
Journal of Computer and System Sciences 117 (2021) 1–22

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Block trees ✩

Djamal Belazzougui a, Manuel Cáceres b, Travis Gagie c,∗, Paweł Gawrychowski d, 
Juha Kärkkäinen e, Gonzalo Navarro b, Alberto Ordóñez f, Simon J. Puglisi e, 
Yasuo Tabei g

a DTISI-CERIST, Algeria
b Center for Biotechnology and Bioengineering (CeBiB) and Department of Computer Science, University of Chile, Chile
c Faculty of Computer Science, Dalhousie University, Canada
d University of Wroclaw, Poland
e Helsinki Institute for Information Technology (HIIT) and Department of Computer Science, University of Helsinki, Finland
f Pinterest Inc., USA
g PRESTO, Japan Science and Technology Agency, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 September 2019
Received in revised form 11 May 2020
Accepted 5 November 2020
Available online 18 November 2020

Keywords:
Compressed data structures
Repetitive string collections
Lempel-Ziv compression

Let string S[1..n] be parsed into z phrases by the Lempel-Ziv algorithm. The corresponding 
compression algorithm encodes S in O(z) space, but it does not support random access to 
S . We introduce a data structure, the block tree, that represents S in O(z log(n/z)) space 
and extracts any symbol of S in time O(log(n/z)), among other space-time tradeoffs. 
The structure also supports other queries that are useful for building compressed data 
structures on top of S . Further, block trees can be built in linear time and in a scalable 
manner. Our experiments show that block trees offer relevant space-time tradeoffs 
compared to other compressed string representations for highly repetitive strings.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Much of the fastest-growing data these days is highly repetitive: versioned document and software repositories like 
Wikipedia and GitHub store tens of versions of each document; whole-genome sequencing projects generate thousands of 
genomes of individuals of the same species; periodic astronomical surveys regularly scan the same portion of the sky. Such 
repetitiveness makes those large datasets highly compressible with dictionary methods like grammar-based or Lempel-Ziv 
compression, whereas typical statistical compression fails to capture the repetitiveness [29].

Lempel-Ziv compression [34] of a string S[1..n] parses S into a sequence of z “phrases”, where each phrase S[i.. j] is 
a new symbol (and j = i) or it appears leftwards in S . Lempel-Ziv compression takes O(n) time [44] and reduces S to 
O(z) space by encoding the phrases. While Lempel-Ziv is the practical method that best exploits repetitiveness, it has the 
problem that no way is known to access arbitrary substrings of S without decompressing it from the beginning.

All the previous work in the literature [8,10,3,4,24] resorts to grammar-based compression when it comes to provide 
direct access to compressed highly repetitive strings. Grammar-based compression [33] of S consists in generating a context-
free grammar that generates S and only S . When S is repetitive, the size g of the grammar can be much smaller than n. 

✩ Supported in part by Basal Funds FB0001 and FONDECYT Grant 1-200038, ANID, Chile, and by the Academy of Finland grants 258308 and 268324. An 
early partial version of this work appeared in Proc. DCC’15 [5].

* Corresponding author.
E-mail address: travis.gagie@gmail.com (T. Gagie).

https://doi.org/10.1016/j.jcss.2020.11.002
0022-0000/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2020.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2020.11.002&domain=pdf
mailto:travis.gagie@gmail.com
https://doi.org/10.1016/j.jcss.2020.11.002

