processing to time-sharing, and from
remote job entry to on-line interaction, plus networking and distributed processing,
makes this stabilization very difficult at this stage of the computing industry.

Undoubtedly, as our industry matures, sorne stabilization in software design inter
faces will be implemented, which will hopefully accomplish two things. First, it will
make the design of software more tractable. And, second, it will decrease the software
maintenance costs. This second objective is, of course, a very basic one. We ail know
that a major and increasing part of a data processing department's budget is spent in
maintaining its software system. Thus, a major portion of our software manpower is
spent in maintenance rather than development of software. In fact, if present trends were

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

xx FOREWORD

to continue, one could see the day when our development effort would grind down to a
l1alt because ail our software manpower would be used in maintenance of existing soft
ware_ A mathematical friend of mine proposed a nightmare scenario based on the
hypothesis that this point of zero development is not neeessarily a limiting one_ He
suggests that it is possible to have more than a hundred percent of the software manpower
devoted to software maintenance, together with a negative software development effort.
Astronomers would recognize this as the black hole of programming that follows the
collapse of a giant software effort whose energy has bumed out. Clearly, we must strive
to avoid such a disastrous fate. And we must also avoid falling victim to "Conway's
Law." For those of you who do not know, Conway is a Professor of Computer Science
who observed tha! "the organization of an operating system resembles the organization
chart of the group that created iL"

1 realize that ail my remarks are elaborations on the central theme that software
development is lagging behind hardware development, and we must correct the situation.
1 assure you that 1 didn't come here tonight just toRub It ln. Software development is
lagging because it is a much more diffieult job. If it is any consolation to you, there is an
analogy between the computer software versus hardware situation and the world picture.
If you look at where the world stands today, you see thot we have been extremely suc
eessful in managing our hard discipline of production, but not so good in developing
the soft disciplines of managing the output of our production capability.

Finally, let me explain why 1 selected the specifie title of my talk. The Everest of
software is not climbed without hazards. Bosses who are derisive about systems pro
gramming producitivity~which typically runs 16 instructions per programmer per week~
forget how often you are swept away by avalanches, how easily one gets out of breath,
and what it feels like to have someone cise climb up your back wearing crampons.

Harlan Mills, the eloquent advocate of top-down, structured programming, says the
way to climb the Everest is to work smarter, not harder. You don't start at the bottom
not even knowing whether there is a top; you start at the top and work your way down,
the work getting easier and easier.

Thus, the moral of my talk is to improve on the old adage "you climb the mountain
becBuse il is there." Instead, you must specify, design, and implement the mountain
yourselves-beginning with a specification of where you want to end up at the top. Then
you can tell the rock, snow, and iee faetories what you want them to build and how il
should fit togelher. And all around the botlom of the mountain, you can attach lush
valley s, bright rivers, and green forests, knowing that the people who enjoy them don't
need ta wony about avalanches and rock .lides-or even need to know what the mounlain
looks like under ils majestic sbrouds of cloud!.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

KEVNOTE: SOFTWARE MANAGEMENT

J. S. Gansler
Deputy As.ri.stsnt SecratlHY of Defense (Mst8fiel Acqui$itionJ,

The PlJnt8g()n~ Washingtan~ DC

The magnitude of software activity within the DoD i8 discussed from a cost and criticaUty point of
view. Problem aleas and their propagation through the tiCe cycle are examined bath with respect to
observable manifestations and underlying causes. An overview of current Department of Defense
actions to remove or diminish these problems is presented. The identified components of the solution
are! (1) organizatîonal focU with DoD and the MiUtary Departments; (2) poHey initiative; (3) practice
and procedure initiatives; and (4) technology initiatives blended together around the therne of jn~
creased discipline and ligor in the software design, developrnent~ implementation. test. operation~ and
maintenance activities. Each of these components is discussed, and a prognosis given for ultimate
success of the DoD Defense System Software Management program,

1. INTRODUCTION

Within the Department of Defense, we are presently spending over three billion
dollars per year on Defense System Software (excluding Automatic Data Processing). In
my opinion, we have been doing a poor job managing this increasingly important
resource, and further we have been doing tittle research and development on the ways
and means to improve it. Both of these shortcomings must change!

Today l'd Iike to discuss the problems, and their underlying causes which confront us
in this area, to summarize the corrective actions we are now taking, and finally to solicit
your help in carrying out the major new initiative wc are undertaking. Neither the prob.
lems nor the proposed solutions that 1 will discuss are new. They have been studied at
great lengths in technical meetings, and in industry for the last three years or more. The
new thing that 1 want to convey here today is the sense, at alllevels of DoD, of the need
to act decisively and to act now!

Over the past few years we have had a series of studies, each of which highlighted this
area of Defense System Software as one requiring change for reasons of cost and relia
bility. During the past year, we have put together (with much help from industry and the
university communities) a preliminary plan of action, that is my topic for today.

Let me begin by saying that the main thrust of my remarks will not be directed at the
traditional, general purpose Automatic Data Processing environment, the ADP corn
munit y has been in existence for several decades now and there does exist an adequate
organization and enough identifiable resources to attack these problems in an effective
way. Instead, 1 will concern myselfwith those issues which provide the incentives for,
and the barriees to good software engineering and management in the Defense System
acquisition process. Recognizing, however, the need for full consistency with the ADP

Keynote address presented at the Symposium on Computer Software Engineering,
Polytechnic Institute of New York, April 20-22, 1976.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

2 COMPUTER SOFTWARE ENGINEERING

community, close ties are, and must continue to be maintained to aSSUre maximum trans
ferabilily of ideas, tools, and techniques.

In general, we believe that because of their R&D nature, and close tie-in with other
components of Defense Systems, the software practices mos! applicable to embedded
computers are closely allied to those management practices which have been developed
for hardware acquisition. 1 will elaborale on this later, but ficst let us consider the scope
and the problems.

11_ COST PERSPECTIVE

Software is big business within the Department of Defense. The current annual
expenditure on Defense System software is now estimated in excess of threc billion
dollars; yet even this substantial SUffi is the tip of the iceberg. It inc1udes direct costs only
and represents a conservative estimate based on incomplete and nonuniform data. This
uncertainty, as a matter of fact, is indicative of a c1ear problem in itsetE. The distribution
of costs for a given year shows that 68% of the known costs is consumed in system devel
opme nt, while the remaining 32% of the known cost is c1assified as operation and main
tenance. As we move further into the "age of computers," more systems now in
development will transition to the operation/maintenance phase. This, cou pIed with high
system longevity, may ultirnately result in a five or ten to one ratio of operation/
maintenance cost to development cost when viewed over the totallife cycle (Le., similar
to the hardware ratio of Iife cycle to development costs).

III, MISSION CRITICALITY PERSPECTIVE

Over and above the cost picture, software is fmding its way onto the critical path of
more and more Defense Systems. Major Defense Systems currently exhibiting a cdUcal
software dependency number approximately IlS, with 50% of these in the Research &
Development phase and the remaining 50% in the Operations and Maintenance phase.

The functional applications of software within the DoD pervade aimost every pro
gram. Software applications can be found in diverse systems from the large World-Wide
Military Command and Control System and the B-l Strategie Bomber down 10 minia
turized avionics packages and such ancillary operational equipment as trainers, simula tors,
autornatic test equipment, and certain types of test ranges and test vehicles.

IV. NATURE OF THE PROBLEM

Severa! clearly observable manifestations such as excessive development and main
tenance costs; schedule slippages and delays; excessive errors or faults; and duplication

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

KE YNO TE: SOFTWARE MANAGEMENT 3

and lack of standardization have emerged from our "lessons leamed" base as char.cter
istic problems of most major Defense Systems acquisitions. These manifestations, of
course, are symptomatic of underlying problems which originate far earlier in the devel
opment cycle. These inc1ude: lack of early management visibility and discipline; lack of
Hfe cycle perspective; insufficient R&D; insufficient control over expenditures; lack of
standardization; lack of transferability; lack of hardware/software trade-offs; and the
treatment of software as data rather than a configuration item are sorne of the real
leverage points for relieving the cast and quality pressures underlying the observable
manifestations of the problem.

Over the next few days, you will be hearing many papers which deal with these basic
problems. Lets briefly explore sorne of the issues which are of particular relevance ta
this conference.

A. Inadequate Cost and Schedule Estimates

Studies by industry have concluded that Ihere are no simple universal rules for
casting software accuralely, and that to estimate il accuralely it is necessary ta under
stand the nature of the individual program and the individual routine within the program.
1 am sure that this will remain in the situation for sorne time ta come but we must begin
now ta take action ta reduce the amount of "individuality" in cost estimating. In this
regard, it must be said that we currently suffer from a poor historical cast data base. Not
only are wc unaware of what we in the DoD are spending on software in the development,
production and especially operation.1 and maintenance phases of Defense System's Iife;
but we are unSUfe of the proportions of dollars which wc should be spending. As it cur
rcntly stands we do not allow dollars or time for the likely problems and changes which
accur in each of these phases.

This situation is aggravated by the lack of common definitions, procedures, and
organization in planning and managing software development. While most approaches
may have merit, and sorne are excellent, it is not practical for Govemment review offi
cials to be well acquainted with all the approaches presented to them_ As a result, they
cannat deve\op broad applicable yardsticks-they cannot really understand what is pro
posed or in process for each program--!hey cannat apply sound judgment in their man
agement responsibilities. In general, we believe the estimates which are provided to uS
no matter how optimistic-and budget ta them. That's how the problem got started!

B. Tracking User Requirements

This is one of the biggest contributors ta the high cost of software as one of yoUf
sessions recognize. The problem here again has to do with the absence of a clear under
standing on the part of !hose managing software as ta what can be aecomplished with
software. Frequently, they either underestimate or overestimate the state-of·the-art. At
the same lime it is important that software specialists be able ta anticipate the likely
directions of change and design software and software tools so that il is fairly easy ta
accommodate changes when they come.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

4 COMPUTER SOFTWARE ENGINEERING

C. People as a Cost Factor

Each contractor has the problem of having highly trained individuais to develop and
maintain the software. At a recent software conference, statistics were produced to show
that the turn-over time for an average programmer was about three years. There is a
motivation problern for the software "production" worker, JUS! as with the hardware
"assembly line" worker. To illustrate how highly-labor-intensive software production is,
it has been estimated that increasing programmer productivity from an average of ten
instructions per man-day to eleven could save as much as 45 million dollars per year.

D. People in Hardware/Software Trade Offs

Another part of the software environment impacting on the personnel issue is the
lack of our ability to make the necessary trade-offs between hardware and software
implementation. To assess the strengths, weaknesses, and ensuing implications of these
trade-offs on life cycle cost and reliability, we need people with in-depth understanding
of both disciplines, and who can objectively perform and integrate trade-off analyses to
produee a balaneed system. These people are in extremely short supply and their eulti
vation in the future remains a major educationaI problem.

E. Duplication of Applications Software Efforts

1 have no way of knowing exactly how much we in Defense spend on "applications"
software which had already been accomplished, for sorne other program or programs.
People with whom 1 have talked in the Services, tell me that it is extensive and that our
first efforts to control costs should begin in !his area~ Without clear software develop
ment standards and adequate software management in Defense Systems acquisition, the
increase in costs owing to the duplication of efforts can only be expected to grow_

F. High Cost of Maintenance

A signifieant cost factor has been the software errors or problems discovered weU
after acquisition. One recent DoD study showed that Air Force avlonics software costs
something like 75 dollars per instruction to develop, but the maintenance of the software
has shown costs in the range of 4,000 dollars per instruction. The purpose of quotlng
these figures is not to offer them as representative numbers but to demonstrate that the
costs of maintenance are many times those for development. 1 might mention here that
software maintenance, in addition to correction of problems, includes updating and
revision of applications programs caused by changes or expansion of the operalional
mission. In the future the DoD will need to take a strong look at the life cycle approach
to acquiring software. This will include the formulation of design and management prin
ciples to assure software life cycle cost models, and design for eaSe of maintenance and
program update.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

KEYNOTE: SOF~AREMANAGEMENT 5

G. Insufficient Software R&D

The next issue which [would like to take up concerns the need for more directed
research and development on software. 1 refer here to the need to convert software from
an art into a technology. Titis can only be accomplished by giving increased attention to
the Research and Development of software tools. We must get away from the notion !hat
software advaneements are the sole domain of "rugged individualists" Or "arUsts.» The
best practitioners, individual stars, can produce exeeptionally fine software on schedule
at low cost. The general ron of prograrnmers and analysts are, however, far from titis
standard and increase the cost, schedules, and quality of our procurements by one or Iwo
orders of magnitude. It is not very useful to say "just hire the good guys." We have no
measure of either the software or its practitioners. It is aU "unknown," and the fact that
software is "invisible" makes it that much harder. In this regard, 1 am greatly encouraged
by many of the efforts which 1 have recently observed in both the Govemment and busi
ness sectors to increase software production capabilities. The "software factory" concept
is fast becoming an important means for effecting the necessary changes that are needed
in software development practiees. It involves the employment of an integrated set of
tools to provide a disciplined and repeatable approach to software development and to
replace ad hoc agglomerations of developmental techniques and tools with a standardized
methodology. One of the key objectives of!his approach has been to introduce manu
facturing methods and engineering principJes into those software production processes
which satisfy common desigu, implementation, and management requirements of projects.

H. Insufficient Software Management & Control

My final area of overall coneem has to do with the subject of software management
in the Department of Defense, and specifica1ly as il pertains to Derense Systems. We have
become somewhat expert at knowing how to divide the responsibilities of the
"requirements" and the "procurement" people in the hardware acquisition process; and
there i8 a fairly cloar line of de marcation between what i8 hardware and what constitutes
data. Software, however, creates something of a problem, for up until recently most
managers and contracting personnel were content to treat it simply as data. As costs
began to soar it became obvious that sorne management changes were in order. If we are
to manage software in the same manner as we do hardware perhaps we must begin to
think of software as "property" and not solely as "data" (fuUy recognizing the legal
implications of the term "property"). Cost data wltich are submitted for data items in
contracts are usually orny estima tes and do not provide for detailed cost breakdowns for
each data item. Frequently, it is difficult to get a clear and distinct separation of data
costs from engineering efforts tied to a deliverable contract schedule item. We must cer
tainly take steps to clear up this matter for software estimates.

More to the point, however, we must recognize that from a functional standpoint
computer software is equivalent to hardware, and must be delivered as an active system
component. Titis means that technical and management control is required to insure a
weil engineered quality product. Management instruments and disciplines influencing
computer software engineering, prototyping, configuration control, quality assurance,

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

6 COMPUTER SOFTWARE ENGINEERING

production control, reliability and maintainability, standardization, modular partitioning,
design reviews, and Iife cycle casting must be applied.

V. CURRENT ACTIONS

The problems and issues 1 have raised are real, and they require our immediate atten
tion. We have begun to take action aimed at improving the management situation for
bath the short and the long term. 1 would like to elaborate further on specifie actions
now taking place within the 000, and to highlight the areas in which further policy
guidance will soon be forthcoming.

We have created the proper organizational focii within 000 bath at the OSD and
Service levels. A DoD-wide software management plan which addresses a1l of the prol>
lems 1 have spoken of !his morning has been derived and developed. This plan has been
released and is soon to be avaUable through the Defense Documentation Center; a DoD
Directive establishing policy for the management and control, by 000 Components of
computer resources and software during development, acquisition, deployment, and sup
port of Defense Systems, has been written, co-ordinated throughout ail OSD and Service
organizations, and submitted to the Deputy Secretary of Defense for signature. The
theme pervading all of these steps is to elevate software policy, pracHees, procedure, and
technology from an artistic enterprise ta a true engineering discipline. Or ta say it
another way, ta treat software more like hardware throughout its complete life cycle.

VI. SOFTWARE REQUIREMENTS AND RISK ANAL YSIS

The first arca of emphasis under our newly formed policy initiative concerns the
requirements validation and risk analysis attendent ta computer resourees and software.
This topic will be covered in one of your sessions later today. Briefly staled, computer
resource requirements with particular emphasis on software, and on hardware/software
trade-offs must be reviewed, analyzed, and validated during the Concept Fonnulation
and Program Validation phases of Defense System development, prior ta the full scale
development decision point. This analysis must assure conformance of planned computer
resources with stated operational requirements. Risk analysis, preliminary design,
hardware/software integration methodology, use of existing software modules, standardi
zation, external interface control, security features, and life cycle system planning will
he included in the review. Correctness of software, reliability, integrity, maintainability,
ease of modification, and transferability will he major considerations in the initial design.
The risk areas, and a plan for their resolution shall be included in the Decision Coordi
naHng Paper at the OSD leve!. ln addition, computer resource requirements will be con·
Hnuously co·ordinated and reconciled with system operational requirements throughout
system development after the decision ta enter full seale development.

The effect of lbis policy will be ta emphasîze the front end technical efforts which
occur prior ta a major management commitment, and ta insure that it is given the same
attention as hardware during the early phases of system development. In addition it will

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

KEYNOTE: SOFTWARE MANAGEMENT

provide top level Service and OSD visibility into cost, schedule, option, and risk param·
eters at a time when subsequent development can be meaningfully impacted.

VII. COMPUTER RESOURCE L1FE CYCLE PLANNING

7

A computer resource plan will be developed prior to the decision to enter full scale
development, and will be maintained throughout the life cycle. The purpose of the plan
is to identify important Defense System computer resources acquisition and life cycle
planning factors, both direct and indirect; and to establish specifie guidelines to ensure
that these factors are adequately considered in the acquisition planning process. Resource
planning is to include equipment, software, documentation. and personnel.

This policy will place economic trade.offs, acquisition strategy, maintenance and
modification decisions on a life cycle basis, and eliminate the tendency to optimize devel·
opment costs, schedules, and quality al the expense of the subsequent operations and
support costs. We must stop mortgaging our future in exchange for fleeting benefits
during development.

VIII. CONFIGURATION MANAGEMENT OF COMPUTER RESOURCES

The next policy area COncerns the configuration management of computer resources
in major Defense Systems. We can no longer afford to treat software as a data element to
he acquired by a one·line entry on a Contract Data Requirements List. lnstead it will be
treated as a full·fledged configuration item, with all the attendant disciplines and control
involved. The emphasis will be on product definition, requirements traceability interface
definition and control, cost and equality traceability, and the corol!ary control discipline.

IX. SUPPORT SOFTWARE DELIVERABLES

When il is cost--effective to do 50, unique support items required to develop and main·
tain the delivered computer resources over the system's lue cycle will be specified as
deliverable, with DoD acquiring rights to their design and/or use. Examples of such sup
port items are compilers, environmental simulators, documentation aids, test case gener·
ators and analyzers, and training aids. The provisions of the Armed Service Procurement
Regulations will govern the implementation of this policy.

This policy again emphasizes the life cycle cost.effectiveness aspect of the acquisition
decision. Il will remove the long term dependence on a single development contr.ctor
(thereby preserving DoD's maintenance and support options for the longest possible
time), and il represents a necessary, although not sufficient step toward achieving true
transferability of support software across mission and application lines.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

8 COMPUTER SOFTWARE ENGINEERING

X. MILESTONE DEFINITION AND ATTAINMENT CRITERIA

Specifie milestones to manage the Iife cycle development of computer resources,
including computer system and support software will be used 10 enSure the proper
sequence of analysis, design, implementation, integration, test, documentation, operation,
maintenance, and modification. These milestones will include specifie criteria that
measure their attainmenL

This poliey relates to the product definition and work aceomplishment aspects of
confIguration management but the additional stress on quantitative demonstration criteria
is significant to note. Also of particular significance is the rigorous treatment which must
be accorded to test and evaluation, beginning in the earliest phases of system develop
ment, and culminating in a complete operational test and evaluation by the ultimate
military users.

XI. SOFTWARE LANGUAGE STANDARDIZATION AND CONTROL

The next policy issue deals with prograrnming languages, which is the subject of
another of your sessions this week. DoD approved High Order Prograrnming Languages
(HOLs), will be used to develop Defense System software, unless it is conc1usively demon
strated that none of the approved HOLs are cost·effective over Ihe system !ife cycle, and
this will not be easy. Each 000 approved HOL will be assigned to a designated control
agent who will be responsible for issuing the stability of the language, validating compli
ance of compiler implementations with the standard language specifications, gatherlng
data as to the use of the language, for disseminating information, compilers, and tools,
and for improving it over time.

This policy impacts both the language selection and proliferation problems 1 have
noted earlier. In general, high order languages do afford considerable life cycle benefits
(particularly in the operation and support phases) even though sorne inefficiencies rnay
be experlenced in developrnent. Exceptions to the use of high order languages must be
justified over the life cycle, and not jus! for development advantages.

Our long range objective is to get down to a minimum number of 000 High Order
Languages-and we are working in lhat direction; but our objective in achieving this
standard is for cost reductions-so we must be flexible in how we apply it and how we
alIow il to improve over lime.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

KEYNOTE: SOFTWARE MANAGEMENT 9

XII. CO-ORDINATED RESEARCH AND DEVElOPMENT

ln the area of researeh and development, a disciplined engineering approaeh to man·
agement of software design, engineering, and programming is essential as your conference
indicates. We have already given funding guidance to the Military Departments to assure
that this methodology is deve!oped and is used. Specifie actions underway within DoD
are:

(1) Plan and execute a eo-ordinated research and development prograrn to identify
and supply the technologica! base needed to support the policy, practice, and
procedure initiatives contained in the Defense System Software Management
Plan. Obviously ail of the sessions to be covered in this conference are germane
to this rother broad change to the research and development community

(2) Prepare and main tain appropriate guidance documents (e.g., guidelines, check·
!ists, handbooks, and descriptive examples) covering requirements definition,
development, acquisition, operation, and support issues attendant to computer
software in Defense Systems. These documents will be available for use as
necessary by program managers and their staffs as weIl as organizations taslced
with specifie responsibility for developing, acquiring, operating, and supporting
the computer reSOurce elements

(3) Establish andlor maintain appropriate education, training, and experience
career paths with accompanying career incentives to foster the development
and retention of professional computer resource engineers, managers, and
technicians.

XIII. LOOKING AHEAD

1 have summarized tlùs morning sorne of the more important policy actions we are
now taking within the Department of Defense. In varying degrees, these techniques are
being applied to ail current and new Defense System programs. 1 think we are now
getting to the point where we can impact many areas which will change the way we do
business within the Defense software community. We have great need ofyour help in
achieving these objectives. 1 am certain that we will be able to rely on you, as we have in
the pasto

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

